Final Exam, S2 1444
M 380 - Stochastic Processes
Time: 3 hours - Marks: 40

King Saud University
College of Sciences
Department of Mathematics

X}

Answer the following questions.

Q1: [3+4]
(@)The number of accidents occurring in a factory in a week is a Poisson random variable
with mean 2. The number of individuals injured in different accidents is independently
distributed, each with mean 3 and variance 4. Determine the mean and variance of the
number of individuals injured in a week.
(b) Let So =(0,and forn>1,let § = gl + gz + ...+ Dbethe sum of n independent

n n

random variables, each exponentially distributed with mean E[gk] = 1. Show that:

X =2"e ~51 n>0, defines a martingale.

Q2: [2+3]
(@) A Markov chain x,, X,, X,,... has the transition probability matrix

0o 1 2
0/0.6 0.3 0.1
P=1)03 03 04
2]0.4 0.1 05

If it is known that the process starts in state X, =1, determine the probability
pT{XO =1X =0X, = 2}.

(b) Let {x(¢); t>0}be a Poissonprocess having rate parameter 1=2. Determine the
numerical values to two decimal places for the following probabilities:

(i) Prix@<2.

(i) Pr{x@®=1and X(2)=3}.



Q3: [3+4]

(@) Consider the problem of sending a binary message, 0 or 1, through a signal channel
consisting of several stages, where transmission through each stage is subject to a fixed
probability of errore . Supposethat x, =0 is the signal that is sent and let x_ be the signal

that is received at the nth stage. Assume that {x,} is a Markov chain with transition
probabilities P, =P, =1-a and P, =P, =a, Where 0<a<1.

(i) DeterminePr{X, =0,X, =0, X, =0}, the probability that no error occurs up to stage » =2.
(i) Determine the probability that a correctsignal is received at stage 2.

(b) Let x, denote the condition of a machine at the end of period » for n=1,2,.... Let x,be

the condition of the machine at the start. Consider the condition of the machine at any time
can be observed and classified as being in one of the following three states:

State 1: Good operating order, State 2: Deteriorated operating order and State 3: In repair.

Assume that {X, } is a Markov chain with transition probability matrix

1 2 3

1109 01 O
P=2)| 0 0.9 0.1
31 0 O

and starts in state x, =1.

(i) Find Pr{x, =1}.

(i) Calculate the limiting distribution.

(i) What is the long run rate of repairs per unit time?
Q4:[3.5+3.5]

(@) A pure birth process starting from X(0)=0 has birth parameters
A =1 4 =2, 2, =3and A, =5. Determine P, (¢) for n=0,1,2,3.

(b) A pure death process starting from X(0)=3 has death parameters
1, =0, 1, =2, 1, =3 and u, =5. Determine P, (¢) for n=0,1,2,3.
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QS: [5+2]

(@) If X(t) represents a size of a population where X(0)=1. Using the following differential
equations

dpo(t) —_
7 = ﬂopo(t) (1)
L) ) 903,00, =123, Q)

Prove that: X(t) ~ geom (p), p=e* When 4, =0and A =nA4, and then find the mean and
variance of this process.

(b) Let x(t) be a Yule process that is observed at a random time U, where U is uniformly
distributed over [0,1). Showthat pr{X(U)=k}=p"/(Bk) for k=12,.., with p=1-¢".

Q6: [4+3]
(a) Prove that the covariance for a Brownian motion, for any times 0 <s,7, is given by:
Cov[B(s),B(t)]=06% min{s,t}.

(b) Determine the covariance function Cov[ W(s), W(#)] for the stochastic process:

1
W( t) =t 8(7) with W(O) =0 and B(z‘) is a standard Brownian motion.




Model Answer

Q1:[3:(1.54+1.5)+4: (2+2)]
(a) Let N = number of accidents in aweek, and § o number of individuals injured
for kih accident. Let X =¢ +{ +...+{ , N>0,N ~Poisson(2).
Then:
E(N)=2, Var(N)=2,
E({,'k) =3, Var(é’k) =4,
So,

E(X)=uv=3(2)=6,
Var(X)=v o> +u? t> =2(4) +9(2) = 26.

