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Introduction

When an extended object such as a wheel rotates about its axis, the
motion cannot be analyzed by treating the object as a particle because at
any given time different parts of the object have different linear velocities
and linear accelerations. We can, however, analyze the motion by
considering an extended object to be composed of a collection of
particles, each of which has its own linear velocity and linear acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming
that the object is rigid. A rigid object is one that is nondeformable—that
is, the relative locations of all particles of which the object is composed
remain constant. All real objects are deformable to some extent; however,
our rigid-object model is useful in many situations in which deformation is
negligible.




10.1 Angular Position, Velocity, and Acceleration

Angular Position

Consider a particle at P is at a fixed distance r from the
origin and rotates about it in a circle of radius r. -

-

O S Reference

The particle moves through an arc of length s, as in line
Figure . The arc length sis related to the angle 0 (a)
through the relationship:
S
s=1r0 -0 =- 207 e
r Ko 5

(@) Reference

Note the dimensions of O in Equation 8 = % Because line

O is the ratio of an arc length and the radius of the (b)
circle, it is a pure number. However, we commonly
give O the artificial unit radian (rad).




10.1 Angular Position, Velocity, and Acceleration
Angular Speed

As a particle travels from position 1 to position 2 in a time interval A, the
reference line of length rsweeps out an angle AB= Bf-0i. This quantity
ABis defined as the angular displacement of the rigid object:

We define the average angular speed as:
_ 0,—06; A6
a) p— —_— —
tr —t; At
the instantaneous angular speed is:
L A6 do
w=lim-—=—
At—-0 At dt

Angular speed has units of radians per second (rad/s)



10.1 Angular Position, Velocity, and Acceleration

Angular Acceleration

The average angular acceleration of a rotating rigid object is defined as:
. wf—w; Aw
a = = —
tr—t; At

the instantaneous angular acceleration is defined as:
’ Aw dw d?8
a = lim = = —
At—0 At dt dt?
Angular acceleration has units of radians per second squared (rad/s2)

When a rigid object is rotating about a fixed axis, every particle on the
object rotates through the same angle in a given time interval and has
the same angular speed and the same angular acceleration.

That is, the quantities 8, w, and acharacterize the rotational motion of



10.2 Rotational Kinematics:
Rotational Motion with Constant Angular Acceleration

D
e+

Likewise, for rotational motion about a fixed axis, the simplest motion to analyze is
motion under constant angular acceleration.

Rotational Motion about a Linear Motion
fixed axis

(l)f=(1)i+6¥t vf=v,-+at
1 . 1 .
0f=0,-+w,-t+§at xf=xi+v,-t+§at

wa = wiz + Za(Of — 0,) 'Ufz = 'Uiz + Za(xf — x,-)
1 1
0f=0i+i(wi+wf)t xf=x,-+i(vi+vf)t

Notice that these expressions are of the same mathematical form as those for linear
motion under constant linear acceleration with the change: x = 6, w,a = «




10.3 Angular and Linear Quantities

. 1
With 0; = 0,a = constant wr = w; + at, r = w;t + = at® and wg?
= w;* + 2a6;

We shall find relations between linear and angular quantities:
VW= w; +at
ds d(rH) dH

:E Tar Y
dv d(rw) da)
=ra
t dt de
vaé (ra))2 r? wzt ,
v Q= = =rw

r r r
va=+Ja?+ a2 = (ra)?+(rw?)?=/r2a? + r2w*
va=r/a?+ wt

aI: taniential acceleration| a‘: central acceleration| a: total acceleration




10.3 Angular and Linear Quantities

Example 10.1 Rotating Wheel

» A wheel rotates with a constant angular acceleration of 3.50 rad/s’.
(A) If the angular speed of the wheel 1s 2.00 rad/s at t. = 0, through what
angular displacement does the wheel rotate 1n 2.00 s?

