ID: Section: Mark:

King Saud University
 College of Sciences, Department of Mathematics
 1444/Semester-3/ MATH 380/ Quiz-2

Marks: 10
Max. Time: 35 Minutes

Answer the following questions.

Q1: [3]

An observation is made of a Poisson random variable N with parameter λ. Then N independent Bernoulli trials are performed, each with probability p of success. Let Z be the total number of successes observed in the N trials. Formulate Z as a random sum and determine its mean and variance. What is the distribution of Z ?

Q2: $[1+3]$
(a) Define a martingale.
(b) Let U_{1}, U_{2}, \ldots be independent identically random variables each uniformly distributed over the interval $(0,1]$. Show that $X_{0}=1$ and $X_{n}=2^{n} U_{1} \ldots U_{n}$ for $n=1,2, \ldots$ defines a martingale.

Q3: [3]

Consider a sequence of items from a production process, with each item being graded as good or defective. Suppose that a defective item is followed by another defective item with probability β and is followed by a good item with probability $1-\beta$. If the first item is defective, what is the probability that the first good item to appear is the fifth item?

The Model Answer

Q1: [3]

Let $Z=\xi_{1}+\xi_{2}+\ldots+\xi_{N}, N>0$ Then
$E\left(\xi_{k}\right)=\mu=p, \operatorname{Var}\left(\xi_{k}\right)=\sigma^{2}=p(1-p)$
$E(N)=v=\lambda, \quad \operatorname{Var}(N)=\tau^{2}=\lambda$
$\because E(Z)=\mu v$
$\therefore E(Z)=\lambda p$
$\because \operatorname{Var}(\mathrm{Z})=v \sigma^{2}+\mu^{2} \tau^{2}$
$\therefore \operatorname{Var}(\mathrm{Z})=\lambda p(1-p)+p^{2} \lambda$ $=\lambda p$
Consequently, $Z \sim \operatorname{Poisson}(\lambda p)$.
Q2: $[1+3]$
(a)

A stochastic process $\left\{X_{n} ; n=0,1,2, \ldots\right\}$ is a martingale if for $n=0,1,2, \ldots$
(i) $E\left[\left|X_{n}\right|\right]<\infty$,
(ii) $E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=X_{n}$.
(b)
(1) To show that $E\left[\left|\mathrm{X}_{n}\right|\right]<\infty$,
$\because E\left[\left|X_{n}\right|\right]=E\left[X_{n}\right]$
$=E\left[2^{n} U_{1} \ldots U_{n}\right]$
$=2^{n} E\left[U_{1}\right]\left[U_{2}\right] \ldots\left[U_{n}\right]$ as $U_{i^{\prime} s}$ are indep. r.vs
$\therefore E\left[\left|X_{n}\right|\right]=2^{n} \cdot \frac{1}{2} \cdot \frac{1}{2} \ldots \frac{1}{2}=\frac{2^{n}}{2^{n}}=1<\infty$
(2) To show that $E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=X_{n}$,

$$
\begin{aligned}
\because E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =E\left[2^{n+1} U_{1} \ldots U_{n} U_{n+1} \mid X_{0}, \ldots, X_{n}\right] \\
& =2^{n} U_{1} \ldots U_{n} E\left[2 U_{n+1} \mid X_{0}, \ldots, X_{n}\right], \text { as } U_{1} \ldots U_{n} \text { is determined by } X_{i^{\prime} s} \\
& =2^{n} U_{1} \ldots U_{n} \cdot 2 E\left[U_{n+1}\right], \text { as } U_{n+1} \text { is indep. of } X_{i^{\prime} s} \\
& =2^{n} U_{1} \ldots U_{n} \cdot 2 \frac{1}{2} \text { where } E\left[U_{i}\right]=\frac{1}{2}, i=1,2, \ldots \\
\therefore E\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right] & =X_{n}
\end{aligned}
$$

That is from (1) and (2), we have proved that $X_{n}, n=0,1,2, \ldots$ where $X_{0}=1$ is a martingale.

Q3: [3]

$$
\begin{aligned}
& \operatorname{Pr}\left\{\mathbf{X}_{2}=D, \mathbf{X}_{3}=D, \mathbf{X}_{4}=D, \mathbf{X}_{5}=G \mid \mathbf{X}_{1}=D\right\} \\
& =\operatorname{Pr}\left\{\mathbf{X}_{5}=G, \mathbf{X}_{4}=D, \mathbf{X}_{3}=D, \mathbf{X}_{2}=D \mid \mathbf{X}_{1}=D\right\} \\
& =\operatorname{Pr}\left\{\mathbf{X}_{5}=G \mid \mathbf{X}_{4}=D\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{4}=D \mid \mathbf{X}_{3}=D\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{3}=D \mid \mathbf{X}_{2}=D\right\} \cdot \operatorname{Pr}\left\{\mathbf{X}_{2}=D \mid \mathbf{X}_{1}=D\right\} \\
& =\mathrm{p}_{D G} \mathbf{p}_{D D}^{3} \\
& =(1-\beta) \beta^{3} \\
& =\beta^{3}(1-\beta)
\end{aligned}
$$

Also, you can solve it as follows.
$\mathrm{p}_{1} \mathrm{p}_{12} \mathrm{p}_{23} \mathrm{p}_{34} \mathrm{p}_{45}, \mathrm{p}_{1}=\operatorname{Pr}\left(\mathrm{X}_{1}=D\right)=1$
$=\mathrm{p}_{D} \mathrm{p}_{D D}^{3} \mathrm{p}_{D G}, \mathrm{p}_{D}=1$
$=\beta^{3}(1-\beta)$

