King Saud University
College of Sciences
Department of Mathematics

Final Exam, S1 1444
M 380 - Stochastic Processes
Time: 3 hours - Marks: 40

Answer the following questions.

(Note that SND Table is attached in page 3)
Q1: $[4+4]$
(a) The number of accidents occurring in a factory in a week is a Poisson random variable with mean 3. The number of individuals injured in different accidents is independent exponentially distributed, each with mean 0.5 . Determine the mean and variance of the number of individuals injured in a weak.
(b) Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots$ are identically independent distributed random variables where $\operatorname{Pr}\left\{\mathrm{X}_{k}=1\right\}=\operatorname{Pr}\left\{\mathrm{X}_{k}=-1\right\}=\frac{1}{2}$ and $S_{n}=\sum_{k=1}^{n} \mathrm{X}_{k}$. Show that S_{n} is a martingale.

Q2: $[5+4]$
(a) Consider the Markov chain whose transition probability matrix is given by

$$
\mathbf{P}=\begin{array}{c||cccc||}
& \begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 0 & 0 \\
1 & 0 \\
1 & 0.2 & 0.4 & 0.3 \\
2.1 & 0.1 \\
2 & 0.1 & 0.5 & 0.3 \\
3 & 0.1 \\
3 & 0 & 0 & 1
\end{array} \|
\end{array}
$$

(i) Starting in state 2 , determine the probability that the Markov chain ends in state 0 .
(ii) Determine the mean time to absorption.
(iii) Sketch, the Markov chain diagram, and determine whether it's an absorbing chain or not.
b) Let X_{n} denote the quality of the nth item that produced in a certain factory with $X_{n}=0$ meaning "good" and $X_{n}=1$ meaning "defective". Suppose that $\left\{X_{n}\right\}$ be a Markov chain whose transition matrix is

$$
\left.\mathbf{P}=\begin{array}{cc}
0 & 1 \\
0 \| 0.89 & 0.11 \\
1
\end{array} \| \begin{gathered}
\| .02 \\
0.98
\end{gathered} \right\rvert\,
$$

i) What is the probability that the fourth item is good given that the first item is defective?
ii) In the long run, what is the probability that an item produced by this system is good or it's defective?

Q3: $[5+2]$
(a) Suppose that the weather on any day depends on the weather conditions for the previous 2 days. Suppose also that if it was sunny today but cloudy yesterday, then it will be sunny tomorrow with probability 0.5 ; if it was cloudy today but sunny yesterday, then it will be sunny tomorrow with probability 0.4 ; if it was sunny today and yesterday, then it will be sunny tomorrow with probability 0.7 ; if it was cloudy for the last 2 days, then it will be sunny tomorrow with probability 0.2 . Transform this model into a Markov chain, and then find the transition probability matrix. Find also the limiting distribution and the long run fraction of days in which it is sunny.
(b) The probability of the thrower winning in the dice game is $\mathrm{p}=0.5071$. Suppose player A is the thrower and begins the game with $\$ 10$, and player B, his opponent, begins with $\$ 5$. What is the probability that player A goes bankrupt before player B? Assume that the bet is $\$ 1$ per round.

Q4: $[5+4]$
(a) If $X(t)$ represents a size of a population where $X(0)=1$, using the following differential equations

$$
\begin{align*}
& \frac{d p_{0}(t)}{d t}=-\lambda_{0} p_{0}(t) \tag{1}\\
& \frac{d p_{n}(t)}{d t}=\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t), n=1,2,3, \ldots \tag{2}
\end{align*}
$$

Prove that: $X(t) \sim \operatorname{geom}(p), \quad p=e^{-\lambda t}$ when $\lambda_{0}=0$ and $\lambda_{n}=n \lambda$, and then find the mean and variance of this process.
(b) A pure death process starting from $X(0)=3$ has death parameters $\mu_{0}=0, \mu_{1}=2, \mu_{2}=3$ and $\mu_{3}=4$.

Determine $P_{n}(t)$ for $n=0,1,2,3$.
Q5: $[4+3]$
(a) Using the independent increment assumption for Brownian motion $\{B(t) ; t \geq 0\}$, show that the covariance is given by $\operatorname{Cov}[B(s), B(t)]=\sigma^{2} \min \{s, t\}$, for $s, t \geq 0$.
(b) Let $\{B(t) ; t \geq 0\}$ be a standard Brownian motion. Evaluate $\operatorname{Pr}\{B(4) \leq 5 \mid B(0)=1\}$.