. 91:0

LAO =6, — (2)(2) +%(3.5)(2)2 =11rad = 630°

(B) Through how many revolutions has the wheel turned during this time

' 9
mterval’ 1 rev

AB = 630° =1.75 rev
360°

(C) What 1s the angular speed of the wheel at t =2.00 s?
Wy = +al
S, =2+3.5)(2)=9rad /s




10.4 Rotational Kinetic Energy

Let us consider an object as a collection of particles and assume that it
rotates about a fixed z axis with an angular speed w If the mass of the

ithparticle is m;and its tangential speed is v, its kinetic energy is:

1 2
Ki = Emivi
— rl

1
KR_EK Ezmvl = zmvl —Ezmi(riw)z
i
z m;r;2w? = > (Z miri2> w?
i

define the moment of inertia | as:




10.4 Rotational Kinetic Energy

Example 10.3 The Oxygen Molecule

»Consider an oxygen molecule (O,) rotating in the Xy plane about the z
axis. The rotation axis passes through the center of the molecule,
perpendicular to its length. The mass of each oxygen atom 1s 2.66x10-%° kg,
and at room temperature the average separation between the two atoms 1s d
= 1.21x10-1 m. (The atoms are modeled as particles.)

(A) Calculate the moment of inertia of the molecule about the z axis.

; d \’ d\* _ md”
Zﬂ_ ;¥ m (E ¥ 2 2 (1)
—26 | —10 4P
_ (266 x 10 ngﬂ(l.El X1070m)? o 10~ gem?
T TN
This 1s a very small number, consistent with the . """""""" T """""""

Minuscule masses and distances involved




10.4 Rotational Kinetic Energy

Example 10.4 Four Rotating Objects

Four tiny spheres are fastened to the ends of two rods of negligible mass
lying 1n the xy plane. We shall assume that the radu of the spheres are small
compared with the dimensions of the rods.

(A) If the system rotates about the y axis with an angular speed @, find the
moment of inertia and the rotational kinetic energy about this axis.

v =mez =Ma’+Ma” +m(0)+m(0)=2Ma> (1) )

“K, = %1 0 = %(2Ma2)0)2 - Md*0* (2)
(B) Same but in the xy plane about the z axis p b ,
; MM
I, =me.rf2 =Ma’ + Ma’ +mb* +mb* = 2Ma*+2mb” u} ¢ | 4 \)’_‘

- K, :%12 o8 :%(2Maz2 +2mb 7w’ = (Ma” +2mb’ )@’

m

—



10.5 Calculation of Moments of Inertia

We can evaluate the moment of inertia of an extended rigid object by
imagining the object to be divided into many small volume elements,
each of which has mass Am;.

We use the definition I = Y.; Am;7;% and take the limit of this sum as
Am;— 0. In this limit, the sum becomes an integral over the volume of
the object:
I = li ZA %d e
= lim ri“Am; = | r“dm v p =—
Aml—>0 . l l p V
l
where p is the density of the object and Vis its volume. From this equation, the mass

of a small elementisdm = pdV so I = [ pr?dV




10.5 Calculation of Moments of Inertia

m
p = v volumetric mass density

o = pt surface mass density

A =pA linear mass density




10.5 Calculation of Moments of Inertia

parallel-axis theorem

The calculation of moments of inertia about an arbitrary axis can be cumbersome,
however, even for a highly symmetric object. Fortunately, use of an important theorem,
called the parallel-axis theorem, often simplifies the calculation. Suppose the moment
of inertia about an axis through the center of mass of an object is /,,. The parallel-axis
theorem states that the moment of inertia about any axis parallel to and a distance D
away from this axis is

I:ICM+MD2

§

To prove the parallel-axis theorem, uppose that ( -------------- =
an object rotates in the xy plane about the z axis, }

as shown in Figure 10.12, and that the l
coordinates of the center of mass are xc, Jew. Let i
the mass element dm have coordinates X, y. C —

Because this element is a distance r = {/x? + y? —
from the zaxis, the moment of inertia about the

Axis
- |__——through
quuon CM

(a) (b)
Figure 10.12 (a) The parallelaxis theorem: if the moment of inertia about a
p rpendicular to the figure through the center of mass is /gy, then the moment of
nertia about the zaxis is [, = Iy + ’\UJ (b ) Perspective drawing showing the =z

i
I
]
|
I
I
|
I
&
ez ____T==
g
z

1

(LhE axis of rotation) and the parallel axis through the CM.



