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Introduction

The concept of energy is one of the most important topics in science and
engineering.

In everyday life, we think of energy in terms of fuel for transportation and
heating, electricity for lights and appliances, and foods for consumption.
However, these ideas do not really define energy. They merely tell us that

fuels are needed to do a job and that those fuels provide us with something
we call energy.

The definitions of quantities such as position, velocity, acceleration, and
force and associated principles such as Newton’s second law have allowed
us to solve a variety of problems. Some problems that could theoretically be
solved with Newton’s laws, however, are very difficult in practice. These
problems can be made much simpler with a different approach. In this and
the following chapters, we will investigate this new approach, which will
Include definitions of quantities that may not be familiar to you.




Introduction

Other quantities may sound familiar, but they may have more specific
meanings in physics than in everyday life. We begin this discussion by
exploring the notion of energy.

Energy is present in the Universe in various forms. Every physical process
that occurs in the Universe involves energy and energy transfers or
transformations. Unfortunately, despite its extreme importance, energy
cannot be easily defined. The variables in previous chapters were relatively
concrete; we have everyday experience with velocities and forces, for
example. The notion of energy is more abstract, although we do have
experiences with energy, such as running out of gasoline, or losing our
electrical service if we forget to pay the utility bill.



Introduction

The concept of energy can be applied to the dynamics of a mechanical
system without resorting to Newton’s laws. This “energy approach” to
describing motion is especially useful when the force acting on a particle is
not constant; in such a case, the acceleration is not constant, and we
cannot apply the constant acceleration equations that were developed in
Chapter 2. Particles in nature are often subject to forces that vary with the
particles’ positions. These forces include gravitational forces and the force
exerted on an object attached to a spring. We shall describe techniques for
treating such situations with the help of an important concept called
conservation of energy. This approach extends well beyond physics, and
can be applied to biological organisms, technological systems, and
engineering situations.

Our problem-solving techniques presented in earlier chapters were based
on the motion of a particle or an object that could be modeled as a patrticle.
This was called the particle model. We begin our new approach by focusing
our attention on a system and developing techniques to be used in a system
model.




‘ 7.2 Work Done by a Constant Force

® Cengage Leanng/Charles 0. Winters

The work Wdone on a system by an agent exerting a constant force on the

F
system 1s the product of the magnitude Fof the force, the magnitude Arof /{
the displacement of the point of application of the force, and cos 6, where 6 1s

the ang]e between the force and displatement vectors: |

W= FArcos# (7.1) - >‘




i 1s the anl}r force
that does work on
the block in this

sl ATION.

W= FAr

uick Quiz 7.1 The gravitational force exerted by the Sun on the Earth holds the
Earth in an orbit around the Sun. Let us assume that the orbit 1s perfectly ar-
cular. The work done by this gravitational force during a short time interval in
which the Earth moves through a displacement 1n its orbital path is (a) zero

(b) positive (c) negative (d) impossible to determine




uick Quiz 7.2 Figure 7.4 shows four situations in which a force is applied to an
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to

most ntgatiw:.
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7.2 Work Done by a Constant Force

The work W done on a system by an agent exerting a constant force on
the system is the product of the magnitude Fof the force, the magnitude
Ar of the displacement of the point of application of the force, and cos0,
where 0 is the angle between the force and displacement vectors:

W = FAr cos@
if ©=90°, then W =0 because cos 900=0

If an applied force F is in the same direction as the displacement Ar,
then 8= 0 and cos 0 = 1. In this case, Equation 7.1 gives:
W = FAr

Work is a scalar quantity, and its units are force multiplied by length.
Therefore, the Sl unit of work is the newton.meter (N. m). This
combination of units is used so frequently that it has been given a name
of its own: the joule( )).




A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F= 50.0 N at an angle of 30.0° with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m

to the right.

W= FArcos@ = (50.0 N)(3.00 m)(cos 30.0%)
= 130]




7.3 The Scalar Product of Two Vectors

Because of the way the force and displacement vectors are combined in
Equation 7.1, it is helpful to use a convenient mathematical tool called
the scalar product of two vectors.

