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Introduction

When an extended object such as a wheel rotates about its axis, the 
motion cannot be analyzed by treating the object as a particle because at 
any given time different parts of the object have different linear velocities 
and linear accelerations. We can, however, analyze the motion by 
considering an extended object to be composed of a collection of 
particles, each of which has its own linear velocity and linear acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming 
that the object is rigid. A rigid object is one that is nondeformable—that 
is, the relative locations of all particles of which the object is composed 
remain constant. All real objects are deformable to some extent; however, 
our rigid-object model is useful in many situations in which deformation is 
negligible.
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10.1 Angular Position, Velocity, and Acceleration
Angular Position

Consider a particle at P is at a fixed distance r from the 
origin and rotates about it in a circle of radius r.

The particle moves through an arc of length s, as in 
Figure . The arc length s is related to the angle θ 
through the relationship:

𝑠 = 𝑟𝜃 → 𝜃 =
𝑠

𝑟

Note the dimensions of θ in Equation 𝜃 =
𝑠

𝑟
. Because 

θ is the ratio of an arc length and the radius of the 
circle, it is a pure number. However, we commonly 
give θ the artificial unit radian (rad). 
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10.1 Angular Position, Velocity, and Acceleration
Angular Speed

As a particle travels from position 1 to position 2 in a time interval Δ, the 
reference line of length r sweeps out an angle Δθ= θf-θi. This quantity 
Δθis defined as the angular displacement of the rigid object:

∆𝜃 = 𝜃𝑓 − 𝜃𝑖

We define the average angular speed as:

ഥ𝜔 =
𝜃𝑓 − 𝜃𝑖

𝑡𝑓 − 𝑡𝑖
=
∆𝜃

∆𝑡

the instantaneous angular speed is:

𝜔 = lim
∆𝑡→0

∆𝜃

∆𝑡
=
𝑑𝜃

𝑑𝑡

Angular speed has units of radians per second (rad/s)
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10.1 Angular Position, Velocity, and Acceleration
Angular Acceleration

The average angular acceleration of a rotating rigid object is defined as:

ത𝛼 =
𝜔𝑓 −𝜔𝑖

𝑡𝑓 − 𝑡𝑖
=
∆𝜔

∆𝑡

the instantaneous angular acceleration is defined as:

𝛼 = lim
∆𝑡→0

∆𝜔

∆𝑡
=
𝑑𝜔

𝑑𝑡
=
𝑑2𝜃

𝑑𝑡2

Angular acceleration has units of radians per second squared (rad/s2)

When a rigid object is rotating about a fixed axis, every particle on the 
object rotates through the same angle in a given time interval and has 
the same angular speed and the same angular acceleration.

That is, the quantities θ, ω, and αcharacterize the rotational motion of 
the entire rigid object as well as individual particles in the object.
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10.2 Rotational Kinematics:
Rotational Motion with Constant Angular Acceleration

In our study of linear motion, we found that the simplest form of motion to analyze is 
motion under constant linear acceleration. 

Likewise, for rotational motion about a fixed axis, the simplest motion to analyze is 
motion under constant angular acceleration.

Notice that these expressions are of the same mathematical form as those for linear 
motion under constant linear acceleration with the change: 𝑥 → 𝜃,𝜔, 𝑎 → 𝛼
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Rotational Motion about a 
fixed axis

Linear Motion 

𝝎𝒇 = 𝝎𝒊 + 𝛼𝒕

𝜽𝒇 = 𝜽𝒊 +𝝎𝒊𝒕 +
𝟏

𝟐
𝛼𝒕𝟐

𝝎𝒇
𝟐 = 𝝎𝒊

𝟐 + 𝟐𝛼(𝜽𝒇 − 𝜽𝒊)

𝜽𝒇 = 𝜽𝒊 +
𝟏

𝟐
𝝎𝒊 +𝝎𝒇 𝒕

𝒗𝒇 = 𝒗𝒊 + 𝒂𝒕

𝒙𝒇 = 𝒙𝒊 + 𝒗𝒊𝒕 +
𝟏

𝟐
𝒂𝒕𝟐

𝒗𝒇
𝟐 = 𝒗𝒊

𝟐 + 𝟐𝒂(𝒙𝒇 − 𝒙𝒊)

𝒙𝒇 = 𝒙𝒊 +
𝟏

𝟐
𝒗𝒊 + 𝒗𝒇 𝒕



10.3 Angular and Linear Quantities

With 𝜃𝑖 = 0,𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜔𝑓 = 𝜔𝑖 + 𝑎𝑡, 𝜃𝑓 = 𝝎𝒊𝒕 +
𝟏

𝟐
𝛼𝒕𝟐 𝑎𝑛𝑑 𝜔𝑓

2

= 𝜔𝑖
2 + 2𝛼𝜃𝑓

We shall find relations between linear and angular quantities:
∵ 𝜔𝑓= 𝜔𝑖 + 𝑎𝑡

∵ 𝑣 =
𝑑𝑠

𝑑𝑡
=
𝑑(𝑟𝜃)

𝑑𝑡
= 𝑟

𝑑𝜃

𝑑𝑡
= 𝑟𝜔

∵ 𝑎𝑡=
𝑑𝑣

𝑑𝑡
=
𝑑(𝑟𝜔)

