Basics of Mycology

I. Introduction

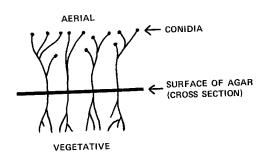
- A. **Mycology** is the study of fungi
- B. Mycoses are fungal diseases
 - 1. Superficial & Cutaneous mycoses
 - a. Involves only hair, skin and nails
 - b. Little or no pathology; main worry is cosmetic effect
 - c. Involves destruction of the keratin of hair, skin and nails
 - d. Primarily caused by the Dermatophytes
 - 2. Subcutaneous mycoses
 - a. Involves skin, muscle and connective tissue immediately below the skin
 - 3. Systemic (deep-seated) / disseminated mycoses
 - a. Caused by pathogenic fungi that are highly virulent
 - b. Involves the deep tissues and internal organs, and has the ability to spread widely throughout the body
 - c. Frequently initial site of infection is the lung
 - 4. Opportunistic mycoses
 - a. Caused by ubiquitous saprophytic ("non-pathogenic") fungi and occasionally pathogenic fungi, all of which have limited virulence
 - b. Usually see in immunocompromised or debilitated patients
 - c. Causes subcutaneous and disseminated infections
- C. Patients at risk for fungal infections
 - 1. Immunosuppressed individuals are at highest risk (i.e. AIDS, decreased PMNs)
 - 2. Organ transplant patients and others with previous treatment with corticosteroids, cytotoxic agents, or prolonged antibiotic therapy
 - 3. Patients with malignant neoplasms
 - 4. Patients with various debilitating immunologic and metabolic disorders (i.e. SLE, diabetes)
 - 5. Occupations & activities involving direct skin contact with infected animals/materials and ingestion or inhalation of contaminated aerosols/dust
- D. Natural habitat is soil and vegetation
- E. Taxonomy / Classification
 - 1. By disease
 - 2. By class

II. Characteristics of Fungi

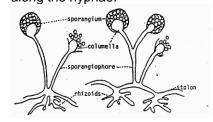

- A. Eukaryotic
 - 1. Has a nucleus, nuclear membrane, endoplasmic reticulum, Golgi apparatus, and mitochondria
 - 2. Rigid cell wall containing chitin, mannans, and sometimes cellulose
 - 3. Lacks chlorophyll
- B. Growth Requirements
 - 1. Nutrients must absorb from environment since lack chlorophyll
 - 2. pH prefer neutral but tolerate wide range
 - 3. Temperature optimal growth at room temperature to 30°C, 37°C for dimorphic yeast
 - 4. Oxygen most are obligate aerobes
 - 5. Moisture needed to grow, able to survive dry conditions with spores/conidia

C. Forms

- 1. Mould / Mold
 - a. Colony growth of hyphae which form a matt of growth called the mycelium
 - b. Cells multiple cells forming a filamentous mycelium
 - c. Reproduce either asexually (vegetative sporulation or aerial sporulation) or sexually (sexual sporulation)
- 2. Yeast
 - a. Colony bacteria-like, moist, smooth, creamy colonies
 - b. Cells single, round to oval cells
 - c. Reproduce asexually by budding to form blastoconidia
 - **Pseudohyphae** elongation of blastoconidia showing sausage-like constrictions between segments (true hyphae are not constricted at ends)
- 3. Dimorphism
 - a. Fungi that have the ability to exist in two forms depending on growth conditions
 - b. Generally dimorphic fungi have a mould phase and either a yeast or spherule phase
 - Yeast /tissue phase grows best at 37°C
 - Mould phase grows best at room temperature or 30°C
- D. Structures
 - 1. Hyphae
 - a. Long strand of tube-like structures
 - b. Types
 - Aseptate (or sparsely septate) without (or very few) transverse walls


Septate – subdivided into individual cells by transverse walls

- c. Pigmentation
 - Hyaline Light colored hyphae and/or conidia (fungi with septate hyphae) due to no pigmentation or brightly pigmented
- Dematiaceous Dark colored (brown-black) hyphae and conidia (fungi with septate hyphae) due to presence of melanin in cell wall


2. Mycelium

- a. Mass of branching intertwined hyphae forming a matt of growth
- b. Types
 - Aerial mycelium (also called reproductive mycelium)
 - Portion of mycelium that projects above the agar surface
 - Special **spore** or **conidia**bearing fruiting bodies derive from this portion
 - Vegetative mycelium
 - Extends into substratum of agar and is responsible for absorbing water and nutrients

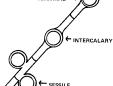
o Structures

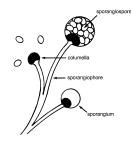
Rhizoids – root-like structures that may be located at the base of a sporangiophore or internodally along the hyphae.