In general; for any two vectors Aand B; Scalar product is defined as:
A.B = AB cos 0
W = FAr cos@ = F.Ar

In other words, F.Ar(“F dot Ar”) is a shorthand notation for FArcos 6.
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7.3 The Scalar Product of Two Vectors

Dot Products

Note that the scalar product is
commutative.

That is:
A.B=B.A

Although (7.3) defines the work in
terms of two vectors, work is a scalar.
All types of energy and energy
transfer are scalars. This is a major
advantage of the energy approach.
We don’t need vector calculations!

Dot Products of Unit Vectors

iojjokk=1
i-j=i-k=j-k=0

Using component form with vectors:
A=Ai+Aj+Ak
B=B,i+B,j+Bk

AB=AB +AB, +AB,

In the special case where
A=B:

A A=A+ A+ A2 = A

12




The Scalar Product

The vectors A and B are g'nrermb’yﬁih =2i+ Sj and B = —i + ﬂj.

(A) Determine the scalar product A-B.

g
==
Il

(2i + 3j)-(—i+ 2j)
= —2i-i+ 2i-2j — 3j-i+ 3j-2)
—2(1) + 4(0) — 3(0) + 6(1) = -2+ 6= 4

(B) Find the angle 6 between AandB.

A

VAZ+ A2=V(2)2+ (32 =V13

B=VE+E=V(-17+(2°=V5

, A-B 4 4
cosfl = = =
AB V135 V65
A = cos ! : = 60.3°

V65



Work Done by a Constant Force

A part:cle mnvmg in the xy plane undergoes a displacement gwen by AT = (2. 0i+ 3.0 _]] m as a constant force
F = (5.0i + 20 j) N acts on the particle. Calculate the work done by F on the particle.

W= F-ATF = [(5.0i + 2.0§) N]-[(2.0i + 3.0j) m]
= (5.01+2.01 + 5.01-3.0j + 2.0j-2.01 + 20j-3.0)) N-m
=[10+0+0+6N-m= 16]




7.4 Work Done by a Varying Force

If a force F, is varying with position, x, we can express the work done by

F, as the particle moves from x to x; as: The total work done for the
displacement from x; to x;is
X f approximately equal to the sum
of the areas of all the rectangles.
~ N 4
W = Fx Ax F.  Area = AA=F,Ax
xl Sf ~~N
or F,
Xf
- X
W = E. dx Cp—
Ax

The work done by the component F, of the varying force as the particle

moves from x to x; exactly equal to the area under this curve.
Xf F,
W = E. dx
X
Work




Calculating Total Work Done from a Graph

A force acting on a particle varies with x as shown in Figure 7.8. Calculate the
work done by the force on the particle as it moves from x = 0 to x = 6.0 m.

The net work done h}' this force

15 the area under the curve.
Wawe = (5:0N)4.0m) = 20] o /
We oo = s(5.0N)(2.0m) = 5.0] .|® - ®

Wawe = Waws T Wagoe=20] +50]= 25]




Work Done By A Spring

A model of a common
physical system for
which the force varies
with position. The block
IS on a horizontal,
frictionless surface.
Observe the motion of
the block with various
values of the spring
constant.
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When xis positive
(stretched spring), the
spring force is directed
to the left.

When x is zero
(natural length of the
spring), the spring

force is zero.

When xis negative
(compressed spring),
the spring force is
directed to the right.

The work done by the
spring force on the
block as it moves from
— Xmax to 0 is the area
of the shaded triangle,

1
e A
5 K% hax:
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Spring Force (Hooke’s Law)

The force exerted by the spring is F = - kx

X is the position of the block with respect to the equilibrium position (x = 0).

k is called the spring constant or force constant and measures the stiffness of the spring.
k measures the stiffness of the spring. This is called Hooke’s Law.

When x is positive (spring is stretched), F is negative

When x is O (at the equilibrium position), Fis O

When x is negative (spring is compressed), F is positive

The force exerted by the spring is always directed opposite to the displacement from
equilibrium.

The spring force is sometimes called the restoring force.
If the block is released it will oscillate back and forth between —x and x.