10.5 Calculation of Moments of Inertia

Table 10.2

Moments of Inertia of Homogeneous Rigid Objects

Hoop or thin
cylindrical shell

o

Il:ﬂl-{ = MR-~

Solid cylinder
or dlsk

Iey== MRE

with Different Geometries

Hollow cylinder ;— I«‘;
Ion = S M(R,2 + RS2
o= ()" + Ro7)

]
Rectangular plate [ |

| TR R N [ —
II:M = ﬁ M{.ﬂg + bg} _“_=.E'_E-=E-=E—§==§_==_=:__




10.5 Calculation of Moments of Inertia

Table 10.2

Moments of Inertia of Homogeneous Rigid Objects

with Different Geometries

Long thin rod b I J Long thin k | ‘
with rotation axis : rod with
through center rotation axis ‘
/v| through end /'I

Iy =1 M2 L g L

i2 =1 mr? "

3
A o <

Solid sphere r | o4 Thin spherical ko | E.

9 5 shell == ey
Iey == MR- S IR

2 ICM = § A’fR_ / ‘ \‘:.\‘




10.6 Torque

The tendency of a force to rotate an object
about some axis is measured by a vector il
guantity called torque .

Torque is a vector, but we will consider only its

magnitude here and explore its vector nature o YN 7 4v Feoso
in Chapter 11. Sl ,/__ Line of
. S / action
T=rXF=rFsin¢ = Fd ~§

where r is the distance between the pivot
point and the point of application of F and d is
the perpendicular distance from the pivot
point to the line of action of F. (The line of
action of a force is an imaginary line extending
out both ends of the vector representing the
force.




10.7 Relationship Between Torque and Angular
Acceleration

Consider a particle of mass m rotating in a circle of radius runder the influence of

a tangential force F; and a radial force F,, as shown in Figure 10.16. The tangential
force provides a tangential acceleration a;, and

F, = ma,
The magnitude of the torque about the center of the circle due to F, is

7= Fr= (ma)r

Because the tangential acceleration is related to the angular acceleration through the
relationship @, = ra (see Eq. 10.11), the torque can be expressed as

7= (mra)r= (mda \

Recall from Equation 10.15 that mr* is the moment of inertia of the particle about the
zaxis passing through the origin, so that

7= la (10.20)

That is, the torque acting on the particle is proportional to its angular accelera-
tion, and the proportionality constant is the moment of inertia. Note that 7 = fo is the

rotational analog of Newton's second law of motion, F = ma.



10.7 Relationship Between Torque and Angular
Acceleration

Now let us extend this discussion to a rigid object of arbitrary shape rotating about
a fixed axis, as in Figure 10.17. The object can be regarded as an infinite number of
mass elements dm of infinitesimal size. If we impose a Cartesian coordinate system on
the object, then each mass element rotates in a circle about the origin, and each has a
tangential acceleration a, produced by an external tangential force dF,. For any given
element, we know from Newton’s second law that

dF, = (dm)a,
The torque dr associated with the force dF,acts about the origin and is given by
dr = rdl, = a;rdm
Because @, = v, the expression for dr becomes
dr = ar® dm

Although each mass element of the rigid object may have a different linear accelera-
tion a,, they all have the same angular acceleration a. With this in mind, we can integrate
the above expression to obtain the net torque X7 about O due to the external forces:

dr= Jar2d1r'; = aJTQd-}n

where a can be taken outside the integral because it is common to all mass elements.
From Equation 10.17, we know that [r? dm is the moment of inertia of the object
about the rotation axis through O, and so the expression for 27 becomes

>r=Ia (10.21)




Example 10.12 Angular Acceleration of a Wheel

A wheel of radius R, mass M, and moment of inerta [ is
mounted on a frictionless horizontal axle, as in Figure 10.20.

A light cord wrapped around the wheel supports an object of
mass m. Calculate the angular acceleration of the wheel, the

linear acceleration of the object, and the tension in the cord.

