King Saud University
College of Sciences
Department of Mathematics

Second Mid Term Exam, S1 1443
M 380 - Stochastic Processes
Time: 90 minutes

Answer only three questions (including Q3) from the following questions:

Q1: [4+4]

(a) The probability of the thrower winning in the dice game is $\mathrm{p}=0.5071$. Suppose player A is the thrower and begins the game with $\$ 5$, and player B, his opponent, begins with $\$ 10$. What is the probability that player A goes bankrupt before player B ? Assume that the bet is $\$ 1$ per round.
(b) Let us model the daily stock price change as $Z=\xi_{0}+\xi_{1}+\ldots+\xi_{N}$, where
$\xi_{0}, \xi_{1}, \ldots, \xi_{N}$ are independent normally distributed random variables with common mean zero and variance 0.5 , and N is the number of transactions during the day which has a Poisson distribution with mean 1 .
(i) Determine the mean and variance of Z.
(ii) What is the distribution of Z ?

Q2: [4+4]

(a) For the Markov process $\left\{\mathrm{X}_{\mathrm{t}}\right\}, \mathrm{t}=0,1,2, \ldots, \mathrm{n}$ with states $\mathrm{i}_{0}, \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{n-1}, \mathrm{i}_{n}$

Prove that: $\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{\hat{i}_{0}} P_{\mathrm{ibi}_{i}} P_{i \underline{i}} \ldots P_{i_{i n-1}, i_{n}}$ where $p_{i_{0}}=\operatorname{pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$
(b) A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ has the transition probability matrix

$$
\left.\mathbf{P}=\begin{array}{c||ccc||}
\\
0 & 0 & 1 & 2 \\
1 & 0.2 & 0.3 & 0.5 \mid \\
2 & 0.4 & 0.2 & 0.4 \\
2 & 0.5 & 0.3 & 0.2
\end{array} \right\rvert\,
$$

and initial distribution $\mathrm{p}_{0}=0.3, \mathrm{p}_{1}=0.5$ and $\mathrm{p}_{2}=0.2$ Determine the probabilities
$\operatorname{pr}\left\{\mathrm{X}_{0}=1, \mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right\} \quad$ and $\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}$

Q3: [5+4]

(a) Consider the Markov chain whose transition probability matrix is given by

$$
\left.\mathbf{P}=\begin{array}{c||cccc}
& \begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 \\
1 & 1 & 0 & 0 \\
0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 \\
0.1 \\
3 & 0 & 0 & 0
\end{array} \\
0.1
\end{array} \right\rvert\,
$$

(i) Starting in state 2 , determine the probability that the Markov chain ends in state 0 .
(ii) Determine the mean time to absorption.
(iii) Sketch, the Markov chain diagram, and determine whether it's an absorbing chain or not.
(b) For modelling weather phenomenon, let $\left\{X_{n}\right\}$ be a Markov chain with state space $S=\{1,2\}$ where 1 stands for rainy and 2 stands for dry. The transition probability matrix is given by

$$
\mathbf{P}=\begin{array}{cc}
1 & 2 \\
1 \| 0.8 & 0.2 \\
2 \| & \| .4 \\
0.4 & 0.6
\end{array}
$$

Initially, assume that the probability of weather will be rainy on $1^{\text {st }}$ June equals $3 / 8$.
Find the probability for each of the following:
(i) The weather will be rainy on $2^{\text {nd }}$ June.
(ii) The weather will be rainy on $3^{\text {rd }}$ June.
(iii) The weather will be dry on $5^{\text {th }}$ June.

Q4: [4+4]

(a) Let $U_{1}, U_{2}, \ldots U_{n}$ be independent random variables each uniformly distributed over the interval $(0,1]$. Show that $X_{0}=1$ and $X_{n}=2^{n} U_{1} U_{2} \ldots U_{n}$, for $\mathrm{n}=1,2, \ldots$ defines a martingale.
(b) Let $S_{1}, S_{2}, \ldots . S_{n}$ be independent random variables such that $E\left|S_{i}\right|<\infty$ for all $i=1,2, \ldots$, n. Let $X_{0}=0$, $X_{n}=S_{1}+S_{2}+\ldots+S_{n}, n \geq 1$.