X I: 0 F ‘ Wi . ..
S f 3 ~ T
| : S nen x 18 p().Sl.tl\(‘.
| ' | (stretched spring), the
NNV WY, 'ﬁ ‘ | spring force is directed
vvvv A AR VYVYVVVIYVVIVVYVYY 2

X to the left.




Example 7.5 Measuring k for a Spring

A common technique used to measure the force constant of a spring is demon-
strated by the setup in Figure 7.11. The spring is hung vertically (Fig. 7.11a), and
an object of mass m is attached to its lower end. Under the action of the “load” mg.
the spring streiches a distance d from its equilibrium position (Fig. 7.11h).

(A) Ifa spring is stretched 2.0 cm by a suspended object having a mass of
0.55 kg. what is the force constant of the spring?

¥,+m_g'=l] - F-mg=0 — F=mg

mg  (0.55 kg) (9.80 m/s%)
b= T T 2oxi0tm 27X 1N/m

(B) How much work is done by the spring on the object as it siretches through this distance?

W, =0 — $hd® = =327 x 10° N/m)(2.0 x 107* m)?
—5.4 % 1072]

LIS

I
The elongation dis

caused by the weight mg
of the amached object.

-

AF.

P

Y g




7.5 Kinetic Energy and the Work-Kinetic
Energy Theorem

When work (W) is applied on a system; its kinetic energy (K) changes
from initial value (K.) to final value (K;) so that:
W — Kf - Ki

: |

We define k as: K = %mv
1
W — Em(vzf — Uzi)

The work=kinetic energy theorem is defined as:
W —_ Kf — Ki —_ AK

This theorem indicates that the speed of a particle will increase if the
net work done on it is positive, because the final kinetic energy will be
greater than the initial kinetic energy. The speed will decrease if the net
work is negative.

Remember work is a scalar, so this is the algebraic sum.
20




A Block Pulled on a Frictionless Surface

A 6.0-kg block initially at rest is pulled to the right along a frictionless, horizontal
surface by a constant horizontal force of magnitude 12 N. Find the block’s speed
after it has moved through a horizontal distance of 3.0 m.

W= FAx= (12N)(3.0m) = 36]

W, =AK= K, - K, =imv} = 0= gmv]

el

_ 2Ww  [2FAx
l"_'l.l' m N m

~ [2(12N)(3.0m)
vy = .\/ 6.0 kg = 35m/s




Conceptual Example 7.7

A man wishes to load a refrigerator onto a truck using
a ramp at angle # as shown in Figure 714. He claims
that less work would be required to load the truck if the
length L of the ramp were increased. Is his claim valid?

Wa: = I'-'1"::'.-1. man T I""L_.'g::l.'il'g.' =0

byman = — Woy graviey = —(mg)(L)[cos (6 + 907)]
= mglsin # = mgh




7.6 The Nonisolated System-Conservation
of Energy

A particle, that is acted on by various forces, resulting in a change in its
Kinetic energy Is an example of nonisolated system.

Another example: when a body slides on a surface, heat will be
generated although kinetic energy of the surface has not changed.

Methods of Energy Transfer:\Work
Mechanical Waves

Heat

Matter transfer

Electrical Transmission
Electromagnetic radiation

23




7.6 The Nonisolated System-Conservation
of Energy

We can neither create nor destroy energy—energy is always conserved.
Thus, if the total amount of energy in a system changes, it can only be
due to the fact that energy has
crossedtheboundaryofthesystembyatransfermechanismsuchasoneofthe
methodslistedabove. This is a general statement of the principle of

conservation of energy.
AEsystem — Z T

Change in the total energy of the system = the amount of energy
transferred across the system boundary by some mechanism

24



7.7 Situations Involving Kinetic Friction

s linked to the work done by a frictional force

(7.20)

(7.22)

“a friction force is to transform kinetic energy into internal
1e increase in internal energy is equal to the decrease in

AK = —fid+ ¥ Wother forces

K_f — K:-_ﬁd + EWEIJIEEEDITEI

25




Example 79 A Block Pulled on a Rough Surface

A 6.0-kg block mitally at rest 15 pulled to the nght along a

horizontal surface by a constant horzontal force of 12 N.

