Second Semester (without calculators)	Final Exam Time allowed: 3 hours	King Saud University College of Science

 $\underline{\textbf{Q1}} :$ Solve the following system:

$$x_1 + x_2 - x_3 = 1$$

 $x_2 - 3x_3 = 1$ (2 marks)
 $2x_3 = -4$

 $\mathbf{Q2}$: If A,B \in M₂₂, det(B)=2 and det(A)=3, then find det(2A^TB⁻¹). (2 marks)

Q3: Let V be the subspace of \mathbb{R}^4 spanned by the set S={v₁=(1,1,1,0), v₂=(-2,0,0,2), v₃=(-1,3,3,4), v₄=(-5,-1,-1,5)}.

- (i) Find a **<u>subset</u>** of S that forms a basis of V. (3 marks)
- (ii) Find dim(V). (1 mark)
- (iii) <u>Express</u> each vector that is not in the basis as a linear combination of the basis vectors. (2 marks)

Q6: (i) Show that the Eigenvalues of
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 is 0, 1 and 2. (3 marks)

- (ii) Show that A is diagonalizable and find the matrix P that diagonalizes A. (3 marks)
- (iii) Find A¹⁴⁴⁴ . (2 marks)

Q7: Let \mathbb{R}^3 be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis $\{u_1=(1,0,0),u_2=(0,1,-1),u_3=(0,4,2)\}$ into an **orthonormal basis**. (5 marks)

Q8: Let M_{22} be the vector space of square matrices of order 2, and let T: $M_{22} \rightarrow M_{22}$ be the map defined by $T(A)=A^T$ for all matrices A in M_{22} . Show that:

- (i) T is a linear operator. (2 marks)
- (ii) Find ker(T). (2 marks)
- (iii) Find $[T]_B$ where B is the standard basis of M_{22} . (2 marks)
- (iv) Find rank(T). (2 marks)

- **Q9**: (i) If $B=\{u,v,w\}$ is a basis of a vector space V, then find the coordinate vector $(u)_B$. (1 mark)
- (ii) If u and v are orthogonal vectors in an inner product space such that $\|u\|=4$ and $\|v\|=3$, then find $\|u+v\|$. (1 mark)
- (iii) If B is a 5×9 matrix with nullity(B)=4, then find rank(B^T). (1 mark)
- (iv) Show that if u and v are orthogonal in an inner product space V, then au and bv are orthogonal for every a and b in \mathbb{R} . (1 mark)