Prove that: X_{n} is a martingale if and only if $E\left[S_{n}\right]=0$ for all $n \geq 1$.

The Model Answer

Q1: [4+4]
(a)

The fortune for player A is $i=\$ 5$ and the total amount is $N=\$ 5+\$ 10=\$ 15$

$$
\mathrm{p}=0.5071 \Rightarrow \mathrm{q}=0.4929
$$

$u_{i}=\operatorname{pr}\left\{X_{n}\right.$ reaches state 0 before state $\left.N \mid X_{0}=i\right\}$
$u_{i}=\frac{(q / p)^{i}-(q / p)^{N}}{1-(q / p)^{N}}, p \neq q$
$\therefore u_{i}=\frac{(0.4929 / 0.5071)^{5}-(0.4929 / 0.5071)^{15}}{1-(0.4929 / 0.5071)^{15}}$
$u_{i}=0.61837$
(b)
$E\left(\xi_{k}\right)=\mu=0, \operatorname{Var}\left(\xi_{k}\right)=\sigma^{2}=0.5$
$E(N)=v=1, \operatorname{Var}(N)=\tau^{2}=1$
$\because Z=\xi_{0}+\xi_{1}+\ldots+\xi_{N}$
$\therefore E(Z)=\mu(v+1)=0(2)=0$ and
$\operatorname{Var}(Z)=(v+1) \sigma^{2}+\mu^{2} \tau^{2}=2(0.5)=1$
$\Rightarrow Z \sim N(0,1)$
$\therefore Z$ has the standard normal distribution.

Q2: $[4+4]$
(a)
$\because \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\operatorname{Pr}\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\} \cdot \operatorname{Pr}\left\{X_{n}=i_{n} \mid X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n-1}=i_{n-1}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}}$ Definition of Markov
By repeating this argument $n-1$ times
$\therefore \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\mathrm{p}_{\mathrm{i}_{0}} \mathrm{P}_{\mathrm{i}_{0} \mathrm{i}_{1}} \mathrm{P}_{\mathrm{i}_{1} \mathrm{i}_{2}} \ldots \mathrm{P}_{\mathrm{i}_{n-2} \mathrm{i}_{n-1}} \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}}$ where $\mathrm{p}_{\mathrm{i}_{0}}=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}\right\}$ is obtained from the initial distribution of the process.
(b)
i) $\operatorname{pr}\left\{\mathrm{X}_{0}=1, \mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right\}=\mathrm{p}_{1} \mathrm{P}_{11} \mathrm{P}_{10}, \mathrm{p}_{1}=\operatorname{pr}\left\{\mathrm{X}_{0}=1\right\}$

$$
\begin{aligned}
& =0.5(0.2)(0.4) \\
& =0.04
\end{aligned}
$$

ii) $\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}=\mathrm{p}_{1} \mathrm{P}_{11} \mathrm{P}_{10}, \quad \mathrm{p}_{1}=\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\}$

$$
\begin{aligned}
\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\} & =\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=0\right) \operatorname{Pr}\left(\mathrm{X}_{0}=0\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=1\right) \operatorname{Pr}\left(\mathrm{X}_{0}=1\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=2\right) \operatorname{Pr}\left(\mathrm{X}_{0}=2\right) \\
& =\mathrm{P}_{01} \mathrm{p}_{0}+\mathrm{P}_{11} \mathrm{p}_{1}+\mathrm{P}_{21} \mathrm{p}_{2} \\
& =0.3(0.3)+0.2(0.5)+0.3(0.2)=0.25
\end{aligned}
$$