(A) Find the speed of the block after it has moved 3.0 m if
the surfaces i contact have a coefhcient of kinete friction
of 0.15. (This is Example 7.7, modified so that the surface is
no longer frictionless. )

W= FAx = (12 N){3.0m) = 36 |

i = pgn = pymg = (0.15)(6.0 kg) (9.80 m/s") = 8.82 N

AKpiion = —fid = —(B.B2N)(3.0m) = —26.5 ]

%m?.rf? = %m:.',-? - fd+ X W

sther forces

v = \{ 2 + %(— i+ 3 W, Enrnﬂ)

2
0+ —-26.5] + 36
\O + G205 + 56)

= lBm/s




—_— A= EII_I{;.I.*:::I = tan 1{0.15) = 85"

(B) Suppaose the force F is applied at an angle @ as shown in
Figure 7.18b. At what angle should the force be appliq:d Y

achieve the largest p:ﬁ.-iihlt 5|J-|:|:d afver the hlock has moved "
3.0 m o the nght?

W= FAxcos @ = Fdcos @

2F=n+ Fsind— mg=0

n= mgr— Fsinf

Because K; = 0, Equaton 7.21b can be written, ax

(k)
Kf = —fd + E Wosther forces
= = pnd + Fdcos

= —p,img— Fsin §)d + Fd cos #

d(K;)
—L= = ~ju(0 ~ Fcos )d — Fisin 6= 0

ppeos = sin 6 = 0

manf = g,

For p; = 0.15, we have,




Example 7.11 A Block-Spring System

A block of mass 1.6 kg is atached to a horizontal spring that
has a force constant of 1.0 % 107 N/m, as shown in Figure
7.10. The spring is compressed 2.0 cm and is then released
from rest.

(A) Calculate the speed of the block as it passes through the
tquilihrium pusiliml x = 0if the surface is fricuonless.

W, = bl = L0 X 10° N/m) (= 2.0 =% 107 m)*=0.20]

W, = f;mr.rjrﬂ - %:ﬂw,E
2
vy = 1!,-5 + —T
=410 4+ —((1L. )
‘\l o (020
= 0.50m/s

F, is negative.,

<

F, is positive.
xis negative.

X




(B) Calculate the specd of the block as it passes through the

equilibrium position if a constant friction force of 4.0 N re-
tards its motion from the moment it 15 released.

AK= —fid= —(40N){2.0 ¥ 10" 2m) = —0.080 ]

K;=020] = 0.080] = 0.12] = tomw?

2K \jﬂtn.lﬂ_n _
mo 1.6kg

Uy = 0.39m/s

What if? What if the friction force were increased to 10.0 N?
What is the block's speed at x = 07

Answer In this case, the loss of kinetic energy as the block
moves to x = 0 is

AK = —fid = —(10.0 N) (2.0 % 10" 2m)= —0.20 ]




‘ 7.8 Power

m}'_ower 1hp = 746 W




Example 7.12 Power Delivered by an Elevator Motor

An elevator car has a mass of 1 600 kg and 15 carryving passen-
gers having a combined mass of 200 kg, A constant frie-

ton force of 4 000 N retards 113 moton upward, as shown in
Figure 7.19.

(A) What power delivered by the motor is required o lift the
elevator car at a constant speed of 3.00 m/s?

YFE=T=f=Mr=10
¥ r’ E

where Mis the folal mass of the system (car plus passengers),
equal to 1 800 kg. Therefore,

T=f+ Mg

= 400 % 10°N + (1.80 % 10° kg) (9.80 m/s2)
=216 % 10*N

P=T-v=Tv

= (216 ¥ 10* N)(3.00 m/s) = 648 x 10°W

(2)

(b)




(B) What power must the motor deliver at the nstant the
specd of the elevator is vif the motor 15 designed o provide
the elevator car with an upwﬂr:ﬂ. acceleration of 1040 m.-l"sz?

