King Saud University
 College of Sciences, Department of Mathematics
 1444/Semester-3/ MATH 380/ Quiz-1
 Max. Time: 35 Minutes

Marks: 10

Answer the following questions.

Q1: $[2.5+2.5]$
(a) Prove that if $T \sim \exp (\lambda)$ then $\operatorname{Pr}(T>t+s \mid T>s)=\operatorname{Pr}(T>t) \forall t, s \geq 0$
(b) The lifetime T of a certain component has an exponential distribution with parameter $\lambda=0.02$. Find $\operatorname{Pr}(T \leq 120 \mid T>100)$.

Q2: $[2.5+2.5]$
(a) A fraction $p=0.05$ of the items coming off a production process are defective. The output of the process is sampled, one by one, in a random manner.
(i) What is the probability that the first defective item found is the tenth item sampled?
(ii) Determine the mean and variance.
(b) Let X and Y two random variables have the joint normal distribution. What value of α that minimizes the variance of $\mathrm{Z}=\alpha \mathrm{X}+(1-\alpha) Y$? Simplify your result when X and Y are independent.

The Model Answer

Q1: [2.5+2.5]
(a)

$$
\begin{aligned}
\operatorname{Pr}(T>t+s \mid T>s) & =\frac{\operatorname{Pr}(T>t+s, T>s)}{\operatorname{Pr}(T>s)} \\
& =\frac{\operatorname{Pr}(T>t+s)}{\operatorname{Pr}(T>s)}
\end{aligned}
$$

$\because T \sim \exp (\lambda)$
$\therefore \operatorname{Pr}(T>t+s \mid T>s)=\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}=e^{-\lambda t}$

$$
=R(t)=\operatorname{Pr}(T>t)
$$

(b)

$$
\begin{aligned}
\operatorname{Pr}(T \leq 120 \mid T>100) & =1-\operatorname{pr}(T>120 \mid T>100) \\
& =1-\operatorname{pr}(T>20) \\
& =1-\mathrm{e}^{-0.02(20)}
\end{aligned}
$$

$\therefore \operatorname{Pr}(T \leq 120 \mid T>100)=1-\mathrm{e}^{-0.4} \simeq 0.33$
Q2: $[2.5+2.5]$
(a)

Let X counts the number of failures prior to the first success
$\mathrm{X} \sim \operatorname{Geom}(p), p=0.05$

$$
\begin{aligned}
\operatorname{pr}(\mathrm{X}=10) & =p(1-p)^{k-1}, k=1,2, \ldots \\
& =0.05(1-0.05)^{9} \\
& =0.0315
\end{aligned}
$$

The mean is $\mathrm{E}(\mathrm{X})=1 / p=20$ and variance is $\operatorname{Var}(\mathrm{X})=(1-p) / p^{2}=380$
(b)
$\mathrm{Z}=\alpha \mathrm{X}+(1-\alpha) \mathrm{Y}$
$\operatorname{Var}(\mathrm{Z})=\alpha^{2} \sigma_{X}^{2}+2 \alpha(1-\alpha) \rho \sigma_{X} \sigma_{Y}+(1-\alpha)^{2} \sigma_{Y}^{2}$
To get α^{*} that minimizes $\operatorname{Var}(\mathrm{Z})$ let $\frac{\partial V}{\partial \alpha}=0$
$\therefore 2 \alpha \sigma_{X}^{2}+(2-4 \alpha) \rho \sigma_{X} \sigma_{Y}+(-2+2 \alpha) \sigma_{Y}^{2}=0$

$$
\Rightarrow
$$

$$
\alpha^{*}=\frac{\sigma_{Y}^{2}-\rho \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\sigma_{Y}^{2}},-1<\rho<1
$$

If X and Y are independent random variables, then $\rho=0$
Consequently $\alpha^{*}=\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}}$.

