

College of Science.
Department of Statistics & Operations
Research

First Midterm Exam Academic Year 1442-1443 Hijri-First Semester

مطومات الامتحان Exam Information								
Course name	Modeling and Simulation	التمنجة والمحلكاة	اسم المقرر					
Course Code	OPER 441	441	رمز المقزر					
Exam Date	20-10-2021	14-3-1443	تاريخ الامتحان					
Exam Time	12: 00 P		وقت الامتدان					
Exam Duration	2.5 hours	ساعتان ونصف	مدة الامتحان					
Classroom No.		30	رقم قاعة الاختبار					
Instructor Name			اسم استاذ المغزر					

Student Informs	ation معلومات انطاتب	
Student's Name		the delite.
ID number		
Section No.	umber (18820466) الرقم الجامعي الرقم الجامعي (18820466) الرقم المسلمل (188204666) الرقم المسلمل (188204666) الرقم المسلمل (188204666) المسلمل (18820466666) المسلمل (18820466666666666666666666666666666666666	
Serial Number		
General Instructions:		
 Your Exam consists of PAGES (except this paper) 	مان مسقعة (باستشاء هذه	
 Keep your mobile and smart watch out of the classroom. 	والساعات الذكرة خارج قاعة الامتحال	
4		_

هذا الجزء خاص باستلا الملادُ This section is ONLY for instructor

_	This section is UNLY for instructor									
#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score						
1	Understanding the processes and steps for building a simulation model	(1)		THE OTE						
2	Implement an inverse cumulative distribution function based random variate generation algorithm									
3	Explain and implement the convolution algorithm for random variate generation									
4	Explain and implement the acceptance rejection algorithm for rundom variate generation									
5	Compute statistical quantities from simulation output									
6	Generate random numbers from any given distribution									
	discrete or continuous									
7	Building simulation models from basic applications									
8			 							

EXAM COVER PAGE

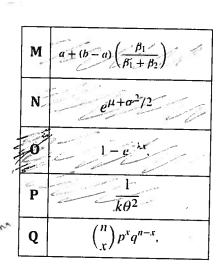
Question #1: Answer the following with True or False:

Quest	Duestion #1: Answer the following with True or False:									
X	 Simulation model can be used to evaluate different alternatives and give an optima solution. 									
X	The sample space in a random experiment is always determined and unique to everyone.									
	3. Simulation modeling is not good if there is less data or no estimates available.									
1	4. Validation step is to make sure that the simulation program is running correctly.									
F	5. In call center model with two lines it is impossible to lose any incoming call.									
	6. Triangular distribution is used when there is lack of data									
Ki	7. Simulating flight distance for an airplane is a discrete system simulation.									
XI	8. In Bank simulation, the variable (X = number of customers in waiting) is a state variable for the system.									
AV	9. In Bank simulation, the variable (X = number of kids with a customer) is a state variable for the system.									
T	10. The measures of simulation changes every time a new run of simulation is performed									
F	11. Every simulation run for the same model give the same results.									
T	12. The Geometric distribution has memory less property									
XT	13. If a used computer didn't fail for the past 6 months then the probability that it will not fail the next month is always the same as buying a new computer now.									
1	14. The normal distribution with parameters μ and σ^2 always cover more than 80% of the distribution within $\pm 2\sigma$									
	15. The Erlang distribution is a special case from exponential distribution.									
X	16. We can always get any Erlang distribution with any parameters using Gamma Distribution									
	17. The beta distribution between (0,1) can be rescaled for any real values									
F	18. The Erlang distribution always has all parameters positive integer values.									
A STATE OF THE STA	 The random variable with Exponential distribution is always has mean value equals t the standard deviation. 									
F	20. If the random variable has mean value equals to the variance then it must have a Poisson distribution.									
	21. The number of trials until 1st 2 success is a binomial distribution.									

OR 441 - Modeling and Simulation

Dr. Khalid Alnowibet

كليه السعلوم قسد العسليات


_	 22. The Uniform distribution has a single mode value.
	23. The normal distribution always has the mean equals to the median
1	 24. In building simulation model, we always have to start data collection after validation.

