MID TERM EXAMINATION, SEMESTER I, 1443 DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY MATH - 107 FULL MARK: 30 TIME: 2 HOURS

[N. B.: Marks: Q1. [5]; Q2. [5]; Q3.[2+2+2=6]; Q4. $[2+3+3=8]$ Q5. $[2+4=6]]$

Q1. Solve the system of linear equations by Gaussian elimination:

$$
\begin{array}{rr}
2 x_{1}+3 x_{2}+x_{3} & =5 \\
x_{1}+x_{2}+x_{3} & =2 \\
4 x_{1}+3 x_{2}-3 x_{3} & =11
\end{array}
$$

Q2. Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & \alpha \\
-1 & 2 & -\alpha \\
\alpha & 1 & 1
\end{array}\right]
$$

Find the values of α for which the matrix A is invertible.

Q3. (i) Find the angle between the vectors $\mathbf{u}=10 \mathbf{i}+9 \mathbf{j}$ and $\mathbf{v}=-4 \mathbf{i}+2 \mathbf{j}$.
(ii) Let $\mathbf{a}=\langle 1,0,0\rangle$ and $\mathbf{b}=\langle-6,2,1\rangle$. Determine the component of \mathbf{b} along \mathbf{a}.
(iii) Determine whether $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}-5 \mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}+2 \mathbf{j}$ are perpendicular to each other.

Q4. (a) Find the work done that is exerted by a constant force $\mathbf{F}=3 \mathbf{i}+\mathbf{j}-5 \mathbf{k}$ to move a particle from a point $P(-1,1,2)$ to another point $Q(2,4,3)$.
(b) Find the equation of the plane determined by the points $P(4,-3,1), Q(6,-4,7)$ and $R(1,2,2)$.
(c) Sketch the graph of the equation $4 x^{2}-9 y^{2}+z^{2}=36$ in an $x y z$-coordinate system, and identify the surface.

Q5. Let C be the curve determined by $\mathbf{r}(t)=\left(1+t^{3}\right) \mathbf{i}+\sqrt{2 t-1} \mathbf{j}+t^{3} \mathbf{k}$.
(a) Find the domain of $\mathbf{r}(t)$.
(b) Find parametric equations for the tangent line to C at the point $(2,1,1)$.

