Name:

ID: Section: Mark:

King Saud University College of Sciences, Department of Mathematics 1444/Semester-3/ MATH 380/ Quiz-2 May, Ti

Marks: 10

Max. Time: 35 Minutes

Answer the following questions.

Q1:[3]

An observation is made of a Poisson random variable N with parameter λ . Then N independent Bernoulli trials are performed, each with probability p of success. Let Z be the total number of successes observed in the N trials. Formulate Z as a random sum and determine its mean and variance. What is the distribution of Z?

Q2:[1+3]

(a) Define a martingale.

(b) Let $U_1, U_2, ...$ be independent identically random variables each uniformly distributed over the interval (0,1]. Show that $X_0 = 1$ and $X_n = 2^n U_1 ... U_n$ for n = 1, 2, ... defines a martingale.

Q3:[3]

Consider a sequence of items from a production process, with each item being graded as good or defective. Suppose that a defective item is followed by another defective item with probability β and is followed by a good item with probability $1-\beta$. If the first item is defective, what is the probability that the first good item to appear is the fifth item ?

The Model Answer

Q1:[3]

Let $Z = \xi_1 + \xi_2 + ... + \xi_N$, N > 0 Then $E(\xi_k) = \mu = p$, $Var(\xi_k) = \sigma^2 = p(1-p)$ $E(N) = v = \lambda$, $Var(N) = \tau^2 = \lambda$ $\therefore E(Z) = \mu v$ $\therefore E(Z) = \lambda p$ $\therefore Var(Z) = v\sigma^2 + \mu^2 \tau^2$ $\therefore Var(Z) = \lambda p(1-p) + p^2 \lambda$ $= \lambda p$ Consequently, $Z \sim \text{Poisson}(\lambda p)$.

Q2:[1+3]

(a) A stochastic process $\{X_n; n = 0, 1, 2, ...\}$ is a martingale if for n = 0, 1, 2, ...(i) $E[|X_n|] < \infty$, (ii) $E[X_{n+1}|X_0,...,X_n] = X_n$. (b) (1) To show that $E[|\mathbf{X}_n|] < \infty$, $\therefore E[|X_n|] = E[X_n]$ $=E\left[2^{n}U_{1}\ldots U_{n}\right]$ $=2^{n} E[U_{1}][U_{2}] \dots [U_{n}]$ as $U_{i's}$ are indep. $r.v_{s}$ $\therefore E\Big[\big| X_n \big| \Big] = 2^n \cdot \frac{1}{2} \cdot \frac{1}{2} \dots \frac{1}{2} = \frac{2^n}{2^n} = 1 < \infty$ (2) To show that $E \lceil X_{n+1} | X_0, ..., X_n \rceil = X_n$, $:: E \left[X_{n+1} | X_0, ..., X_n \right] = E \left[2^{n+1} U_1 \dots U_n U_{n+1} | X_0, ..., X_n \right]$ $=2^{n}U_{1} \dots U_{n}E \lceil 2U_{n+1} | X_{0}, \dots, X_{n} \rceil$, as $U_{1} \dots U_{n}$ is determined by $X_{i's}$ = $2^{n}U_{1} \dots U_{n} \cdot 2E[U_{n+1}]$, as U_{n+1} is indep. of $X_{i's}$ $= 2^{n}U_{1} \dots U_{n} \cdot 2 \cdot \frac{1}{2}$ where $E[U_{i}] = \frac{1}{2}, i = 1, 2, \dots$ $\therefore E \left[X_{n+1} \middle| X_0, \dots, X_n \right] = X_n$

That is from (1) and (2), we have proved that X_n , n = 0, 1, 2, ... where $X_0 = 1$ is a martingale.

Q3:[3]

 $Pr \{X_{2} = D, X_{3} = D, X_{4} = D, X_{5} = G | X_{1} = D \}$ $= Pr \{X_{5} = G, X_{4} = D, X_{3} = D, X_{2} = D | X_{1} = D \}$ $= Pr \{X_{5} = G | X_{4} = D \} \cdot Pr \{X_{4} = D | X_{3} = D \} \cdot Pr \{X_{3} = D | X_{2} = D \} \cdot Pr \{X_{2} = D | X_{1} = D \}$ $= p_{DG} p_{DD}^{3}$ $= (1 - \beta) \beta^{3}$ $= \beta^{3} (1 - \beta)$ Also, you can solve it as follows. $p_{1} p_{12} p_{23} p_{34} p_{45}, p_{1} = Pr(X_{1} = D) = 1$ $= p_{D} p_{DD}^{3} p_{DG}, p_{D} = 1$ $= \beta^{3} (1 - \beta)$