Favic chandeliers – resemble antlers of a deer, ends are blunt and branched

Racquet hyphae – resemble tennis racquets with smaller end attached to large end of an adjacent club-shaped hyphae

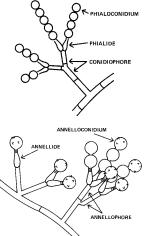
Nodular organs – knots of twisted hyphae

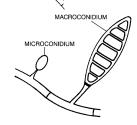


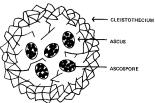

Spiral hyphae – coiled or corkscrew-like turns in hyphae

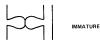
- 3. Vegetative reproductive structures
 - Arthroconidia (arthrospores)
 - Thick-walled barrel-shaped conidia produced by fragmentation of the hyphal strand through the septation points. They may form adjacent to each other or may be separated by alternating empty spaces.
 - Blastoconidia (daughter cells)
 - o Budding forms characteristically produced by yeast
 - A bud scar (dysjunctor) often remains at point where conidium detached
 - Chlamydoconidia (Chlamydospores)
 - Formed from pre-existing cells in the hyphae, which become thickened and enlarged
 - May be found within (intercalary), along the side (sessile), or at the tip (terminal)
- 4. Aerial reproductive structures (fruiting bodies)
 - Sporangiospores
 - o Spores contained in a closed sac called a sporangium
 - The sporangium is supported on a base, termed the **columella**, which is located at the tip of the specialized hyphal segment called the **sporangiophore**
 - This type of sporulation is characteristic of the Zygomycetes
 - Conidia
 - Spores produced on the surface of an elaborate fruiting body supported by a specialized hyphal segment called a **conidiophore**
 - The conidiophore can branch into secondary segments called **metulae** which can become conidia-producing segments called **phialides**

• Phialoconidia


- Conidia which arise from a tube or vase-shaped structure called a **phialide**
- This type of sporulation is characteristic of the *Penicillium* species


Annelloconidia


- Conidia which arise from a tube or vase-shaped structure termed a **annellide**
- The tip of the phialide cyclically extends and retracts when conidia form, leaving a succession of scars
- Conidia may be formed singly, in long chains, or in tightly bound clusters
- Macroconidia
 - Larger, multi-celled conidia that can vary in size and shape
 - The term "macro" should only be used when smaller conidia are present.
- Microconidia
 - Tiny one-celled conidia, usually borne either directly from side of hyphae or supported by a hair-like conidiophore
 - The term "micro" is used only when larger conidia are present
- 5. Sexual reproductive structures
 - a. Fungi having a sexual stage are termed "Perfect Fungi"
 - b. Fungi lacking a sexual stage are termed "Fungi Imperfecti"
 - c. Sexual sporulation requires 2 specialized fertile cells (having undergone meiosis) to merge and have nuclear recombination occur on the aerial hyphae
 - Ascospores
 - Sexual spores (meiotic division) produced in a sac-like structure called an ascus. The **ascus** is the sexual mother cell that forms ascospores inside and may be protected on the outside by an cleistothecium. The **cleistothecium** is a protective sac within which asci and ascospores form.
 - Oospores
 - Fusion of 2 morphologically identical cells from different hyphal segments
 - Zygospores
 - Fusion of 2 morphologically identical cells from the same hyphal structure
 - o Zygomycetes reproduce sexually in this manner


III. Specimen Collection & Transport

- A. Specimen types and collection
 - 1. Blood and bone marrow
 - a. Acquire by sterile technique
 - b. Inoculate biphasic agar-broth bottles designed specifically for fungal cultures