Yr=Ila=TR EF:',=mg—T=ﬂm
(1 o — (2) .
I M
B TR wmg— T - _ £
(3) a= Bo=——=—2 (%) = 1+ (I/mR%)
mg a £
4 T= 5 =—= m
(4) 1+ (mR%/1) *“ R R+ (/mR) it




10.8 Work, Power, and Energy in Rotational Motion

The work done by F on the object as it rotates through an infinitesimal
distance ds = r df is

dW= F-ds = (Fsin ¢)r df

where F sin ¢ is the tangential component of F, or, in other words, the
component of the force along the displacement. Note that the radial
component of F does no work because it is perpendicular to the
displacement.

|
a0

Figure 10.22 A rigid object rotates
about an axis through Ounder the
action of an external force F
applied at P.




Because the magnitude of the torque due to F about Os defined as
rFsin¢

dW= 7 df

The rate at which work is being done by F as the object rotates about the fixed axis
through the angle dO in a time interval dltis
dW df

= T —

eli

dW dtis the instantaneous power P

AW
d

P =

T




To show that this is in fact the case, let us begin with Z7 = Ja. Using the chain rule
from calculus, we can express the resultant torque as

iy der  df sy

=‘f =f =‘f =I—
7=l i 40 di i “

Rearranging this expression and noting that Z dff = dW, we obtain
SNrd=dW= lw dw
[Integrating this expression, we obtain for the total work done by the net external force

acting on a rotating system

it . .
W =f o do = 3lop? — Sl (10.24)

e

where the angular speed changes from w; to wy. That is, the work-kinetic energy
theorem for rotational motion states that

The net work done by external forces in rotating a symmetric rigid object
about a fixed axis equals the change in the object’s rotational energy.




Table 10.3

Useful Equations in Rotational and Linear Motion

Rotational Motion About a Fixed Axis

Linear Motion

Angular speed w = dfl/ dt

Angular acceleration a = dw/ df

Net torque 271 = o

If e = w; + ay

¢ = Constant Ef= 8; + wit + %mz

@f = of + 2a(6,— 6)

)

'l
Work W= T df
thy

Rotatonal kinetic energy K = %fmz
Power ® = 1w

Angular momentum L = fuw

Net torque 271 = dl/dt

Linear speed v = dx/dl

Linear acceleradon a = dv/ di

Net force ZF = ma

If =1+ al

i = Cconstant X=X + o + %u!z
o? = o + 2alx— x;)

o
Work W= Fr dx
%
Kinetic energy K = %m:u'E

Power ® = Fo

Linear mome nium = mo

Net force ZF = dp/ dt




Example 10.14 Rotating Rod Revisited

= 7= Mgl/?
A uniform rod of length I. and mass M is free to rotate on a T |k:'3". r = IE|
frictionless pin passing through one end (Fig 10.24). The B
rod is released from rest in the horizontal positon. L/2 | i

|
(A) What is its angular speed when it reaches its lowest i-iﬂ y
position? i i ]

ﬂf‘l‘ Lﬁr = K;+ [} |

N

|

| B K gl

sl + 0 = Z(tMIP)” = 0 + 3 Mgl

W = "|,||EE
L

(B) Determine the tangential speed of the center of mass
and the tangential speed of the lowest point on the rod
when it is in the vertical position.

I.
T.-'{;M=m:r=?ﬂ:r= l'I.IE:EL

2

= ET.-'{:M = \ISE.L




Example 10.15 Energy and the Atwood Machine

Consider two cylinders having different masses m) and ms,
connected by a string passing over a pulley, as shown in
Figure 10.25. The pulley has a radius R and moment of in-
ertia f about its axis of rotation. The string does not slip on
the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance &, and the angular speed of the pulley
at this time.

potential energy. Because K; =0 (the system is initially at Solving for v, We find
rest), we have

s+ U= K+ U _ 2(mz — my)gh }”E
S K [lml +my + (/RD)]
(gmiv? + 3mov® + Tho) + (mygh — mogh) =0+ 0

The angular speed of the pulley at this instant is
where r.-'J,ris the same for both blocks. Because v = Rin‘r, this

expressiﬂn becomes

W _ 1[ 2(my — m,)gh i||,-‘2
J)

g g .lr [ i) —
(%m.uf‘! + %mgﬂf‘! +% e vf) = (magh — m,gh) TR R (m + ms + {I,J'RE

I
1 g
E(mj + my + =z )[rfi = (magh — mgh)




PROBLEMS

Section 10.1 Angular Position, Velocity, and Acceleration

1. During a certain period of time, the angular position of a swinging
door is described by @ =5 +10¢+2 ¢, where 0 is in radians and tis in
seconds. Determine the angular position, angular speed, and angular
acceleration of the door (a) at t=0 (b) at £=3.00s.