2E=T-f- Mg= Ma
T=Ma+g+f
= (1.80 % 107 kg) (1.00 m/s” + 9.80 m/s")

+ 4.00 ¥ 10°N
= 2% % 10'N

(a)

(b)




Lecture Summary

The work W done on a system by anagentexertinga constant force on the system is
the product of the magnitude F of the force, the magnitude Ar of the displacement
of the point of application of the force, and cosB, where 0 is the angle between the
force and displacement vectors:

W = FAr cos9 = F.Ar

The scalar product (dot product) of two vectors A and B is defined by the
relationship:

A.B = ABcos9

If aforce F, is varying with position, x, we can express the work done by F, as the

particle moves from x; to x; as:
Xf

W = F, dx

Xj
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PROBLEMS

Section 7.2 Work Done by a Constant Force

1. A block of mass 2.50 kg is pushed 2.20 m along a frictionless
horizontal table by a constant 16.0-N force directed 25.0° below the
horizontal. Determine the work done on the block by (a) the applied force,
(b) the normal force exerted by the table, and (c) the gravitational force.
(d) Determine the total work done on the block.

SOLUTIONS TO PROBLEM:
W= FArcosO = al6.0 Nfa2.20 mfcos 25.0°=31.9 J

The normal force and the weight are both at 90° to the displacement in
any time interval. Both do O work.




PROBLEMS

Section 7.2 Work Done by a Constant Force

4. A raindrop of mass 3.35 * 10&5 kg falls vertically at constant speed
under the influence of gravity and air resistance.

Model the drop as a particle. As it falls 100 m, what is the work done on
the raindrop (a) by the gravitational force and (b) by air resistance?

SOLUTIONS TO PROBLEM:
W= mgh

Since R=mg

W,

air resistance —

-W
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PROBLEMS

Section 7.3 The Scalar Product of Two Vectors

7. Aforce F=(6"i & 27j) N acts on a particle that undergoes a
displacement Ar=(3"i)"j) m. Find (a) the work done by the force on
the particle and (b) the angle between Fand Arr.

SOLUTIONS TO PROBLEM:
W = F-Ar = Fx + F,y = 6.00(3.00) N-m+ (~2.00)(1.00) N-m= 16.0 |

1 F.Ar 1 16
0 = cos cos™( )
FAr 9 9
\/Fx + F,%\/x% + y?
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PROBLEMS

Section 7.4 Work Done by a Varying Force

13. A particle is subject to a force Fxthat varies with position as in Figure
P7.13. Find the work done by the force on the particle as it moves (a) from
x=0to x=5.00 m, (b) from x =5.00 mto x =10.0 m, and (c) from x=
10.0 mto x =15.0 m. (d) What is the total work done by the force over the

distance x=0to x =15.0 M?
SOLUTIONS TO PROBLEM:

x(m)

0 2 4 6 38 10 12 14 16

Figure P7.13 Problems 13 and 28.




PROBLEMS

Section 7.4 Work Done by a Varying Force

14. A force F=(4x"i) 3)7j) N acts on an object as the object moves in
the xdirection from the origin to x =5.00 m. Find the work

szFdr

done on the object by the force.
SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.4 Work Done by a Varying Force

15. When a 4.00-kg object is hung vertically on a certain light spring that
obeys Hooke’s law, the spring stretches 2.50 cm. If the 4.00-kg object is
removed, (a) how far will the spring stretch if a 1.50-kg block is hung on it,
and (b) how much work must an external agent do to stretch the same
spring 4.00 cm from its unstretched position?

SOLUTIONS TO PROBLEM:

39



PROBLEMS

Section 7.4 Work Done by a Varying Force

16. An archer pulls her bowstring back 0.400 m by exerting a force that
Increases uniformly from zero to 230 N. (a) What is the equivalent spring
constant of the bow? (b) How much work does the archer do in pulling the
bow?

SOLUTIONS TO PROBLEM:

40




PROBLEMS

Section 7.4 Work Done by a Varying Force

19. If it takes 4.00 J of work to stretch a Hooke’s-law spring 10.0 cm from
Its unstressed length, determine the extra work required to stretch it an
additional 10.0 cm.

SOLUTIONS TO PROBLEM:

41




PROBLEMS

Section 7.4 Work Done by a Varying Force

21. A light spring with spring constant 1 200 N/m is hung from an elevated
support. From its lower end a second light spring is hung, which has
spring constant 1 800 N/m.