MATURE ZYGOSPORANGIUM

- 2. CSF
 - a. Acquire by sterile technique and transport in sterile container
 - b. Centrifuge and use sediment to make slides and inoculate media
 - c. Keep at room temperature is culture setup is delayed
- 3. Cutaneous: Hair, nail and skin scrapings
 - a. Hair
 - Use Wood's lamp to see infected areas. Pull out hair by roots with sterile tweezers.
 - If no fluorescence, pull out hairs that are broken and scaly
 - Transport in sterile container
 - b. Nails
 - Clean with 70% alcohol
 - Scrape away and dispose of outer layers of nail
 - Sample from beneath the nail plate to obtain softened material from nail bed, or collect shavings from deeper portions
 - Place into sterile container
 - c. Skin
 - Clean with 70% alcohol
 - If lesion present, scrape the actively growing edge
 - Scrape areas that look most infected
 - Respiratory: bronchial washings, sputum, throat, transtracheal aspirates
 - a. Early morning specimen is best
 - b. 24 hour collections unacceptable (bacterial overgrowth)
 - c. Transtracheal aspirate should eliminate throat flora
 - d. Prepare slides for stains
- 5. Tissue biopsies
 - a. Collected by physician and should be kept moist with sterile saline in a sterile container until processed
 - b. Should include normal tissue and tissue from the center and edge of lesion
 - c. Inspect tissue for granules and areas of pus and necrosis
 - d. Mince tissues for inoculation to media especially if Zygomycetes are suspected
- 6. Urine

8.

4.

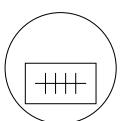
- a. Early morning clean catch or catheterized specimen is best
- b. 24 hour collections unacceptable (bacterial overgrowth)
- c. Centrifuge specimen and inoculate media with sediment
- 7. Vaginal, uterine cervix, prostatic secretions
 - a. Acquire by sterile technique and transport in sterile container
 - Wounds, subcutaneous lesions, mucocutaneous lesions, exudates
 - a. Acquire by sterile technique and transport in sterile container
 - b. From cysts and abscesses, material should be aspirated if possible
 - c. Examine for granules
- B. Specimen Collection Issues
 - 1. Collect from area most likely to be affected
 - 2. Use sterile technique, avoid contamination with hands
 - 3. Specimen must be adequate, reduces contamination
 - 4. Keep specimen moist
 - 5. Specimen must be properly labeled
 - 6. Exact source/site aids in identification
 - 7. Specimen must be delivered promptly to lab and processed quickly
 - a. Prevents overgrowth of bacteria and ubiquitous molds
 - b. Pathogenic molds can be slow growers
 - c. Yeast multiply quickly so refrigerate if delay in setting up culture

IV. Direct Examination of Specimens

- Provides rapid preliminary report and immediate presumptive diagnosis to guide the physician in treatment
- Special morphological characteristics may give clues to the identity of the causative agent
- Aids in selection of special media to inoculate specimen to
- Direct exam may show evidence of infection despite negative cultures
- Allows for observation of yeast phase of dimorphic organisms
- May indicate need for more than one type of direct examination to be performed
- A. Saline wet mount
 - 1. Phase-contrast microscope is valuable or can use low light
 - 2. Look for fungal elements such as:
 - a. Budding yeast with pseudohyphae (Candida)
 - b. Broad base budding yeast (Blastomyces dermatitidis)
 - c. Spherules (Coccidioides immitis)
 - d. Capsules (*Cryptococcus neoformans*)
- B. Lactophenol aniline blue (LPAB) wet mount
 - 1. Phenol kills organisms
 - 2. Lactic acid preserves fungal structures
 - 3. Aniline blue stains the chitin in fungal cell walls
 - 4. LPAB prep can be made permanent
 - 5. Look for fungal elements
- C. Potassium hydroxide (KOH) preparation (10%)
 - 1. Hair, skin or nail specimens
 - KOH dissolves the keratin to make fungi more visible
 - 2. Specimens containing cellular material such as sputum or vaginal secretions
 - KOH dissolves the cells in background to make yeast / fungal elements more visible
 - 3. Procedure
 - a. Add a drop of 10% KOH to specimen on slide. Coverslip.
 - Gentle heating may aid in dissolving debris
 - If specimen is thick, it may take 15-30 minutes to dissolve
 - b. Observe under low light or with phase-contrast microscope
- D. Gram stain
 - 1. Fungi stain gram positive
 - 2. Look for yeast and fungal elements such as pseudohyphae
 - 3. True fungi are 2-3 times wider than GPR's and will not stain solidly inside
 - 4. Capsule around yeast can prevent the definitive staining of the yeast itself
- E. Acid-fast stain
 - 1. Nocardia is partially positive with a modified Kinyoun acid-fast stain
 - 2. Ascospores of Saccharomyces cerevisiae are acid-fast positive
- F. India ink preparation
 - 1. Used to observe for capsules around yeast (esp. Cryptococcus neoformans)
 - 2. Procedure
 - a. Mix small drop of India ink with a drop of specimen and coverslip. (Strive for a thin smear)
 - b. Let sit (up to 10 minutes) to allow cells to settle
 - c. Observe under microscope with condenser adjusted for maximum light. Look for a clear capsule around yeast. Background is dark.