(b) (1) E[IX,l] = E[X,] = E[2" e™]

=2"E[e™%1....e %]

= 2"E[e %]....E[e~%], as {;,, are independent
=2m ... Z =2 =1 as
o 2 2 2n
Ele~n]= [~ e™ e ™ dx
= J, e dx =~

(2) EXp411Xo,-...., Xp] = E[2™ e7541|X, o Xn ], Spag = Sp+ G
=E[2" e~ 2 e7Sn41|Xy, ..., Xy
= 2" e Sn E[2 e~5n+1|Xy, ..., Xy
=2Me~5n 2 E[e—fnu],

as (.44 Is independent of X, ,

E[Xu1|Xoreeens, X, ] = 2" €50 2.
=2"e 5

=X,



We have proved from (1) and (2) that X,, is a martingale.
Q2:[2+43: (1.5+1.5)]

(a)

pT{Xo =1X,=0,X,= 2}: P:PioPo » Py = pT{Xo :1} =1
=1(0.3)(0.1)
pT{XO =1X, =0X, = 2}: 0.03

(b)
For Poisson Process

Pr{X(s+t)—X(s):k}

B (lt)ke—it
SR

, k=012,..

(i)
Pr{X(l) < 2} = Pr{X(l) = 0} +Pr{X(1) :1} +Pr{X(1) = 2}
_ 20¢2 N 2t N 2%¢7

=5e¢? =0.68
oo u 2

(i)

Pr{X(1)=1and X(2)=3}

—Pr{X(®)=1Pr{x(2) =3}

—Pr{X()-X(0)=1Pr{X(2)- X =2}
2'e? 2%¢?

= ) =4e¢* =0.07,
1! 2!

where the increments are independents random variables in Poisson process.
Q3:[3: (1.54+1.5)+4: (2+1.5+0.5)]
(a)

The transition probability matrix can be written as



0 1
Oll-« a

1

P=

a l-«a
(i) The probability that no error occurs up to stage n =2is given as follows.

Pr{X,=0,X,=0,X, =0} =p,Py Ly, P, =pr{X,=0}=1
=1x(1-a)x(1-@)
=(1-a)?

where p,=pr(X,=0)=1
(ii) The probability that a correct signal is received at stage 2 is given as follows.

Pr{X,=0,X,=0,X,=0}+Pr{X,=0,X,=1X, =0}

= poloolo + PoFoy Pl
=(1l-a)’ +a’
=1-2a+2a?
(b)
(i)
1 2 3
109 01 O
P=2| 0 09 0.
3 1 0 0

© Pr{X, =1} =Pr{X, =1]X, =1} Pr{X, =1}
=By, PriX,=1}=1

1 2 3
1/ 0.81 0.18 0.01
P’=2(0.1 0.81 0.09
3109 0.1 0



1 2 3
1/0.6831 0.2926  0.0243
and P*= 2/0.2430 0.6831 0.0739
3]0.7390 0.2430  0.0180
S Pr{X, =1} =Pr{X, =1 X, =1} Pr{X, =1}
= Fip = F; =0.6831

(ii) To get the limiting distribution 7 = (7, 7,, 7;) = (7, 7, 701)

Solving the following equations

7, =097 + 7, @)
7z, =0.17, +0.97, 2
7, =0.17, (3)
AT, +r, =1 4)
(1)= 7, =0.1x,

Q= =n

also, (3) 7, =0.1z,
@)=z +7+01r =1
Lo =2

=.. 7m,=% and 7,

. = (0 10 1
- =Gt

(iii) 7, =7, =%=0.0476
Q4: [3.5+3.5]
(a)

For pure birth process, the transition probabilities are given by
po(t) = e, (1)

1 1
L () = ——
p) ﬂ“h—ﬂo Ry
and p, (t) = pr{X(t) =n|X(0) =0}

=dodydy | Bon€ '+ B e 4.4+ B, e ], n>1 (3)

n,n

e, (2

where



. 1
B, = 1#k, 0<k<n,
8 Il[z—gj

atn=0 ()= p,(t)=e™, 1,=1
sop(t)y=e’

atn=1 (2) =p,(t)= [e’t —e’”]

atn=2 (3) = p,(t)=Ah| By,e ™ +Be ™ +B,,e™ |,

where, B,, = L
(A4 - 4)
B,= :
© (-4 - 4)
=-1
and

B,,= c
© (LA -4)

2
SN 2[% e —e® +%e’3t]

atn=2 (3)= p,(t) =44 [Boyse’j"t +B e ++B, e + Ba'se’%t]



1

where B, , = =3,
T (A=A (= A) (A A)
B, = ! =-1
P (A=A -h)
1
B,,= :%’
T (A=A -4) - 4)
and

1 1

e )

. _ 1 —t 1 -2t 1 =3t 1 -5t
..p3(t)—6[§e -3 +2e 7 -5 ]

(b)