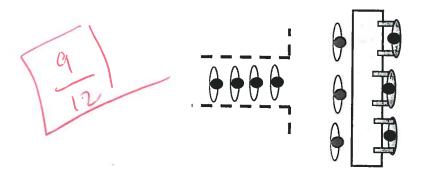
Question #2:

Given the following functions:

A	np(1-p)
В	$\frac{q}{p^2}$
С	p
D	p(1-p)
Е	$\frac{e^{-\alpha}\alpha^{2}}{\alpha^{2}}$
F	$\frac{kq}{p^2}$

	3.
G	$\Gamma(\beta) = \int_0^\infty x^{\beta - 1} e^{-x} dx$
Н	$rac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} ext{for } x, \lambda \geq 0,$
I	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$
J	$\frac{\beta}{\alpha} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} \exp \left[-\left(\frac{x - \nu}{\alpha} \right)^{\beta} \right], x \ge \nu$
K	$\frac{\beta\theta}{\Gamma(\beta)}(\beta\theta x)^{\beta-1}e^{-\beta\theta x}, x>0 \text{gain}$
Ĺ	$\frac{1}{\sqrt{2\pi}\sigma x}\exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right].$

Complete the following by choosing the correct function from above


- A	1	The random variable V has Erman and I I	
\downarrow		The random variable X has Exponential distribution if if X has the CDF	10
1	2	The random variable X is has <i>Erlang</i> distribution if X has the pdf	i II
Contract of the Contract of th	3	The random variable X has <i>Beta</i> distribution if X has the pdf	2
	4	The random variable X has Geometric distribution (p) then X has the a variance	18
	5	The random variable X has <i>Lognormal</i> distribution if X has the pdf	1
L	6	A random variable X has Negative binomial distribution (p) then X has the a variance	LI
No. of	7	The random variable X has <i>Beta</i> distribution if X has the pdf	
	8	The random variable X has <i>Lognormal</i> distribution, Then X has expected value	N
1	9	The random variable X has <i>Beta</i> distribution, then X has the expected value	
1	0	The random variable X has <i>Poisson</i> distribution if X has the pdf	M
1	1	The random variable X has <i>Bernoulli</i> distribution (p), then X has the expected value	
1	2	The random variable X is has Erlang distribution (k) , then it has variance	
			U

كلبه التعلوم

Question #3:

A service station has three servers and a single waiting line. The servers serve customers in the order in which they arrive. Customers may leave the system without service due to long waiting time. The service time of the customers changes according to their gender and the type of service they request. The service facility provide four types of services.

List al state variables and attributes and define the values of each one?

Customer writing without service of actions (discrete with service)

Customer without service of actions (discrete with service)

Customer with service (a)

Customer with service (a)

Customer with service (b)

Socuer XI busy (i) idle o gorder, Type of Service 1. Service time for the customer (Continue) (1,23,4) Arrival. (Continue)

Question #4:

High temperature (°F) in a city on July 21, denoted by the random variable X, has the following probability density function, where X is in degrees F.

Page 5 of 7

$$f(x) = \begin{cases} \frac{2(x-85)}{119}, & 85 \le x \le 92\\ \frac{2(102-x)}{170}, & 92 < x \le 102 \text{ 5 3 g/m}, \text{ 9}\\ 0, & \text{otherwise} \end{cases}$$

- (a) What is the mean of the temperature E(X)?
- (b) What is the variance of the temperature V(X)?
- (c) What is the median temperature?

a)
$$E(x) = \int_{85}^{92} x \frac{2(x-89)}{119} dx + \int_{12}^{2} \frac{2(102-2)}{190} dx$$

$$= \frac{2}{119} \int_{85}^{2} x \frac{29}{85} dx + \frac{2}{120} \int_{1222-2}^{2} dx$$

$$= \frac{2}{119} \left(\frac{23}{3} - \frac{532}{2} \right) + \frac{1}{170} \left(\frac{102x^2}{2} - \frac{x^3}{3} \right) \Big|_{92}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{532}{2} \right) + \frac{1}{170} \left(\frac{102x^2}{2} - \frac{x^3}{3} \right) \Big|_{92}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{2(x-89)}{2} \right) + \frac{1}{170} \left(\frac{102x^2}{2} - \frac{x^3}{3} \right) \Big|_{92}^{102}$$

$$= \frac{2}{119} \left(\frac{x^4}{4} - \frac{65x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^4}{4} - \frac{65x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^4}{4} - \frac{65x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^4}{4} - \frac{65x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

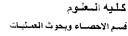
$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^2}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^2}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^3}{3} \right) + \frac{2}{170} \left(\frac{102x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$


$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^3}{3} - \frac{x^4}{4} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^3}{3} \right) \Big|_{170}^{102}$$

$$= \frac{2}{119} \left(\frac{x^3}{3} - \frac{x^4}{3} \right) \Big|_{170}^$$

OR 441 – Modeling and Simulation

Qr. Khalid Alnowibet

Question #5:

Busses arrive to a station at random. It is estimated that the time between busses is an exponential distribution with mean 15 minutes. The number of passengers on the bus is also random follows a binomial distribution with parameter 10 and probability 0.75.