An object of mass 1.50 kg is hung at rest from the lower end of the second
spring. (a) Find the total extension distance of the pair of springs. (b) Find
the effective spring constant of the pair of springs as a system. We
describe these springs as /1 series.

SOLUTIONS TO PROBLEM:




PROBLEMS

Section 7.5 Kinetic Energy and the Work—-Kinetic Energy Theorem
Section 7.6 The Nonisolated System—Conservation of Energy

24. A 0.600-kg particle has a speed of 2.00 m/s at point A And kinetic
energy of 7.50 J at point B. What is (a) its kinetic energy at A? (b) its
speed at B? (c) the total work done on the particle as it moves from A to
B?

SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.5 Kinetic Energy and the Work—-Kinetic Energy Theorem
Section 7.6 The Nonisolated System—Conservation of Energy

25. A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its kinetic energy?
(b) What If? If its speed were doubled, what would be its kinetic energy?

SOLUTIONS TO PROBLEM:

44



PROBLEMS

Section 7.5 Kinetic Energy and the Work—-Kinetic Energy Theorem
Section 7.6 The Nonisolated System—Conservation of Energy

26. A 3.00-kg object has a velocity (6.007 - 2.007%) m/s. (a) What is its
Kinetic energy at this time? (b) Find the total work done on the object if its
velocity changes to (8.00% + 4.007)) m/s. (Note.: From the definition of the
dot product, 2 =v . V.)

SOLUTIONS TO PROBLEM:

45




PROBLEMS

Section 7.5 Kinetic Energy and the Work—-Kinetic Energy Theorem
Section 7.6 The Nonisolated System—Conservation of Energy

28. A 4.00-kg particle is subject to a total force that varies with position as
shown in Figure P7.13. The particle starts from rest at x= 0. What is its
speed at (a) x=5.00 m, (b) x =10.0 m, (¢c) x=15.0 m?

SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.7 Situations Involving Kinetic Friction

31. A 40.0-kg box initially at rest is pushed 5.00 m along a rough,
horizontal floor with a constant applied horizontal force of 130 N. If the
coefficient of friction between box and floor is 0.300, find (a) the work done
by the applied force, (b) the increase in internal energy in the box-floor
system due to friction, (c) the work done by the normal force, (d) the work
done by the gravitational force, (e) the change in kinetic energy of the box,
and (f) the final speed of the box.

SOLUTIONS TO PROBLEM:



PROBLEMS

Section 7.7 Situations Involving Kinetic Friction

32. A 2.00-kg block is attached to a spring of force constant 500 N/m as in
Figure 7.10. The block is pulled 5.00 cm to the right of equilibrium and
released from rest. Find the speed of the block as it passes through
equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient
of friction between block and surface is 0.350.

SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.7 Situations Involving Kinetic Friction

33. A crate of mass 10.0 kg is pulled up a rough incline with an initial
speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which
makes an angle of 20.0° with the horizontal. The coefficient of kinetic
friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is
done by the gravitational force on the crate? (b) Determine the increase in
Internal energy of the crate—incline system due to friction. (c) How much
work is done by the 100-N force on the crate? (d) What is the change in
kinetic energy of the crate? (e) What is the speed of the crate after being
pulled 5.00 m?

SOLUTIONS TO PROBLEM:




PROBLEMS

Section 7.7 Situations Involving Kinetic Friction

35. A sled of mass m s given a kick on a frozen pond. The kick imparts to
It an initial speed of 2.00 m/s. The coefficient of kinetic friction between
sled and ice is 0.100. Use energy considerations to find the distance the
sled moves before it stops.

SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.8 Power

37. A 700-N Marine in basic training climbs a 10.0-m vertical rope at a
constant speed in 8.00 s. What is his power output?

SOLUTIONS TO PROBLEM:
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PROBLEMS

Section 7.8 Power

40. A 650-kg elevator starts from rest. It moves upward for 3.00 s with
constant acceleration until it reaches its cruising speed of 1.75 m/s. (a)
What is the average power of the elevator motor during this period? (b)
How does this power compare with the motor power when the elevator
moves at its cruising speed?

SOLUTIONS TO PROBLEM:
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