Standard Normal Cumulative Probability Table

Cumulative probabilities for POsitive z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5396	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8544	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9453	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9705
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Model Answer

Q1: $[4+4]$
(a)
$N \sim$ Poisson (3)
N is the \# of accidents in aweek
ξ_{k} is the \# of individuals injured for kth accident
$E\left(\xi_{k}\right)=\mu=0.5, \operatorname{var}\left(\xi_{k}\right)=\sigma^{2}=0.25$
$E(N)=v=3, \operatorname{var}(N)=\tau^{2}=3$
$\therefore E(X)=\mu v=0.5(3)=1.5$
$\operatorname{var}(X)=v \sigma^{2}+\mu^{2} \tau^{2}$
$\therefore \operatorname{var}(X)=3(0.25)+0.25(3)=1.5$
(b)

A stochastic process $\left\{\mathrm{X}_{n} ; n=0,1,2, \ldots\right\}$ is a martingale if
(i) $E\left[\left|\mathrm{X}_{n}\right|\right]<\infty$,
(ii) $E\left[\mathrm{X}_{n+1} \mid \mathrm{X}_{0}, \ldots, \mathrm{X}_{n}\right]=\mathrm{X}_{n}$.
(1) To show that $E\left[\left|S_{n}\right|\right]<\infty$,

$$
\begin{aligned}
\left|S_{n}\right|=\left|\mathrm{X}_{1}+\ldots+\mathrm{X}_{n}\right| & \leq\left|\mathrm{X}_{1}\right|+\ldots+\left|\mathrm{X}_{n}\right| \\
& \leq 1+\ldots+1=n \\
E\left[\left|S_{n}\right|\right] \leq E[n]= & n<\infty .
\end{aligned}
$$

(2) To show that $E\left[S_{n+1} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]=S_{n}$,

$$
\begin{aligned}
E\left[S_{n+1} \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right] & =E\left[S_{n}+\mathbf{X}_{n+1} \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right] \\
& =E\left[S_{n} \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right]+E\left[\mathbf{X}_{n+1} \mid \mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right] \\
& =S_{n}+E\left[\mathbf{X}_{n+1}\right],
\end{aligned}
$$

where S_{n} is determined by $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ and X_{n+1} is independent of $\mathrm{X}_{i^{\prime} s}$,
and $\because E\left[\mathrm{X}_{n+1}\right]=(1) \cdot \operatorname{Pr}\left\{\mathrm{X}_{n+1}=1\right\}+(-1) \cdot \operatorname{Pr}\left\{\mathrm{X}_{n+1}=-1\right\}$

$$
=(1)(1 / 2)+(-1)(1 / 2)=0
$$

$\therefore E\left[S_{n+1} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]=S_{n}$
That is from (1) and (2), we have proved that S_{n} is a martingale.
Q2: $[5+4]$
(a)

$$
\left.\mathbf{P}=\begin{array}{c||cccc}
& \begin{array}{c}
0 \\
0
\end{array} & 1 & 2 & 3 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 .| | \\
2 & 0.2 & 0.4 & 0.3 & 0.1 \\
3 & 0.1 & 0.5 & 0.3 & 0.1 \\
0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

$u_{i}=\operatorname{pr}\left\{X_{T}=0 \mid X_{0}=i\right\}$ for $\mathrm{i}=1,2$,
and $v_{i}=\mathrm{E}\left[T \mid X_{0}=i\right] \quad$ for $\mathrm{i}=1,2$.
(i)

$$
\begin{aligned}
& u_{1}=p_{10}+p_{11} u_{1}+p_{12} u_{2} \\
& u_{2}=p_{20}+p_{21} u_{1}+p_{22} u_{2} \\
& \Rightarrow \\
& u_{1}=0.2+0.4 u_{1}+0.3 u_{2} \\
& u_{2}=0.1+0.5 u_{1}+0.3 u_{2} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{equation*}
6 u_{1}-3 u_{2}=2 \tag{1}
\end{equation*}
$$

$5 u_{1}-7 u_{2}=-1$
Solving (1) and (2), we get

$$
u_{1}=\frac{17}{27} \text { and } u_{2}=\frac{16}{27}
$$

Starting in state 2, the probability that the Markov chain ends in state 0 is $u_{2}=u_{20}=\frac{16}{27}=0.5926$
(ii) Also, the mean time to absorption can be found as follows
$v_{1}=1+p_{11} v_{1}+p_{12} v_{2}$
$v_{2}=1+p_{21} v_{1}+p_{22} v_{2}$
\Rightarrow
$v_{1}=1+0.4 v_{1}+0.3 v_{2}$
$v_{2}=1+0.5 v_{1}+0.3 v_{2}$
\Rightarrow
$6 v_{1}-3 v_{2}=10$
$5 v_{1}-7 v_{2}=-10$
Solving (1) and (2), we get

$$
\begin{aligned}
v_{2}=v_{20} & =\frac{110}{27} \\
& \simeq 4.0741
\end{aligned}
$$

(iii) It's an absorbing Markov Chain.