- G. Calcofluor white stain
 - 1. Binds to polysaccharides in fungal cell walls
 - 2. Fluoresces when exposed to UV light
 - 3. 10% KOH can be added to dissolve background
 - 4. Procedure
 - a. Add drop of Calcofluor White stain to specimen on slide. Coverslip.
 - b. Allow to sit approximately 3 minutes.
 - c. Use a fluorescent microscope and look for apple green fluorescence.
- H. Tissue / Histological stains
 - 1. Wright's stain look for intracellular yeast in tissue and bone marrow (*Histoplasma capsulatum*)
 - 2. Gomori Methenamine Silver (GMS) stain fungi, *Pneumocystis*, and *Actinomyces* stain black against a green background
 - 3. Periodic Acid Schiff (PAS) stain fungal elements are magenta against a light pink or green background

V. Selection and Inoculation of Culture Media


- A. Safety
 - 1. Tube media preferred over plate media
 - a. Tube media will not dry out over long incubation periods
 - b. Reduces chance for fungal reproductive structure to become airborne and contaminate the room and people
 - c. Never use plates when suspect *Coccidioides immitis* (extremely infectious and aerosols may be inhaled)
 - 2. ALWAYS work under a biological safety cabinet
 - 3. Wear gloves and lab coat
 - 4. Autoclave specimens and inoculated media when finished
 - 5. Disinfect work area daily
- B. Primary isolation media for fungi
 - 1. Goal is to isolate all possible pathogens
 - 2. Generally want 2 types of media a **nonselective** media and a **selective** media (with antibiotics to inhibit growth of bacteria and enriched for more fastidious fungi)
 - 3. Ingredients required for fungal growth include carbon, nitrogen, vitamins, minerals and amino acids

4. Nonselective Media

- a. Brain heart infusion (BHI) with/without 5% blood
 - Primary recovery of saprophytic and dimorphic fungi
 - Useful for isolation of *Histoplasma* and *Nocardia* (media containing blood)
 - Useful to convert dimorphic molds from mold to yeast phase when incubated at 35°C
 - Antibiotics (cycloheximide & chloramphenicol) can be added to make media selective for dimorphic moulds
- b. Inhibitory mold agar (IMA)
 - The best medium to isolate fungal opportunists from a non-sterile site
 - Primary recovery of dimorphic pathogenic fungi and saprophytic fungi that are inhibited by cycloheximide
 - Chloramphenicol & gentamicin inhibit growth of bacteria
- c. Sabouraud's brain heart infusion agar (SABHI)
 - Primary recovery of saprophytic and dimorphic pathogenic fungi, particularly fastidious strains

