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   Name:                                                      ID:                    Section:                     Mark:  
 

King Saud University 
College of Sciences, Department of Mathematics 

1444/Semester-3/ MATH 380/ Quiz-2 
  Marks: 10                                                                          Max. Time: 35 Minutes     
     

Answer the following questions. 
 

Q1: [3] 
An observation is made of a Poisson random variable N  with parameter  𝜆. Then N  independent 
Bernoulli trials are performed, each with probability p  of success. Let Z  be the total number of 

successes observed in the N trials. Formulate Z  as a random sum and determine its mean and 

variance. What is the distribution of Z ?  

 

Q2: [1+3] 
(a) Define a martingale. 

(b) Let 1 2, ,  ...U U  be independent identically random variables each uniformly distributed over the 

interval (0,1]. Show that 0 1X   and 
12  ... n

n nX U U for 1, 2,...n  defines a martingale. 

 

Q3: [3] 
Consider a sequence of items from a production process, with each item being graded as good or 

defective. Suppose that a defective item is followed by another defective item with probability   

and is followed by a good item with probability 1 .    If the first item is defective, what is the 

probability that the first good item to appear is the fifth item ? 
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The Model Answer 
Q1: [3] 
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Consequently,  Poisson( ).Z p  

 
Q2: [1+3] 

 
(a)   

A stochastic process  ;  0,1,2,...nX n  is a martingale if for 0,1, 2,...n   

(i) ,nE X      

(ii) 
1 0 ,..., .n n nE X X X X      

(b) 

(1) To show that X ,nE       
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(2) To show that 
1 0 ,..., ,n n nE X X X X     
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That is from (1) and (2), we have proved that 0,  0,1,2,... where 1nX n X   is a martingale. 



3 

 

Q3: [3] 
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Also, you can solve it as follows. 
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