King Saud University

Department of Mathematics

First Semester 1445 H

Student Name:

MATH 240 (Linear Algebra)
$2^{\text {nd }}$ Midterm
Duration:90 Minutes

Serial Number:

Question Number	I		II		III	IV		Total
Mark								
Question Number	1	2	3	4	5	6	Total	
Answer								

Question I:

Choose the correct answer, then fill in the table above:
(1) If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 a_{31} & 2 a_{32} & 2 a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{31}\end{array}\right]$, then they have the same
(a) row vectors
(b) row space
(c) column vectors
(d) None of the previous
(2) Let $S=\left\{x^{3}, 4 x^{2}, x-1,3 x,-2\right\} b e$ a subset of P_{3} then S is
(a) Linearly independent but does not span $P_{3}(b)$ Spans P_{3} but is not linearly independent
(c) a basis for \boldsymbol{P}_{3}
(d) None of the previous
(3) Which of the following are subspace of \boldsymbol{R}^{3}
(a)all vectors of the form ($2 a, a+c, c$) (b)all vectors of the form $(a, 1,1)$
(c)all vectors of the form $(a, b, a-1)$ (d) None of the previous
(4) The coordinate vector of $u=(1,4)$ relative to the basis $v_{1}=(1,1)$ and $v_{2}=(1,0)$ is
(a) $(4,-2)$
(b) $(4,-3)$
(c) $(1,-3)$
(d) None of the previous
(5) Let $B=\left[\begin{array}{ccccc}1 & 1 & -3 & 0 & 1 \\ 0 & 1 & 2 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ then rank of $B=$
(a)2
(b) 3
(c) 4
(d) None of the previous
(6) Let $M_{5 \times 6}$ be the space of all 5×6 matrices then the number of vectors in any basis of $M_{5 \times 6}$ is
(a)11
(b) 30
(c) 1
(d) None of the previous

Question II:

Find a basis and the dimension of the solution space of the homogeneous system

$$
\left\{\begin{array}{c}
x+y+2 z+w=0 \\
-x-2 y+3 z+2 w=0
\end{array}\right.
$$

Question III: If $B=\{(\mathbf{2}, \mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{- 1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}, \mathbf{1})\}$
and $B^{\prime}=\{(3,1,-5),(1,1,-3),(-1,0,2)\}$ are bases for R^{3}, then find the transition matrix B to B^{\prime}.

Question IV:

Find a basis for the row space of the matrix $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2\end{array}\right]$ consisting entirely of row vectors from \boldsymbol{A}.

Question V:

(a) Show that $S=\{(1,2,1),(3,3,4),(2,9,0)\}$ is a basis for \boldsymbol{R}^{3}
(b) If $v=(4,-1,2) \in R^{3}$. Then find $(v)_{s}$.
(c) If $(u)_{s}=(2,0,5)$ then find \boldsymbol{u}.