SOLUTIONS TO PROBLEM:

(a) 0,_, =| 5.00 rad

=10.0 + 4.004|,_, =[10.0 rad/s

t=0

= 4.00 rad/ s?

b) 6,y =500+30.0+18.0=]53.0 rad

de
a)‘t:3.00 s ar

~10.0 + 4.008],_, o, . =[ 22.0 rad/s

t=3.00 s

do 3
a‘f:3_008 :E =| 4.00 rad/s

t=3.00 s




PROBLEMS

Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular

Accoloration
Acceleration

3. A wheel starts from rest and rotates with constant angular
acceleration to reach an angular speed of 12.0 rad/s in 3.00 s. Find (a)
the magnitude of the angular acceleration of the wheel and (b) the
angle in radians through which it rotates in this time.

SOLUTIONS TO PROBLEM:

() PO _ 12.0 rad/s

4.00 rad/ 52
t 3.00 s

1 1 2
(b) 0 = mft+5at2 - E(4.00 rad/s*)(3.00 5)* =/ 18.0 rad
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5. An electric motor rotating a grinding wheel at 100 rev/min is switched
off. With constant negative angular acceleration of magnitude 2.00

rad/s2, (a) how long does it take the wheel to stop? (b) Through how
many radians does it turn while it is slowing down?

SOLUTIONS TO PROBLEM:

fﬂ"; = -
1.00 min

100 rev (1 mm]( 2rrrad ]:10;’3 rad/s, &, =0

60.0 s A 1.00 rev 3
o, -0, -1
(a) f=— = s=]024s
o —2.00

—— s |=| 27.4 rad

ey ¢ )




PROBLEMS
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6. A centrifuge in a medical laboratory rotates at an angular speed of 3
600 rev/min. When switched off, it rotates 50.0 times before coming to
rest. Find the constant angular acceleration of the centrifuge.

SOLUTIONS TO PROBLEM:
@,; =3 600 rev/min = 3.77 x 10~ rad/s

0 =50.0 rev = 3.14 x 10? rad and o = 0

(0;2 + 200

o

3.77 x 10° rad/s)z +2¢(3.14x 107 rad|

-,
I
——

a=| -2.26 x10? rad/s2




PROBLEMS
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8. A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its
angular speed at the end of the 3.00-s interval is 98.0 rad/s. What is the
constant angular acceleration of the wheel?

SOLUTIONS TO PROBLEM:

1 ..
Oy —0; = a),-f+5at2 and @, =®; +al are two equations in two unknowns o, and «

1 1
w; =0 —at: Qf—éf-:(a)f—ai)hriatz:a)f-f—ao:tz
27rad 1
37.0 rev[ T ]98.0 rad/s(3.00 s)— — «(3.00 5)°
1 rev 2
615 rad
232rad =294 rad - (450 s”)or:  a=——=|137 rad/s’
450



PROBLEMS

Section 10.3 Angular and Linear Quantities

12. A racing car travels on a circular track of radius 250 m. If the car
moves with a constant linear speed of 45.0 m/s, find (a) its angular
speed and (b) the magnitude and direction of its acceleration.