Markov Chain Diagram
(b)
i)

$$
\begin{aligned}
& P^{2}=\left[\begin{array}{ll}
0.89 & 0.11 \\
0.02 & 0.98
\end{array}\right]\left[\begin{array}{ll}
0.89 & 0.11 \\
0.02 & 0.98
\end{array}\right] \\
& P^{2}=\left[\begin{array}{ll}
0.7943 & 0.2057 \\
0.0374 & 0.9626
\end{array}\right] \\
& P^{3}=\left[\begin{array}{ll}
0.7110 & 0.2890 \\
0.0525 & 0.9475
\end{array}\right] \\
& \operatorname{pr}\left\{X_{3}=0 \mid X_{0}=1\right\}=p_{10}^{3}=0.0525 \\
& =5.25 \%,
\end{aligned}
$$

which is the probability that the fourth item is good given that the first item is defective ii) In the long run, the probability that an item produced by this system is good is given by:

$$
\begin{aligned}
b /(a+b) & =\frac{0.02}{0.02+0.11} \\
& =\frac{2}{13}=15.38 \%
\end{aligned}
$$

In the long run, the probability that an item produced by this system is defective is given by:

$$
\begin{aligned}
a /(a+b) & =\frac{0.11}{0.02+0.11} \\
& =\frac{11}{13}=84.62 \%,
\end{aligned}
$$

where $\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{cc}\frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b}\end{array}\right]$
Clearly, $1-\frac{2}{13}=\frac{11}{13}=84.62 \%$
Q3: $[5+2]$
(a)

	(S, S)	(S, C)	(C, S)	(C, C)
(S, S)	0.7	0.3	0	0
(S, C)	0	0	0.4	0.6
(C, S)	0.5	0.5	0	0
(C, C)	0	0	0.2	0.8

In the long run, the limiting distribution is $\pi=\left(\pi_{0}, \pi_{1}, \pi_{2}, \pi_{3}\right)$
$0.7 \pi_{0}+0.5 \pi_{2}=\pi_{0} \Rightarrow \pi_{2}=\frac{3}{5} \pi_{0}$
$0.3 \pi_{0}+0.5 \pi_{2}=\pi_{1} \Rightarrow \pi_{1}=\frac{3}{5} \pi_{0}$
$0.6 \pi_{1}+0.8 \pi_{3}=\pi_{3} \Rightarrow \pi_{3}=\frac{9}{5} \pi_{0}$
And $\because \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1$
$\therefore \pi_{0}=0.25$
$\Rightarrow \pi=(0.25,0.15,0.15,0.45)$

The long run fraction of days in which it is sunny is

$$
\begin{aligned}
\pi_{0}+\pi_{1} & =0.25+0.15 \\
& =0.4
\end{aligned}
$$

(b)
$i=\$ 10$ fortune for player A
$N=\$ 10+\$ 5=\$ 15$
$p=0.5071 \Rightarrow \mathrm{q}=0.4929$
$\mathbf{u}_{i}=\operatorname{pr}\left\{X_{n}\right.$ reaches state 0 before state $\left.N \mid X_{0}=i\right\}$
$\mathbf{u}_{i}=\frac{(q / p)^{i}-(q / p)^{N}}{1-(q / p)^{N}}, \quad p \neq q$
$\mathbf{u}_{i}=\frac{\left[\left(\frac{0.4929}{0.5071}\right)^{10}-\left(\frac{0.4929}{0.5071}\right)^{15}\right]}{\left[1-\left(\frac{0.4929}{0.5071}\right)^{15}\right]}$
$=0.2873$
Q4: $[5+4]$
(a)

$$
\begin{align*}
& \frac{d p_{0}(t)}{d t}=-\lambda_{0} p_{0}(t) \tag{1}\\
& \frac{d p_{n}(t)}{d t}=\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t), n=1,2,3, \ldots \tag{2}
\end{align*}
$$

