Answer 5 questions: 1, 2 and 3 are mandatory, then choose 2 of the other questions.
Q1: [1+4]
(a) Define a martingale.
(b) If $Y_{1}, Y_{2}, \ldots, Y_{n}, .$. are independent random variables with $E\left|Y_{i}\right|<\infty$ for all i, and with constants $a_{i}=E\left[Y_{i}\right] \neq 0$ for all i, then prove that

$$
Z_{n}=\frac{Y_{1} Y_{2} \ldots Y_{n}}{a_{1} a_{2} \ldots a_{n}}, \quad n=1,2, \ldots
$$

defines a martingale.

Q2: [2+2]

(a) The probability of the thrower winning in the dice game is $\mathrm{p}=0.5071$. Suppose player A is the thrower and begins the game with $\$ 5$, and player B, his opponent, begins with $\$ 10$. What is the probability that player A goes bankrupt before player B ? Assume that the bet is $\$ 1$ per round.
(b) What if $\mathrm{p}=0.5$, does the probability that player A goes bankrupt before player B change or stays the same. Justify your answer.

Q3: $[a(2+1.5+1)+b(1.5)]$

(a) Consider the Markov chain whose transition probability matrix is given by

$$
\left.\mathbf{P}=\begin{array}{l||cccc||}
\\
0 \\
1 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 \\
2 & 0.1 & 0.6 & 0.1 & 0.2 \\
2 & 0.2 & 0.3 & 0.4 & 0.1 \\
3 & 0 & 0 & 0 & 1
\end{array} \right\rvert\,
$$

(i) Sketch, the Markov chain diagram, and determine whether it is an absorbing chain or not.
(ii) Starting in state 2 , determine the probability that the Markov chain ends in state 0 .
(iii) Determine the mean time to absorption.
(b)Let X_{n} denote the quality of the $\mathrm{n}^{\text {th }}$ item produced by a production system with $X_{n}=0$ meaning "good" and $X_{n}=1$ meaning "defective". Suppose that X_{n} evolves as a Markov chain whose transition matrix is

$$
\left.\mathbf{P}=\begin{array}{cc}
0 & 1 \\
0 \| 0.99 & 0.01 \| \\
1 \| 0.12 & 0.88
\end{array} \right\rvert\,
$$

What is the probability that the third item is defective given that the first item is defective?

Q4: [2+3]

(a) For the Markov process $\left\{X_{t}\right\}$, $t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$. Prove that:

$$
\operatorname{Pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathbf{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{i}_{\mathrm{n}}\right\}=p_{i_{0}} P_{i_{0} i_{1}} P_{i_{1} i_{2}} \ldots P_{i_{n-1} i_{n}}, \text { where } p_{i_{0}}=\operatorname{Pr}\left\{\mathbf{X}_{0}=\mathrm{i}_{0}\right\} .
$$

(b) A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$. has the transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\\
0 \\
0 \\
1
\end{gathered} \left\lvert\, \begin{array}{ccc}
0 & 1 & 2 \\
2 & 0.2 & 0.3 \\
2.4 & 0.5 \\
2 & 0.2 & 0.4 \\
0.5 & 0.3 & 0.2
\end{array}\right.
$$

and initial distribution $p_{0}=0.3, \quad p_{1}=0.5$ and $p_{2}=0.2$.
Determine the probabilities $\operatorname{Pr}\left\{\mathrm{X}_{0}=1, \mathrm{X}_{1}=1, \mathrm{X}_{2}=0\right\}$ and $\operatorname{Pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}$.

Q5: [5]

A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$. has the transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\quad 0 \\
0
\end{gathered} \left\lvert\, \begin{array}{ccc}
& 1 & 2 \\
1 & 0.5 & 0.2 \\
1 & 0.3 \\
2.5 & 0.1 & 0.4 \\
2 & 0.3 & 0.2
\end{array} 0^{0.5}\right. \|
$$

Every period that the process spends in state 0 incurs a cost $\$ 4$. Every period that the process spends in state 1 incurs a cost of $\$ 7$. Every period that the process spends in state 2 incurs a cost of $\$ 5$. What is the long run mean cost per period associated with this Markov chain?

Q6: [2 + 3]

(a) A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ with states 0,1 , and 2 , has the transition probability matrix

$$
\left.\mathbf{P}=\begin{array}{c|ccc}
0 & 1 & 2 \\
0 \\
1 & 0.2 & 0.3 & 0.5 \\
2 & ||c c c| \\
0.4 & 0.1 & 0.5 \\
0.4 & 0.3 & 0.3
\end{array} \right\rvert\,
$$

and initial distribution $p_{0}=\operatorname{Pr}\left\{X_{0}=0\right\}=0.4$ and $p_{1}=\operatorname{Pr}\left\{X_{0}=1\right\}=0.6$. Determine $\operatorname{Pr}\left\{X_{2}=0\right\}$.
(b) Consider a spare parts inventory model in which either 0,1 , or 2 repair parts are demanded in any period, with

$$
\operatorname{Pr}\left\{\xi_{n}=0\right\}=0.1, \quad \operatorname{Pr}\left\{\xi_{n}=1\right\}=0.4, \operatorname{Pr}\left\{\xi_{n}=2\right\}=0.3, \operatorname{Pr}\left\{\xi_{n}=3\right\}=0.2
$$

and suppose that $s=0$ and $S=3$. Determine the transition probability matrix for the Markov chain $\left\{X_{n}\right\}$, where X_{n} is defined to be the quantity on hand at the end-of-period n.

