Q1: Solve the following system:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=1 \\
& x_{2}-3 x_{3}=1 \\
& 2 x_{3}=-4
\end{aligned}
$$

(2 marks)

Q2: If $A, B \in M_{22}, \operatorname{det}(B)=2$ and $\operatorname{det}(A)=3$, then find $\operatorname{det}\left(2 A^{\top} B^{-1}\right)$. (2 marks)

Q3: Let V be the subspace of \mathbb{R}^{4} spanned by the set $S=\left\{v_{1}=(1,1,1,0), V_{2}=(-2,0,0,2)\right.$, $\left.v_{3}=(-1,3,3,4), v_{4}=(-5,-1,-1,5)\right\}$.
(i) Find a subset of S that forms a basis of V. (3 marks)
(ii) Find $\operatorname{dim}(V)$. (1 mark)
(iii) Express each vector that is not in the basis as a linear combination of the basis vectors. (2 marks)

Q5: Let $B=\{(1,0),(1,1)\}$ and $B^{\prime}=\{(1,3),(2,0)\}$ be two bases of \mathbb{R}^{2}. Find the transition matrix from B^{\prime} to B. (2 marks).

Q6: (i) Show that the Eigenvalues of $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]$ is 0,1 and 2 . (3 marks)
(ii) Show that A is diagonalizable and find the matrix P that diagonalizes A. (3 marks)
(iii) Find A^{1444}. (2 marks)

Q7: Let \mathbb{R}^{3} be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis $\left\{u_{1}=(1,0,0), u_{2}=(0,1,-1), u_{3}=(0,4,2)\right\}$ into an orthonormal basis. (5 marks)

Q8: Let M_{22} be the vector space of square matrices of order 2 , and let $T: M_{22} \rightarrow M_{22}$ be the map defined by $T(A)=A^{\top}$ for all matrices A in M_{22}. Show that:
(i) T is a linear operator. (2 marks)
(ii) Find $\operatorname{ker}(\mathrm{T})$. (2 marks)
(iii) Find $[T]_{B}$ where B is the standard basis of M_{22}. (2 marks)
(iv) Find $\operatorname{rank}(\mathrm{T})$. (2 marks)

Q9: (i) If $B=\{u, v, w\}$ is a basis of a vector space V, then find the coordinate vector $(u)_{B}$.
(1 mark)
(ii) If u and v are orthogonal vectors in an inner product space such that $\|u\|=4$ and $\|v\|=3$, then find $\|\mathrm{u}+\mathrm{v}\|$. (1 mark)
(iii) If B is a 5×9 matrix with nullity $(B)=4$, then find $\operatorname{rank}\left(\mathrm{B}^{\top}\right)$. (1 mark)
(iv) Show that if u and v are orthogonal in an inner product space V, then au and bv are orthogonal for every a and b in \mathbb{R}. (1 mark)