- (1) If you arrive at 10:00 am, What is the probability you will wait more than 30 min for your bus?
- (2) What is the expected number of busses that will arrive to the station between 10:00 to 11:00 am?
- (3) What is the expected number of passengers that will drop off to the station between 10:00 to 11:00 am?
- (4) Given that 15 passengers arrived between 10:00 to 11:00 am what is the probability that the next bus will have 3 passengers on board?
- (5) Draw the flowchart that will simulate the bus arrival and passenger's drop-off to this station?

(Use the command Generate RV from Dist. -- to complete your flowchart) $(1e^{\pm} \times \text{Time between } \times \text{New points})$ $(1e^{\pm} \times \text{Time between } \times \text{New points})$ $(1e^{\pm} \times \text{Time between } \times \text{New points})$ $(1e^{\pm} \times \text$ 2) 60 = 60 = 4 busses let y num of passargor - , y-Bin(poas noto) (v) = NP = 7.5 X VN(y) = NP0 = 1.875 X 100-37 : every 15 min = no = 2.5 in 1 hour = 10 drop X Pr (3 Passagors | 13 mercet route 110) = Pr (3 Passagors on low-rod)

From memory lack of exponential pr (4-3) = (3) 675) (2.13) = 0.93

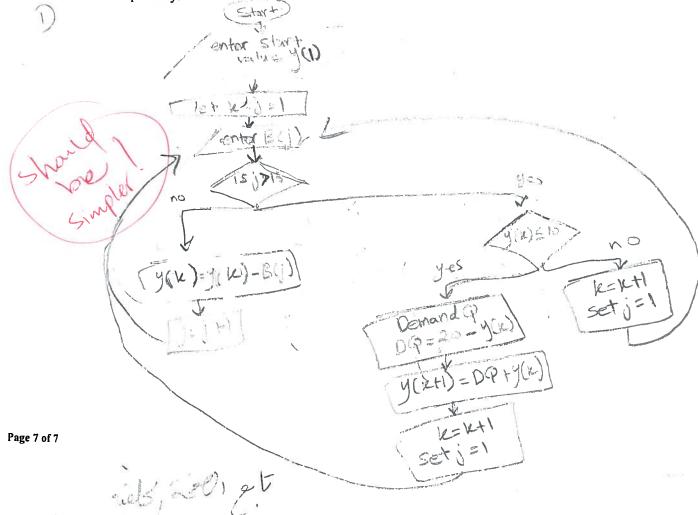
OR 441 - Modeling and Simulation

Dr. Khalid Alnowibet

كليه السعثوم

Question #6:

A supermarket sells fresh milk daily. Customers arrive to supermarket buy milk. Customers may buy 1 bottle, 2 bottle or 3 bottles at random (let B(j): number of bottles bought by customer j). The number of customers demanding the milk varies between 5 to 15 customers daily (let N(k): number customers arrived in day k asking for milk). The supermarket stores the milk in a refrigerator that can hold up to 20 bottles of milk. By the end of each day, the owner will decide wither to order more milk for next day or not. If he finds 10 or less in that the refrigerator then he will refill the refrigerator for next day.


Day	Cust-	Cust- 2	Cust-	Cust-	Cust-	Cust-	Cust-	0	Cust-	Cust-	Cust-	Cust-	Cust-	Cust-	Cust-
1 1	1	1	2	1	2	1	7	2	9	10	11	12	13	14	15
-			4_		3_	1	111	_ 3	3,	1	2		10		
4	1	3	1	3	3	:(4:1, -1)	3	2	(1))	3	1	2	- 1		
3	3	1	3	2	1:30	2	1	4		<u> </u>	<u> </u>			3	_ 3
1			3		1 1 3	4.		<u> </u>	1						
4		_3_	1	2	3	3	- 1								
5	1	2	3	1	3	1	2	3							

(1) Draw the flowchart that will simulate number of sold bottles.

(2) Do the manual simulation to determine the status of customer (accepted, rejected) and amount of milk in the frig.

(3) From the manual simulation, estimate the number of sold units and the number of lost

customers per day.