The initial condition is $X(0)=1 \quad \Rightarrow p_{1}(0)=1$
$\Rightarrow p_{n}(0)= \begin{cases}1 & , n=1 \\ 0 & , \text { otherwise }\end{cases}$
For $\lambda_{0}=0 \quad(1) \Rightarrow \frac{d p_{0}(t)}{d t}=0$
$\therefore p_{0}(t)=0$, where $p_{0}(0)=0$
$(2) \Rightarrow \frac{d p_{n}(t)}{d t}=\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t)$
$\Rightarrow \frac{d p_{n}(t)}{d t}+\lambda_{n} p_{n}(t)=\lambda_{n-1} p_{n-1}(t), n=1,2, \ldots$
$\because \lambda_{n}=n \lambda, \quad \lambda_{n-1}=(n-1) \lambda$
$\therefore \frac{d p_{n}(t)}{d t}+n \lambda p_{n}(t)=(n-1) \lambda p_{n-1}(t), \mathrm{n}=1,2, \ldots$
Multiply both sides by $e^{\text {nдt }}$

$$
\begin{align*}
& e^{n \lambda t}\left[\frac{d p_{n}(t)}{d t}+n \lambda p_{n}(t)\right]=(n-1) \lambda p_{n-1}(t) e^{n \lambda t} \\
& \therefore \frac{d}{d t}\left[p_{n}(t) e^{n \lambda t}\right]=(n-1) \lambda p_{n-1}(t) e^{n \lambda t} \\
& \Rightarrow \int_{0}^{t} d\left[p_{n}(x) e^{n \lambda x}\right]=(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n \lambda x} d x \\
& \therefore\left[p_{n}(x) e^{n \lambda x}\right]_{0}^{t}=(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n \lambda x} d x \\
& \Rightarrow p_{n}(t)=e^{-n \lambda t}\left[p_{n}(0)+(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n \lambda x} d x\right], n=1,2, \ldots \tag{4}
\end{align*}
$$

which is a recurrence relation.
at $n=1$
$p_{1}(t)=e^{-\lambda t}\left[p_{1}(0)+0\right]=e^{-\lambda t}$
at $n=2$
$p_{2}(t)=e^{-2 \lambda t}\left[p_{2}(0)+\lambda \int_{0}^{t} p_{1}(x) e^{2 \lambda x} d x\right]$
(5) $\Rightarrow p_{1}(x)=e^{-\lambda x}$
$\therefore p_{2}(t)=e^{-2 \lambda t}\left[\lambda \int_{0}^{t} e^{-\lambda x} e^{2 \lambda x} d x\right]$
$\therefore p_{2}(t)=\lambda e^{-2 \lambda t} \int_{0}^{t} e^{\lambda x} d x$

$$
\begin{equation*}
=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{1} \tag{6}
\end{equation*}
$$

Similarly as (5) and (6), we deduce that

$$
\begin{aligned}
& p_{n}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1} \\
& \quad=p(1-p)^{n-1}, \quad p=e^{-\lambda t}, n=1,2, \ldots \\
& \therefore X(t) \sim \operatorname{geom}(p), p=e^{-\lambda t} \\
& \operatorname{Mean}[X(t)]=1 / p=e^{\lambda t},
\end{aligned}
$$

$\operatorname{Variance}[X(t)]=\frac{1-p}{p^{2}}=\frac{1-e^{-\lambda t}}{e^{-2 \lambda t}}$
(b) The transition probabilities are given by
$p_{N}(t)=e^{-\mu_{N} t}$
and for $n<N$
$p_{n}(t)=p r\{X(t)=n \mid X(0)=N\}$

$$
\begin{equation*}
=\mu_{n+1} \mu_{n+2} \ldots \mu_{N}\left[A_{n, n} e^{-\mu_{n} t}+\ldots+A_{k, n} e^{-\mu_{k} t}+\ldots+A_{N, n} e^{-\mu_{N} t}\right] \tag{2}
\end{equation*}
$$

where $A_{k, n}=\prod_{i=N}^{n} \frac{1}{\left(\mu_{i}-\mu_{k}\right)}, \quad i \neq k, n \leq k \leq N, i=N, N-1, \ldots, n$
For $N=3 \quad(1) \Rightarrow p_{3}(t)=e^{-\mu_{3} t}$
$\therefore \mathrm{p}_{3}(\mathrm{t})=\mathrm{e}^{-4 t}$
For $\mathrm{n}=2 \quad(2) \Rightarrow \mathrm{p}_{2}(\mathrm{t})=\mu_{3}\left[A_{2,2} e^{-\mu_{2} t}+A_{3,2} e^{-\mu_{3} t}\right]$

$$
\begin{align*}
& \begin{array}{l}
\text { (3) } \Rightarrow A_{2,2}=\prod_{i=3}^{2} \frac{1}{\left(\mu_{i}-\mu_{2}\right)}, i \neq 2 \\
=\frac{1}{\mu_{3}-\mu_{2}}=1, \\
A_{3,2}=\prod_{i=3}^{2} \frac{1}{\left(\mu_{i}-\mu_{3}\right)}, i \neq 3 \\
=\frac{1}{\mu_{2}-\mu_{3}}=-1
\end{array} \\
& \therefore \mathrm{p}_{2}(\mathrm{t})=4\left[e^{-3 t}-e^{-4 t}\right]
\end{align*}
$$

