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   Name:                                                      ID:                    Section:                     Mark:  
 

King Saud University 
College of Sciences, Department of Mathematics 

1444/Semester-2/ MATH 380/ Quiz-2 
  Marks: 10                                                                          Max. Time: 35 Minutes     
     

Answer the following questions. 
 

Q1: [2+1] 
An observation is made of a Poisson random variable N  with parameter  𝜆. Then N  independent 
Bernoulli trials are performed, each with probability p  of success. Let Z  be the total number of 

successes observed in the N trials. Formulate Z  as a random sum and determine its mean and 

variance. What is the distribution of Z ?  

 

Q2: [1+3] 
(a) Define a martingale. 

(b) Suppose 1 2 3X ,X ,X , ...  are identically independent distributed random variables where  
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  Show that nS is a martingale. 

 

Q3: [3] 
Consider a sequence of items from a production process, with each item being graded as good or 

defective. Suppose that a defective item is followed by another defective item with probability   

and is followed by a good item with probability 1 .    If the first item is defective, what is the 

probability that the first good item to appear is the fifth item ? 
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The Model Answer 
Q1: [2+1] 
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Consequently,  Poisson( ).Z p  

 
Q2: [1+3] 

 
(a)   

A stochastic process  X ; 0,1,2,...n n  is a martingale if  

(i) X ,nE       

(ii) 
1 0X X ,...,X X .n n nE      

(b) 

(1) To show that ,nE S      
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(2) To show that 
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where nS  is determined by 1X ,...,Xn and 1Xn is independent of 'X ,i s  

     1 1 1and X (1).Pr X 1 ( 1).Pr X 1

                       (1)(1/ 2) ( 1)(1/ 2) 0

n n nE        

   
 

1 1X ,...,Xn n nE S S      

That is from (1) and (2), we have proved that nS is a martingale. 

Q3: [3] 
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Also, you can solve it as follows. 
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