SEMESTER II FINAL EXAMINATION, 1443
Dept. Math., College of Science, KSU
Math: 107 Full Mark: 40 Time: 3 Hours

Q1. [Marks: $4+4+3=11]$
(a) For which values of m will the following linear system have no solutions? Exactly one solution? Infinitely many solutions?

$$
\begin{array}{r}
x+m y+2 z=3 \\
4 x+(6+m) y-m z=13-m \\
x+2(m-1) y+(m+4) z=m+2
\end{array}
$$

(b) Let R and S be 3×3 matrices such that $R S+R-2 I=0$. Find R^{-1} if

$$
S=\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 3 & 4 \\
0 & 2 & 5
\end{array}\right]
$$

(c) Find the value of x so that $|A|=6$, where

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 3 x-6 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

Q2. [Marks: $3+4+3=10$]
(a) Find the volume of the parallelepiped (box) having adjacent sides $\mathbf{A B}, \mathbf{A C}$, and $\mathbf{A D}$, where $A(1,0,-1), B(1,0,3), C(4,3,2), D(7,1,0)$.
(b) Determine whether the following lines l_{1} and l_{2} are parallel or they intersect. If they intersect, find the point of intersection:

$$
l_{1}: x=3+t, y=5-t, z=-2+2 t ; \quad l_{2}: x=2+s, y=3-2 s, z=-1+3 s
$$

(c) Sketch the graph of $z^{2}-4 y^{2}-9 x^{2}=4$, and identify the surface.

Q3. [Marks: $2+4=6$]
(a) Find the position vector $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=2 \mathbf{i}-4 t^{3} \mathbf{j}+6 \sqrt{t} \mathbf{k}$ subject to the condition $\mathbf{r}(0)=\mathbf{i}+5 \mathbf{j}+3 \mathbf{k}$.
(b) Find general formula for the tangential and normal components of acceleration and for the curvature of the curve C given by $\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}-\frac{t^{3}}{3} \mathbf{k}$
Q4. [Marks: $2+3+5+3=13$]
(a) Use partial derivative to find $\frac{d y}{d x}$ if $x^{2}+3 x y+2 x-y-10=0$
(b) Find an equation of the tangent plane and parametric equations of normal line to the surface $z=e^{x}(1+\cos y)$ at the point $P(0,0,2)$.
(c) Find the local extrema and saddle points if any of the function $f(x, y)=\frac{4}{3} x^{3}-x y^{2}+5 y^{2}+24 y$
(d) Use Lagrange multipliers to find extrema of $f(x, y, z)=4 x^{2}+y^{2}+5 z^{2}$ subject to the constraint $2 x+3 y+4 z=12$.