5. Selective Media

- a. Mycosel agar
 - Selective for isolation of dermatophytes
 - Chloramphenicol inhibits bacteria and Nocardia
 - Cycloheximide inhibits rapid saprophytes and:
 - Cryptococcus neoformans
 - Candida krusei
 - Candida tropicalis
 - Candida parapsilosis
 - o Trichosporon beigelii (cutaneous)
- o Aspergillus fumigatus (25-60%)
- Pseudallescheria boydii
- Nocardia asteroids
- o Piedraia hortae
- b. Dermatophyte test medium (DTM)
 - Screening media for dermatophytes
 - pH change causes the phenol red indicator to change from yellow to red
 - Contains antibiotics
- 6. Incubation temperature
 - a. 30°C is best (room temperature = 25°C, is acceptable, some fungi may multiply slower at this temperature)
 - b. 37°C may inhibit some fungi, but necessary for yeast phase of dimorphic fungi
- 7. Incubation time
 - a. Hold cultures for 4-6 weeks, examining twice weekly for growth
 - b. Dependent on media, temperature and inhibitors in the specimen
- 8. Incubation atmosphere
 - a. Moist 40-50% relative humidity
 - b. Ambient air
- C. Subculture and special identification media for fungi
 - 1. Once fungi have grown on primary culture, one frequently needs to subculture for complete isolation and identification
 - 2. Media
 - a. Sabouraud dextrose agar (SDA)
 - Supports growth of all fungi (except Histoplasma and Nocardia)
 - Consists of dextrose, peptone, agar and water
 - pH 5.6 to inhibit bacteria which prefer pH 7.2
 - b. Neutral Sabouraud dextrose agar (Emmon's modification)
 - Subculture yeast, allows for better maintenance of yeasts
 - Less dextrose and a neutral pH compared to regular SDA
 - c. Cornmeal-Tween 80 agar (CMT)
 - Promotes hyphal and blastoconidia formation
 - Observe pseudohyphae & chlamydoconidia production by Candida albicans
 - Enhances pigment of *Trichophyton rubrum* when 1% glucose is added
 - Procedure
 - With loop, make one streak into the agar down the center of an area and 3 or 4 parallel cuts across the first ½ inch or 1 cm apart, holding the inoculating wire at about a 45° angle to dilute inoculum.
 - Incubate 24-72 hours at 30°C
 - After incubation, place coverslip on surface of the agar, covering inoculation streaks
 - o Examine growth through the coverslip with the

microscope using the 10x and 40x objectives. Look for the most characteristic morphology near the outer edges of the coverslip.

- d. Niger seed agar or Birdseed agar
 - Used for isolation of Cryptococcus neoformans from contaminated specimens
 - *Cryptococcus neoformans* produces phenoloxidase enzymes. These enzymes break down the substrate caffeic acid forming a brown pigment
- e. Tween 80 / Oxgall / caffeic acid agar (TOC)
 - Observe brown pigment production by Cryptococcus neoformans
 - Can observe germ tube production by Candida albicans
 - Better chlamydoconidia development than Cornmeal/Tween 80
- f. Potato dextrose agar
 - Stimulates spore formation and pigmentation
 - Used to subculture fungi for slide culture and observe for colony morphology

VI. Examining the Fungal Culture

- A. Differentiating Pathogenic fungi
 - 1. Growth rate is 10 days or more (slow growers)
 - 2. Growth on Mycosel agar
 - 3. Color: dull buff, brown, mousey gray
 - 4. Dimorphic
 - a. Mold phase grows at 30°C (room temperature)
 - b. Yeast phase grows at 35°C on BHI agar

B. Identification of fungi

- 1. Growth rate
 - a. Rapid = 1-5 days
 - b. Intermediate = 6-10 days
 - c. Slow = 11-28 days
- 2. Colonial morphologic features
 - a. Appearance (topography)
 - Rugose colonies have deep furrows irregularly radiating from the center
 - Umbonate colonies have a button-like central elevation
 - Verrucose colonies have a wrinkled, convoluted surface
 - Flat
 - b. Texture
 - **Cottony** (wooly) very high, dense aerial mycelium
 - **Glabrous** (waxy) smooth surface due to no aerial mycelium (yeast-like)
 - **Granular** (powdery) flat and crumbly due to dense conidia production
 - Velvety colonies produce low aerial mycelium
 - c. Pigmentation
 - Observe color on both surface of colony and on reverse side of plate
- 3. Microscopic morphologic features
 - a. Most definitive means of identification
 - b. Evaluate:
 - Shape
 - Method of production