For $\mathrm{n}=1 \quad(2) \Rightarrow \mathrm{p}_{1}(\mathrm{t})=\mu_{2} \mu_{3}\left[A_{1,1} e^{-\mu_{1} t}+A_{2,1} e^{-\mu_{2} t}+A_{3,1} e^{-\mu_{3} t}\right]$

$$
\begin{aligned}
(3) \Rightarrow A_{1,1} & =\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{1}\right)}, i \neq 1 \\
& =\frac{1}{\left(\mu_{3}-\mu_{1}\right)\left(\mu_{2}-\mu_{1}\right)}=\frac{1}{2}, \\
A_{2,1} & =\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{2}\right)}, i \neq 2 \\
& =\frac{1}{\left(\mu_{3}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)}=-1,
\end{aligned}
$$

$$
A_{3,1}=\prod_{i=3}^{1} \frac{1}{\left(\mu_{i}-\mu_{3}\right)}, i \neq 3
$$

$$
=\frac{1}{\left(\mu_{2}-\mu_{3}\right)\left(\mu_{1}-\mu_{3}\right)}=\frac{1}{2}
$$

$$
\mathrm{p}_{1}(\mathrm{t})=12\left[\frac{1}{2} e^{-2 t}-e^{-3 t}+\frac{1}{2} e^{-4 t}\right]
$$

$$
\begin{equation*}
\therefore \mathrm{p}_{1}(\mathrm{t})=6\left[e^{-2 t}-2 e^{-3 t}+e^{-4 t}\right] \tag{III}
\end{equation*}
$$

Using (I), (II) and (III) we can get $\mathrm{p}_{0}(\mathrm{t})$ as follows

$$
\begin{align*}
\therefore \mathrm{p}_{0}(\mathrm{t}) & =1-\left[\mathrm{p}_{1}(\mathrm{t})+\mathrm{p}_{2}(\mathrm{t})+\mathrm{p}_{3}(\mathrm{t})\right] \\
& =1-\left[6 e^{-2 t}-12 e^{-3 t}+6 e^{-4 t}+4 e^{-3 t}-4 e^{-4 t}+e^{-4 t}\right] \\
& =1-6 e^{-2 t}+8 e^{-3 t}-3 e^{-4 t} \tag{IV}
\end{align*}
$$

Q5: $[4+3]$
(a)
$\because B(s+t)-B(s) \sim N\left(0, \sigma^{2} t\right)$
$\therefore E[B(t)]=0, \operatorname{var}[B(t)]=\sigma^{2} t$
$\therefore E\left[[B(t)]^{2}\right]=\sigma^{2} t$
$\because \operatorname{Cov}[B(s), B(t)]=E[B(s) B(t)]-E[B(s)] E[B(t)]$
$\therefore \operatorname{Cov}[B(s), B(t)]=E[B(s) B(t)]$
Then, for $0 \leq s<t$
$\because \operatorname{Cov}[B(s), B(t)]=E[B(s) B(t)]$

$$
\begin{align*}
& =E[B(s)[B(t)-B(s)+B(s)]] \\
& =E\left[[B(s)]^{2}\right]+E[B(s)] E[B(t)-B(s)] \text { (by independence property) } \tag{1}
\end{align*}
$$

So, we obtain $\operatorname{Cov}[B(s), B(t)]=\sigma^{2} s$
where $E\left[[B(s)]^{2}\right]=\sigma^{2} s$ and $E[B(s)]=0$
Similarly, if $0 \leq t<s$, we obtain $\operatorname{Cov}[B(s), B(t)]=\sigma^{2} \mathrm{t}$
Thus, from (1) and (2) we deduce that
$\operatorname{Cov}[B(s), B(t)]=\sigma^{2} \min \{s, t\}$ for $s, t \geq 0$
(b)
$\because \operatorname{Pr}\{B(4) \leq 5 \mid B(0)=1\}=\Phi\left(\frac{y-x}{\sqrt{t}}\right)$

$$
=\Phi\left(\frac{5-1}{\sqrt{4}}\right)
$$

$\therefore \operatorname{Pr}\{B(4) \leq 5 \mid B(0)=1\}=\Phi(2)=0.9772$