SOLUTIONS TO PROBLEM:

v 450
(a) vere; o= =220 WS _
r 250 m

0.180 rad/s

(b) a, = 7= =18.10 m/ s* toward the center of track




P MNADT T'RAC
Given r =100 m, a=4.00 rad/s2 , ;=0 and &, =57.3°=1.00 rad

Section @ o;=0;+at=0+at

13. A\ Att=200s, @, =400 rad/s*(2.00 s)=| 8.00 rad/s os Wlth 3
consta (b) v=re =100 m(8.00 rad/s)=| 8.00 nys T rest at
t= O' a |a,‘ —a, =ro’ =100 m(8.00 rad/’s)2 =640 111/:32 >dh
angle (a) the

a, =ra=1.00 111(4.0{] 1'3(1/52) =4.00 111/52
angula tal
acce I e The magnitude of the total acceleration is: iOi Nt P
SO LUT a=qa’+al = .‘/(64.0 111,/52)2 + (4.{][} 111/52)2 =| 041 111/52

The direction of the total acceleration vector makes an angle ¢ with respect to the radius to
point P:

¢=tan"" [a—tJ = tan_l[%) =| 3.58°
a. .

(©) 0,=0,+o,t+ %afz =(1.00 rad) + é(amo rad/s?)(2.00 s)” =[ 9.00 rad




PROBLEMS

Section 10.3 Angular and Linear Quantities

16. A car accelerates uniformly from rest and reaches a speed of 22.0
m/s in 9.00 s. If the diameter of a tire is 58.0 cm, find (a) the number of
revolutions the tire makes during this motion, assuming that no slipping
occurs. (b) What is the final angular speed of a tire in revolutions per
second?

SOLUTIONS TO PROBLEM:

(a) s=ot=(11.0 m/s)(9.00 s)=99.0 m

0,
g=5_00M _ o1 ad =543 rev
v 0.290 m
ve 220 mfs  __ —
o, = = =729 rad/s=| 12.1 rev/s
(b) f T 0.290 m / /

0 -



PROBLEMS

Section 10.3 Angular and Linear Quantities

17. A disk 8.00 cm in radius rotates at a constant rate of 1 200 rev/min
about its central axis. Determine (a) its angular speed, (b) the tangential
speed at a point 3.00 cm from its center, (c) the radial acceleration of a

point on the rim, and (d) the total distance a point on the rim moves in
2.00 s.

SOLUTIONS TO PROBLEM:

2rrad [ 1200 rev )
60.0 s

(a) @=2af = =| 126 rad/s

1 rev

(©)  v=or=(126 rad/s)(3.00x 107 m|=[3.77 my/s

() a.=mr= (126]2(8.00 x 1072 ) =1260 m/s2 so a, = 126 km,/s2 toward the center

(d)  s=r6=ort=(126 rad/s)(8.00x10~ m)(2.00 s)= 20.I m




PROBLEMS

Section 10.3 Angular and Linear Quantities

18. A car traveling on a flat (unbanked) circular track accelerates
uniformly from rest with a tangential acceleration of 1.70 m/s2. The car
makes it one quarter of the way around the circle before it skids off the
track. Determine the coefficient of static friction between the car and
track from these data.

SOLUTIONS TO PROBLEM:

The force of static friction must act forward and then more and more inward on the tires, to produce
both tangential and centripetal acceleration. Its tangential component is m('l.?O 111/ sz) . Its radially

7
mu” . .
. This takes the maximum value

inward component is
-

mw?r = mr(mf‘ + 2Q’A9) = mr(O +2a 723): mare =mm, = mfr(l.?l) m/s2 ) .

With skidding impending we have ZFy =ma,, +n-mg=0,n=mg

Y

fi=un=pymg= 1H.'Ilrraz('l?ﬂ 111/52)2 + mzfrz'(lj{] m/sz)2

2
s J1+72 =[0572

8

1.70




PROBLEMS

Section 10.4 Rotational Kinetic Energy

20. Rigid rods of negligible mass lying along the yaxis connect three particles (Fig.
P10.20). If the system rotates about the xaxis with an angular speed of 2.00 rad/s, find
(a) the moment of inertia about the xaxis and the total rotational kinetic energy

evaluated from %I w?and (b) the tangential speed of each particle and the total kinetic