Ο

UMBONATE

COTTONY

VELVETY

GRANULAR

GLABROUS

YYYYYYY

- Arrangement of conidia/spores
- Size and color of hyphae
- 4. Microscopic techniques for evaluating fungi
 - a. Tease mount
 - Procedure
 - Using two sterile teasing needles, transfer a portion of colony (middle third) to a slide
 - o Gently tease mycelium apart with teasing needles
 - Add a drop of Lactophenol aniline blue stain
 - Coverslip and observe for fruiting structures under light microscope at 10x and 40x
 - Advantage
 - Perform and examine immediately after maturation
 - Disadvantage
 - Structural morphology is disturbed
 - b. Scotch tape preparation
 - Procedure
 - Lightly touch transparent scotch tape, sticky side down, to surface of colony and then removing it
 - o Place a drop of Lactophenol aniline blue stain onto a slide
 - o Affix tape, sticky side down, into the stain on the slide
 - Observe for fruiting structures under light microscope at 10x and 40x
 - Advantages
 - Perform and examine immediately after maturation
 - Retains juxtaposition of spores and hyphal elements
 - Disadvantages
 - Prep is not easily preserved (view within 30 minutes and then discard slide)
 - o Contamination can occur
 - c. Slide culture
 - Procedure
 - Place glass slide on 2 wooden sticks in Petri dish (gauze or paper towel under sticks moistened with sterile water)
 - Using sterile scalpel, cut 1 cm x 1 cm square of SAB or Potato dextrose agar and place on slide. Two pieces of agar can be placed on the slide to provide duplicate cultures.
 - Inoculate the 4 sides of the agar with mould using teasing needles or sterile wooden stick
 - Place coverslip on top of agar
 - Tape plate shut and incubate at room temperature (22°C)
 - o Examine for growth periodically & add more water as needed to keep moist
 - When conidia / spores are evident, carefully lift coverslip off agar using forceps and place onto slide containing a drop of lactophenol aniline blue stain (coverslip can be sealed with fingernail polish to keep slide permanently)
 - Observe under light microscope at 10x and 40x
 - Advantages
 - Fungal elements are grown and maintained in their original juxtaposition, making identification easier
 - Two mounts from one culture, so you can view one slide and if necessary, leave the other slide to incubate longer

- Disadvantages
 - o Technical expertise required
 - Must wait for fungus to mature on inoculated media before identification can occur
 - o Zygomycetes grow past coverslip before forming reproductive structures

VII. Serologic Diagnosis of Fungal Disease

- Generally performed only in select reference laboratories
- A. Immunodiffusion
 - 1. Aspergillus
 - 2. Blastomyces
 - 3. Histoplasmosis

B. Complement fixation

- 1. Blastomyces
- 2. Coccidioidomycosis
- 3. Histoplasmosis

C. ELISA

- 1. Aspergillus
- D. EIA
 - 1. Blastomyces
 - 2. Candida

E. Latex agglutination

- 1. Cryptococcus (more sensitive than India Ink Stain in CSF)
- 2. Candida
- F. Fluorescent antibody
 - 1. Pneumocystis

VIII. Molecular Diagnosis of Fungal Disease

- A. Probes
 - 1. Used to identify:
 - a. Histoplasma capsulatum
 - b. Blastomyces dermatitidis
 - c. Coccidioides immitis
 - d. Cryptococcus neoformans

IX. Antifungal Susceptibility Testing

- A. Appropriateness
 - 1. CLSI has released 3 methods for fungal testing
 - a. Yeast testing
 - b. Mould testing
 - c. Disk diffusion testing (microtiter and Etest)
 - 2. Concerns
 - a. Lack of established breakpoints for most fungal agents
 - b. Emergence of antifungal resistance

- B. Anti-fungal classes and agents
 - 1. Polyenes
 - a. Amphotericin B (primary antifungal agent used today)
 - 2. Azoles
 - a. Fluconazole (primary antifungal agent in treating yeast infections)
 - b. Intraconazole
 - c. Voriconazole
 - 3. Candins
 - a. Caspofungin