$\therefore \operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}=0.25(0.2)(0.4)=0.02$
Q3: $[5+4]$
(a)

$$
\left.\mathbf{P}=\begin{array}{l||cccc||}
\\
0 \\
1 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 \\
2 & 0.1 & 0.6 & 0.1 & 0.2 \\
3 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

$u_{i}=\operatorname{pr}\left\{X_{T}=0 \mid X_{0}=i\right\}$ for $\mathrm{i}=1,2$,
and $v_{i}=\mathrm{E}\left[T \mid X_{0}=i\right] \quad$ for $\mathrm{i}=1,2$.
(i)
$u_{1}=p_{10}+p_{11} u_{1}+p_{12} u_{2}$
$u_{2}=p_{20}+p_{21} u_{1}+p_{22} u_{2}$

```
#
\(u_{1}=0.1+0.6 u_{1}+0.1 u_{2}\)
\(u_{2}=0.2+0.3 u_{1}+0.4 u_{2}\)
=>
```

$4 u_{1}-u_{2}=1$
$3 u_{1}-6 u_{2}=-2$
Solving (1) and (2), we get

$$
u_{1}=\frac{8}{21} \text { and } u_{2}=\frac{11}{21}
$$

Starting in state 2 , the probability that the Markov chain ends in state 0 is

$$
u_{2}=u_{20}=\frac{11}{21}
$$

$$
\approx 0.52
$$

(ii) Also, the mean time to absorption can be found as follows
$v_{1}=1+p_{11} v_{1}+p_{12} v_{2}$
$v_{2}=1+p_{21} v_{1}+p_{22} v_{2}$
\Rightarrow
$v_{1}=1+0.6 v_{1}+0.1 v_{2}$
$v_{2}=1+0.3 v_{1}+0.4 v_{2}$
\Rightarrow
$4 v_{1}-v_{2}=10$
$3 v_{1}-6 v_{2}=-10$
Solving (1) and (2), we get
\therefore The mean time to absorption is
$v_{1}=v_{2}=\frac{10}{3}$
$\begin{aligned} \therefore v_{2} & =v_{20}=\frac{10}{3} \\ & \approx 3.3\end{aligned}$
(iii) It's an absorbing Markov Chain.

Markov Chain Diagram
(b)

The Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ represents the day's weather
$\because \operatorname{pr}\left(X_{0}=1\right)=p_{1}=3 / 8$
$\therefore \operatorname{pr}\left(X_{0}=2\right)=p_{2}=5 / 8$
\Rightarrow The initial probability distribution is $\left[\begin{array}{ll}3 / 8 & 5 / 8\end{array}\right]$
(i) To get the prob. of weather will be rainy on $2^{\text {nd }}$ June

$$
\begin{aligned}
& \because \mathbf{P}=\begin{array}{cc}
1 & 2 \\
1 \| & 0.8 \\
2 & 0.2 \\
2.4 & 0.6
\end{array} \| \\
& \begin{aligned}
\operatorname{pr}\left(X_{1}=1\right) & = \\
& \operatorname{Pr}\left(X_{1}=1 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{0}=1\right)+\operatorname{Pr}\left(X_{1}=1 \mid X_{0}=2\right) \operatorname{Pr}\left(X_{0}=2\right) \\
& =P_{11} p_{1}+P_{21} p_{2} \\
& =(0.8)\left(\frac{3}{8}\right)+(0.4)\left(\frac{5}{8}\right)
\end{aligned}
\end{aligned}
$$

