MID TERM EXAMINATION, SEMESTER I, 1443 DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY MATH - 107 FULL MARK: 30 TIME: 2 HOURS

[N. B.: Marks: Q1. [5]; Q2. [5]; Q3.[2+2+2=6]; Q4. [2+3+3=8] Q5. [2+4=6]]

Q1. Solve the system of linear equations by Gaussian elimination:

$$2x_1 + 3x_2 + x_3 = 5$$

$$x_1 + x_2 + x_3 = 2$$

$$4x_1 + 3x_2 - 3x_3 = 11$$

Q2. Let

$$A = \begin{bmatrix} 1 & -1 & \alpha \\ -1 & 2 & -\alpha \\ \alpha & 1 & 1 \end{bmatrix}$$

Find the values of α for which the matrix A is invertible.

Q3. (i) Find the angle between the vectors $\mathbf{u} = 10\mathbf{i} + 9\mathbf{j}$ and $\mathbf{v} = -4\mathbf{i} + 2\mathbf{j}$.

(ii) Let $\mathbf{a} = \langle 1, 0, 0 \rangle$ and $\mathbf{b} = \langle -6, 2, 1 \rangle$. Determine the component of \mathbf{b} along \mathbf{a} .

(iii) Determine whether $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + 2\mathbf{j}$ are perpendicular to each other.

Q4. (a) Find the work done that is exerted by a constant force $\mathbf{F} = 3\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ to move a particle from a point P(-1, 1, 2) to another point Q(2, 4, 3).

(b) Find the equation of the plane determined by the points P(4, -3, 1), Q(6, -4, 7) and R(1, 2, 2).

(c) Sketch the graph of the equation $4x^2 - 9y^2 + z^2 = 36$ in an *xyz*-coordinate system, and identify the surface.

Q5. Let C be the curve determined by $\mathbf{r}(t) = (1 + t^3)\mathbf{i} + \sqrt{2t - 1}\mathbf{j} + t^3\mathbf{k}$.

- (a) Find the domain of $\mathbf{r}(t)$.
- (b) Find parametric equations for the tangent line to C at the point (2, 1, 1).