Name:
ID:
Section:
Mark:

King Saud University
 College of Sciences, Department of Mathematics
 1444/Semester-3/ MATH 380/ Quiz-2

Marks: 10
Max. Time: 35 Minutes

Answer the following questions.

Q1: [3]

The number of accidents occurring in a factory in a week is a Poisson random variable with mean 3 . The number of individuals injured in different accidents is independently distributed, each with mean 2 and variance 4 . Determine the mean and variance of the number of individuals injured in a week.

Q2: $[1+3]$
(a) Define a martingale.
(b) Let $\zeta_{1}, \zeta_{2}, \zeta_{3}, \ldots$. be independent Bernoulli random variables with parameter $p, 0<p<1$. Show that $X_{0}=1$ and $X_{n}=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n}, n=1,2, \ldots$, defines a nonnegative martingale.

Q3: [3]
Consider a sequence of items from a production process, with each item being graded as good or defective. Suppose that a good item is followed by another good item with probability α and is followed by a defective item with probability $1-\alpha$. If the first item is good, what is the probability that the first defective item to appear is the fifth item ?

The Model Answer

Q1: [3]

Let $Z=\xi_{1}+\xi_{2}+\ldots+\xi_{N}$, where
N is \# of accidents in a week and
ξ_{k} is \# of individuals injured for kth accident.
$N \sim \operatorname{Poisson}(3)$, consequently $E(N)=3, \operatorname{Var}(N)=3$.
and $\because E\left(\xi_{k}\right)=2, \operatorname{Var}\left(\xi_{k}\right)=4$
$\therefore E(\mathrm{Z})=\mu v=2(3)=6$
and $\operatorname{Var}(Z)=v \sigma^{2}+\mu^{2} \tau^{2}$

$$
=3(4)+4(3)=24
$$

Q2: $[1+3]$
(a)

A stochastic process $\left\{X_{n} ; n=0,1,2, \ldots\right\}$ is a martingale if for $n=0,1,2, \ldots$
(i) $E\left[\left|X_{n}\right|\right]<\infty$,
(ii) $E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=X_{n}$.
(b)
(1) $E\left[\left|X_{n}\right|\right]=E\left[X_{n}\right]=E\left[p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n}\right]$, and as $\zeta_{i / s}$ are independent, $=p^{-n} E\left[\zeta_{1}\right] \ldots E\left[\zeta_{n}\right]$
$=p^{-n} p^{n}=1$, as $E\left[\zeta_{\mathrm{k}}\right]=p$,
$\therefore E\left[\left|X_{n}\right|\right]=E\left[X_{n}\right]=1<\infty$.
(2) $E\left[X_{n+1} \mid X_{0}, \ldots . ., X_{n}\right]=E\left[p^{-(n+1)} \zeta_{1} \zeta_{2} \ldots \zeta_{n+1} \mid X_{0}, \ldots ., X_{n}\right]$

$$
=E\left[p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n} p^{-1} \zeta_{n+1} \mid X_{0}, \ldots ., X_{n}\right]
$$

$$
=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n} E\left[p^{-1} \zeta_{n+1} \mid X_{0}, \ldots \ldots, X_{n}\right]
$$

$$
\text { as } \zeta_{1} \zeta_{2} \ldots \zeta_{n} \text { are determined by } X_{0}, \ldots \ldots, X_{n}
$$

$$
=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n} p^{-1} E\left[\zeta_{n+1} \mid X_{0}, \ldots \ldots, X_{n}\right]
$$

$E\left[X_{n+1} \mid X_{0}, \ldots ., X_{n}\right]=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n} p^{-1} E\left[\zeta_{n+1}\right]$, as ζ_{n+1} is independent of $X_{i / s}$,

$$
=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n} p^{-1} p
$$

$\therefore E\left[X_{n+1} \mid X_{0}, \ldots ., X_{n}\right]=p^{-n} \zeta_{1} \zeta_{2} \ldots \zeta_{n}=X_{n}$.
We have proved from (1) and (2) that X_{n} defines a nonnegative martingale.
Q3: [3]

$$
\begin{aligned}
& \operatorname{Pr}\left\{\mathbf{X}_{2}=G, \mathbf{X}_{3}=G, \mathrm{X}_{4}=G, \mathbf{X}_{5}=D \mid \mathbf{X}_{1}=G\right\} \\
& =\operatorname{Pr}\left\{\mathrm{X}_{5}=D, \mathbf{X}_{4}=G, \mathbf{X}_{3}=G, \mathbf{X}_{2}=G \mid \mathbf{X}_{1}=G\right\} \\
& =\operatorname{Pr}\left\{\mathbf{X}_{5}=D \mid \mathbf{X}_{4}=G\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{4}=G \mid \mathbf{X}_{3}=G\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{3}=G \mid \mathbf{X}_{2}=G\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{2}=G \mid \mathbf{X}_{1}=G\right\} \\
& =\mathrm{p}_{G D} \mathbf{p}_{G G}^{3} \\
& =(1-\alpha) \alpha^{3} \\
& =\alpha^{3}(1-\alpha)
\end{aligned}
$$

Also, you can solve it as follows.
$\mathrm{p}_{1} \mathrm{p}_{12} \mathrm{p}_{23} \mathrm{p}_{34} \mathrm{p}_{45}, \mathrm{p}_{1}=\operatorname{Pr}\left(\mathrm{X}_{1}=G\right)=1$
$=\mathrm{p}_{G} \mathrm{p}_{G G}^{3} \mathrm{p}_{G D}, \mathrm{p}_{G}=1$
$=\alpha^{3}(1-\alpha)$