1
energy evaluated from Zizmiviz

SOLUTIONS TO PROBLEM:

my =400 kg, 1, =|y,[=3.00 m; y -

my =200kg, r, = |1/2‘ =200 m; 400 kg o ¥ =3.00m

ms =300 kg, 1y =|ys| =400 m; +.00 kg y = 3.00m
M

@ =200 rad/s about the x-axis

2.00kg @ ¥ =-2.00m £
(a) I, =”"1”12 +””2"12 "'”"3.”32 : X
9]
I, =4.00(3.00)” +2.00(2.00)" +3.00(4.00)” =| 92.0 kg -m’ 3.00 kg @ y=—4.00m \
1,1 , 200kg(_ )y = -2.00m
Ky =51,0° ==(920)2.00)" =[181]
FIG. P10.20
1 1 ; 3.00 kg y = —4.00m
®) v =re=300(2.00)=] 600 ny/s Ky = m;o] = (400)(6.00)° =720
1 1
v, = ry@=2.00(2.00) =[ 400 mys Ky =m0} ==(2.004.00)° =160 ]

Figure P10.20

K, = %mﬂ; = é(&oe)(s.oof =96.0]

vy =rye =4.00(2.00)=| 8.00 m/s

L, >

K=K, +K;+K;=720+160+960=|184] |=—I,.®
LEm2 s 2




PROBLEMS

Section 10.4 Rotational Kinetic Energy

21. The four particles in Figure P10.21 are connected by rigid rods of
negligible mass. The origin is at the center of the rectangle. If the system
rotates in the xy plane about the zaxis with an angular speed of 6.00
rad/s, calculate (a) the moment of inertia of the system about the zaxis
and (b) the rotational kinetic energy of the system.

SOLUTIONS TO PROBLEM: sm)
@  I=Xm? y m) % fﬂ'\ig ?_;9_0 k8
I S L i St ‘ \ )
. ¥ T S
In this case, @ 200ka) .
rn=ry=ry=r, T ol T
r= \;“1(3.00 111)2 +(2.00 m)2 =y13.0m JEEI T - 0 x(m)
I :[JlB.O 111]2[3.00 +2.00+2.00+4.00] kg ] 1 = (m) ¢4.00 m .
g EECL2 R A . o , Q
b)) K- émf - %(143 kg-m?)(6.00 rad/s)’ @ @ 2.00 ng p14(.)0;)1kg
_l257.1071 [ S T igure '

FIG. P10.21



PROBLEMS

Section 10.6 Torque

31. Find the net torque on the wheel in Figure P10.31 about the axle
through Oif 4=10.0 cm and 6=25.0 cm.

SOLUTIONS TO PROBLEM:

> r=0.100 m(12.0 N)-0.250 m(9.00 N)-0.250 m(10.0 N)=| -3.55 N-m

The thirty-degree angle is unnecessary intormation.

9.00 N

FIG. P10.31




PROBLEMS

Section 10.7 Relationship between Torque and Angular Acceleration

35. A model airplane with mass 0.750 kg is tethered by a wire so that it
flies in a circle 30.0 m in radius. The airplane engine provides a net
thrust of 0.800 N perpendicular to the tethering wire. (a) Find the
torque the net thrust produces about the center of the circle. (b) Find
the angular acceleration of the airplane when it is in level flight.

(c) Find the linear acceleration of the airplane tangent to its flight path.

SOLUTIONS TO PROBLEM:

m =0.700 kg, F =0.800 N

(a) r=rF=30.0m(0.800 N)=| 240 N-m

0 a-lf-t o 20 = 0.0356 rad/s |
I mr® 0.750(30.0)" '

l 0.800 N

FIG. P10.35

(© a4 =ar=00356(300)=| 107 m/s’ |




PROBLEMS

Section 10.7 Relationship between Torque and Angular Acceleration

37. A block of mass m1=2 kg and a block of mass m2= 6 kg are connected by a
massless string over a pulley in the shape of a solid disk having radius £#=0.250 m and
mass M =10 kg. These blocks are allowed to move on a fixed block-wedge of angle
0=30.0° as in Figure P10.37. The coefficient of kinetic friction is 0.360 for both blocks.
Draw free-body diagrams of both blocks and of the pulley. Determine (a) the
acceleration of the two blocks and (b) the tensions in the string on both sides of the

