King Saud University

College of Sciences

Department of Mathematics

Solution of Mid-term 2 Math 481 Semester I - 1445

Question 1 :

1. $\left|\frac{1}{n} \sin \left(\frac{x}{n}\right)\right| \leq \frac{|x|}{n^{2}}$, then the series $\sum_{n \geq 1} \frac{1}{n} \sin \left(\frac{x}{n}\right)$ converges absolutely on \mathbb{R} and normally on any compact of \mathbb{R}.
2. If $f_{n}(x)=\frac{x^{n}}{1+x^{2 n}}$, then $f_{n}(x)=f_{n}\left(\frac{1}{x}\right)$, for $x \neq 0$.
$\lim _{n \rightarrow+\infty} f_{n}(x)=0$ for $|x|<1$ and $\lim _{n \rightarrow+\infty} f_{n}(1)=\frac{1}{2}$.
For $|x|<1$, the series $\sum_{n \geq 1} \frac{x^{n}}{1+x^{2 n}}$ converges absolutely and normally on any compact of $(-1,1)$.

Question 2 :

By parts: $\int_{0}^{1} \tan ^{-1} x d x=\frac{\pi}{4}-\int_{0}^{1} \frac{x}{1+x^{2}} d x=\frac{\pi}{4}-\frac{1}{2} \ln 2 . \tan ^{-1} x=\sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$.
$\left|\sum_{k=n}^{m} \frac{(-1)^{k} x^{2 k+1}}{2 k+1}\right| \leq \frac{1}{2 n+1}$. Then $\int_{0}^{1} \tan ^{-1} x d x=\sum_{n=0}^{+\infty} \int_{0}^{1} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} d x=$
$\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)(2 n+2)}$.
Question 3 :

1. The series $\sum_{n=1}^{+\infty} \frac{(-1)^{n} e^{n x}}{n^{2}}$ converges only for $x \leq 0 . g(x)=\sum_{n=1}^{+\infty} \frac{(-1)^{n} e^{n x}}{n^{2}}$
2. The series $\sum_{n=1}^{+\infty} \frac{(-1)^{n} e^{n x}}{n^{2}}$ converges on D, the series $\sum_{n=1}^{+\infty} \frac{(-1)^{n} e^{n x}}{n}$ converges uniformly on D because $\left|\sum_{k=n}^{m} \frac{(-1)^{k} e^{k x}}{k}\right| \leq \frac{1}{n}$, the g is $\left.\mathscr{C}^{1}\right)$ on D.

Question 4 :

1. The series $\sum_{n \geq 1}(-1)^{n} \frac{x^{n+1}}{n^{2}}$ is a power series, then it is \mathscr{C}^{∞} on $[-1,1]$.
2. For $x \neq 0$, let $h(x)=\sum_{n=1}^{+\infty}(-1)^{n} \frac{x^{n}}{n^{2}}, h^{\prime}(x)=\sum_{n=1}^{+\infty}(-1)^{n} \frac{x^{n-1}}{n}=-\frac{1}{x} \ln (1+$ $x) . f(x)=x \int_{0}^{x} \frac{1}{t} \ln (1+t) d t$.