$$
\therefore \operatorname{pr}\left(X_{1}=1\right)=0.55
$$

(ii) To get the prob. of weather will be rainy on $3^{\text {rd }}$ June

$$
\begin{array}{r}
\because \mathbf{P}^{2}=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right]\left[\begin{array}{ll}
0.8 & 0.2 \\
0.4 & 0.6
\end{array}\right] \\
=\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
\operatorname{pr}\left(X_{2}=1\right)= & \operatorname{Pr}\left(X_{2}=1 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{0}=1\right)+\operatorname{Pr}\left(X_{2}=1 \mid X_{0}=2\right) \operatorname{Pr}\left(X_{0}=2\right) \\
& =P_{11}{ }^{2} p_{1}+P_{21}{ }^{2} p_{2} \\
& =(0.72)(3 / 8)+(0.56)(5 / 8)
\end{aligned}
$$

$$
\therefore \operatorname{pr}\left(X_{2}=1\right)=0.62
$$

(iii) To get the prob. of weather will be dry on $5^{\text {th }}$ June

$$
\begin{aligned}
\because \mathbf{P}^{4} & =\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right]\left[\begin{array}{ll}
0.72 & 0.28 \\
0.56 & 0.44
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.6752 & 0.3248 \\
0.6496 & 0.3504
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{pr}\left(X_{4}=2\right) & =\operatorname{Pr}\left(X_{4}=2 \mid X_{0}=1\right) \operatorname{Pr}\left(X_{0}=1\right)+\operatorname{Pr}\left(X_{4}=2 \mid X_{0}=2\right) \operatorname{Pr}\left(X_{0}=2\right) \\
& =P_{12}^{4} p_{1}+P_{22}^{4} p_{2} \\
& =(0.3248)(3 / 8)+(0.3504)(5 / 8) \\
\therefore \operatorname{pr}\left(X_{4}=2\right) & =0.3408
\end{aligned}
$$

Q4: [4+4]
(a)

1- As X_{n} is a non-negative random variable,

$$
\begin{aligned}
E\left[\left|X_{n}\right|\right]=E\left[X_{n}\right]=E\left[2^{n} U_{1} U_{2} \ldots U_{n}\right]= & 2^{n} E\left[U_{1}\right] \ldots . E\left[U_{n}\right] \\
& =2^{n} \cdot\left(\frac{1}{2}\right)^{n}=1<\infty .
\end{aligned}
$$

This is because $U_{i}{ }^{\prime} s$ are independent, also, since $U_{i} \sim$ uniform $(0,1]$, then $E\left[U_{i}\right]=\frac{1}{2}$.

$$
\text { 2- } \begin{aligned}
E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =E\left[2^{n+1} U_{1} U_{2} \ldots . U_{n} \cdot U_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =2^{n} U_{1} U_{2} \ldots . U_{n} E\left[2 . U_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =2^{n} U_{1} U_{2} \ldots . U_{n} 2 E\left[U_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =2^{n} U_{1} U_{2} \ldots . U_{n} 2 E\left[U_{n+1}\right]
\end{aligned}
$$

$$
=2^{n} U_{1} U_{2} \ldots . U_{n} 2 \cdot \frac{1}{2}=2^{n} U_{1} U_{2} \ldots U_{n}=X_{n}
$$

From 1 and 2, we proved that X_{n} is a martingale.
(b)

For $n \geq 1$,
$1-E\left|X_{n}\right|=E\left|S_{1}+S_{2}+\ldots .+S_{n}\right| \leq E\left|S_{1}\right|+E\left|S_{2}\right|+\ldots .+E\left|S_{n}\right|<\infty$, since $E\left|S_{i}\right|<\infty$ for all $i=1,2, \ldots, n$.

$$
\text { 2- } \begin{aligned}
E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =E\left[\left(S_{1}+S_{2}+\ldots+S_{n}+S_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right] \\
& =\left(S_{1}+S_{2}+\ldots+S_{n}\right)+E\left[S_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =X_{n}+E\left[S_{n+1}\right] \\
& =X_{n} \text { if and only if } E\left[S_{n+1}\right]=0 .
\end{aligned}
$$

Therefore, X_{n} is a martingale if and only if $E\left[S_{n}\right]=0$ for all $n \geq 1$.