pulley.
SOLUTIONS TO PROBLEM:
[ ]
Form,, T, LR
S E =may 4n—mg=0 my ‘i"
ny=mg=19.6 N T,
fu =y =706 N
SF =ma;: ~706N<T, =(200 kg)a i) \‘
_____________
For the pulley, 'n] T
2
Srola —T1R+T;R:%;\LR1[%] 1 fu\ 2
1 - [ m my
T, +T, == (100 kg)a I 1
Pl -—
-T, +T, =(5.00 kg)a 2) g % g
For m,, +1, —m,gcosf=0 /l T,
1, =6.00 kg(9.80 m/s?)(cos30.0°) n, Mg
=509 N

FIG. P10.37
foo =10y
=183 N: -183N-T, +m;sinf=na
~183N-T, +294 N=(6.00kg)a (3)

(a) Add equations (1), (2), and (3):

=706 N-18.3N+294 N =(130 kg)a

401N —
=130 ks = 0309 m/s |
(b) T,=200kg(0.309 m/s*)+7.00 N = 7.67 N
T, =7.67 N+5.00 kg(0.309 my/s*)=[9.22N |

M, R

my

A 4
o/

- Figure P10.37 _




PROBLEMS

Section 10.8 Work, Power, and Energy in Rotational Motion

46. A 15.0-kg object and a 10.0-kg object are suspended, joined by a cord that passes
over a pulley with a radius of 10.0 cm and a mass of 3.00 kg (Fig. P10.46). The cord has
a negligible mass and does not slip on the pulley. The pulley rotates on its axis without
friction. The objects start from rest 3.00 m apart. Treat the pulley as a uniform disk,
and determine the speeds of the two objects as they pass each other.

SOLUTIONS TO PROBLEM:

Choose the zero gravitational potential energy at the level where the masses pass.

1 5, 1 5 1

1 = 2 171 2 o . _ - Z?i“l);?oc;:,;
~(150+100)9” + | Z(B00R | 2 | =150(9.80)1.50)+10.0(9.80)(~L.50) {
1

—(265ke)v? =735 v=| 2.36 m/s
g

2 Figure P10.46

L




PROBLEMS

Additional Problems

70. The reel shown in Figure P10.70 has radius Rand moment of inertia /. One end of
the block of mass mis connected to a spring of force constant ., and the other end is
fastened to a cord wrapped around the reel. The reel axle and the incline are
frictionless. The reel is wound counterclockwise so that the spring stretches a distance
dfrom its unstretched position and is then released from rest. (a) Find the angular
speed of the reel when the spring is again unstretched. (b) Evaluate the angular speed
numerically at this point if /=1 kg -m2, R=0.3 m, k=50 N/m, m=0.5 kg, d=0.2 m, and
6=37.0°.

SOLUTIONE(a) W = AK + ALl

W=K, K+, -1,

0= Lo+ 110 —mgdsine—lkdz
2 2 2

lwz(l’+mRZ) = mgdsin@-*—lkdz
2 2

_ [2mgdsing+ ki
V¥ I+mr?

(b) o=,
\ 1.00 kg -m> = 0.500 kg(0.300 m)’

[1.18+2.00
o= =/3.04 = 1.74 rad/s
Vo105 /

Figure P10.70




PROBLEMS

Additional Problems

71. Two blocks, as shown in Figure P10.71, are connected by a string of
negligible mass passing over a pulley of radius 0.250 m and moment of
inertia /. The block on the frictionless incline is moving up with a
constant acceleration of 2.00 m/s2. (a) Determine 71 and 72, the
tensions in the two parts of the string. (b) Find the moment of inertia of
the pulley.

SOLUTIONS TO PROBLEM:

@)

myg—1, =msa

T, =m,(g—a)=20.0 kg(9.80 m/s” -2.00 m/s*)=] 156 N

I, —m;gsin37.0°=ma

T, = (15.0 kg)(9.805in 37.0°+2.00) m/s* =[ 118 N

(T, ~T,)R=Ic = 1[%)

,_(L-T, )JR* (156 N —118 N)(0.250 m)*
a 2.00 m/ 52

117 kg-m*

Figure P10.71

FIG. P10.71