For pure death process, the transition probabilities are given by
py(t)=e™" 1)

andforn< N

p,(8) = pr{X() =n|X(0)= N}
“Hy by - Hy [An,ne_#"t + .. +Ak’n6_”"t + .. +AN’ne_"Nt:| 2)

Where AkﬂL:H#, i#zk, n<k<N,i=N,N-1 .., n (3)
v (1= 1)

For N=3 (1) = p,(t)=e*'
B ps(t):eist (N

For n=2 (2)=p,(0)=u] 4,67 +A; ¢ |

2 1

B)= 4,,= , 1 # 2
g l;s[(/ui_/'lz)
_ 1 1
Hy—Hy 2



Ay, = , 1#3

i l;[(ui-us)
1 _1
Hy —H3 2

oo P, (t)ZS[%e“% —%e’St} (11

For n=1 (2)=p,()=11, [ AL+ A, 7 + As,le_”3t}

®= 4=l

1 1

(b)) 3
s :11 (1, — 1)
1 1

) (15 — 1) (1, — 115) 2

ENN

, £ 2

1 1

' A3,1:H

ia (1, — 3)
1 1

, 1#£3

) (4 - 1) (1 - 115) 6

pl(t):15Ee-2f —%e-“ +%e-5t} (1)

Using (I), (II) and (IIT) we can get p,(t) as follows

< Po®=1-[p,()+p, (©)+p, (V)]
2 2 2 2
=1-5¢2 +5¢ -¢®  (IV)
Q5:[5+2]
(a)
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dp,(t) _ _
At Aop o () )
Chlir—}(ﬂ:ﬂnlpnl(t)—ﬂnpn(t), n=1,23, .. (2)

The initial condition is X(0)=1 = p(0)=1

0) = 1 n=1
= o )_{O, otherwise
4 =0 (1):>dp%t(t):0

= po(t):O (3)

@= LB ;b 0-4p,0

— dpl’l—'t(t)ﬂ—//i’fnpn(t):/lnlpnl(t), n=l,2, .

. /In = nl, ﬂ’n—l = (n _1)/1

. dpl}—lt(t)+n/1p”(t) =(n-Dip, ,({), n=1,2, ...

Multiply both sides by e"*
™M [dp#t(t) +nAp " (t):| = (n —l)ﬂp n_l(t)enit

%[p ) (t)enﬂt] _ (n —1)],]) ”_l(t)enﬂt
= j; d [ p, (x)e" } = (n-1) ,1.[; p (@)™ dx
. [p n (iE)e"ﬂx :I; = (n —1)/1.[: D,y (x)eniwdx

= p ()= |:pn(0)+(n—1)/1 [! pn_l(x)enmdx}, n=12, .. (4)

which is a recurrence relation.
at n=1
p.t)=e"[p,(0)+0]=e (5)

at n=2
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p,(t)=e*" |:p2(0) +A jo pl(x)e”‘”dx:l

B)= pi(@)=e"
sop,t)=e [ZJ.; e‘“ez“da:}

op,(t) = A I; e*dx
=M (1-e) (6)
Similarly as (5) and (6), we deduce that
p ()= L-e)""
=pl-p)"*, p=e, n=12, ..
- X(t) ~ geom(p), p=e"
Mean[X(t)]=1/p=¢",

Variance[ X (t)] = 1—2p -
p

(b) For Yule process,

p, ()=’ @-e")", n>1

=
pr{X(U)=k}= j-e‘ﬂl‘ A=)
) %2[(1_ e e du
:1 w 1
B i O
:ili(l—e*ﬂ)k]
Pk

k
~pr{X(U) :k‘}:%, k=12, ..where p=1-¢”

Q6: [4+3]
(@)

Using the independent increments property for Brownian motion, we can deduce that
E[B()]=0and E[B(1)?] =021,
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Then for Q<5 <t,

Cov[B(s),B(t)]=E[B(s)B(1)]
=E[B(s){B(t) —B(s) +B(s)}]
= E[B(s)?]+ E[B(s){B(1) - B(5)}]
=0’ s + E[B(s)]E[B(1) - B(s)]
=gl (E[B(s)]=0).

Similarly, if 0<7<s, we obtain Cov[B(s),B(t)] =g21t.

Therefore, we have Cov[B(s),B(t)]=0? min{s,t}, fors,t>0.

(b)
1 1
Cov[W(s),W(1)]= C"V[SB (?)’IB(TH
()
=st Cov|B| — |.B| —
g t

(11
=Stmm{:,7]

1 (1
=5t (?], (lf (:]<(7n
=t (if0s1<s)

and
=5 (if 0<s<1),
So
=min{s,t},
fOr S!t 20'
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