𝑑𝑡
= 𝑟

𝑑𝜔

𝑑𝑡
= 𝑟𝛼

∵ 𝑎𝑐=
𝑣2

𝑟
=
(𝑟𝜔)2

𝑟
=
𝑟2𝜔2

𝑟
= 𝑟𝜔2

∴ 𝑎 = 𝑎𝑡
2 + 𝑎𝑐

2 = (𝑟𝛼 )2+(𝑟𝜔2)2= 𝑟2𝛼2 + 𝑟2𝜔4

∴ 𝑎 = 𝑟 𝛼2 +𝜔4

at: tangential acceleration, ac: central acceleration, a: total acceleration
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10.3 Angular and Linear Quantities

Example 10.1 Rotating Wheel
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10.4 Rotational Kinetic Energy

Let us consider an object as a collection of particles and assume that it 
rotates about a fixed z axis with an angular speed ω If the mass of the 
ithparticle is mi and its tangential speed is vi, its kinetic energy is:

𝐾𝑖 =
1

2
𝑚𝑖𝑣𝑖

2

∵ 𝑣𝑖 = 𝑟𝑖𝜔

∴ 𝐾𝑅 =

𝑖

𝐾𝑖 =

𝑖

1

2
𝑚𝑖𝑣𝑖

2 =
1

2


𝑖

𝑚𝑖𝑣𝑖
2 =

1

2


𝑖

𝑚𝑖(𝑟𝑖𝜔 )2

=
1

2


𝑖

𝑚𝑖𝑟𝑖
2𝜔2 =

1

2


𝑖

𝑚𝑖𝑟𝑖
2 𝜔2

define the moment of inertia I as: 

𝐼 = 

𝑖

𝑚𝑖𝑟𝑖
2 , 𝑠𝑜 ∴ 𝐾𝑅 =

1

2
𝐼 𝜔2

10



10.4 Rotational Kinetic Energy

Example 10.3 The Oxygen Molecule
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10.4 Rotational Kinetic Energy

Example 10.4 Four Rotating Objects
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10.5 Calculation of Moments of Inertia
We can evaluate the moment of inertia of an extended rigid object by 
imagining the object to be divided into many small volume elements, 
each of which has mass ∆𝑚𝑖.

We use the definition 𝐼 = σ𝑖 ∆𝑚𝑖𝑟𝑖
2 and take the limit of this sum as 

∆𝑚𝑖→ 0. In this limit, the sum becomes an integral over the volume of 
the object:

𝐼 = lim
∆𝑚𝑖→0



𝑖

𝑟𝑖
2∆𝑚𝑖 = න𝑟2𝑑𝑚 ∵ 𝜌 =

𝑚

𝑉

where 𝜌 is the density of the object and V is its volume. From this equation, the mass 

of a small element is dm = 𝜌𝑑𝑉 𝑠𝑜 𝐼 = 𝜌 𝑟2𝑑𝑉
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10.5 Calculation of Moments of Inertia

𝜌 =
𝑚

𝑉
volumetric mass density

𝜎 = 𝜌𝑡 surface mass density

𝜆 = 𝜌𝐴 linear mass density
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10.5 Calculation of Moments of Inertia
parallel-axis theorem

The calculation of moments of inertia about an arbitrary axis can be cumbersome, 
however, even for a highly symmetric object. Fortunately, use of an important theorem, 
called the parallel-axis theorem, often simplifies the calculation. Suppose the moment 
of inertia about an axis through the center of mass of an object is ICM. The parallel-axis 
theorem states that the moment of inertia about any axis parallel to and a distance D 
away from this axis is 

𝐼 = 𝐼𝐶𝑀 +𝑀𝐷2

15

To prove the parallel-axis theorem, uppose that 

an object rotates in the xy plane about the z axis, 

as shown in Figure 10.12, and that the 

coordinates of the center of mass are xCM, yCM. Let 

the mass element dm have coordinates x, y. 

Because this element is a distance 𝑟 = 𝑥2 + 𝑦2

from the z axis, the moment of inertia about the
z axis is 𝐼 =  𝑟2𝑑𝑚 = 𝑥2) + 𝑦2)𝑑𝑚



10.5 Calculation of Moments of Inertia
.
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10.5 Calculation of Moments of Inertia
.
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10.6 Torque
The tendency of a force to rotate an object 
about some axis is measured by a vector 
quantity called torque 𝜏.

Torque is a vector, but we will consider only its 
magnitude here and explore its vector nature 
in Chapter 11.

𝜏 = 𝑟 × 𝐹 = 𝑟𝐹 sin𝜙 = 𝐹𝑑

where r is the distance between the pivot
point and the point of application of F and d is
the perpendicular distance from the pivot
point to the line of action of F. (The line of
action of a force is an imaginary line extending
out both ends of the vector representing the
force.
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10.7 Relationship Between Torque and Angular 
Acceleration

.
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10.7 Relationship Between Torque and Angular 
Acceleration

.

20





10.8 Work, Power, and Energy in Rotational Motion

The work done by F on the object as it rotates through an infinitesimal

distance

where F sin ϕ is the tangential component of F, or, in other words, the 

component of the force along the displacement. Note that the radial 

component of F does no work because it is perpendicular to the 

displacement.



Because the magnitude of the torque due to F about O is defined as 

r F sin ϕ

The rate at which work is being done by F as the object rotates about the fixed axis

through the angle dθ in a time interval dt is

dW /dt is the instantaneous power P



The net work done by external forces in rotating a symmetric rigid object 

about a fixed axis equals the change in the object’s rotational energy.









PROBLEMS
Section 10.1 Angular Position, Velocity, and Acceleration

1. During a certain period of time, the angular position of a swinging 
door is described by 𝞱=5 +10t +2t2, where 𝞱 is in radians and t is in 
seconds. Determine the angular position, angular speed, and angular 
acceleration of the door (a) at t = 0 (b) at t = 3.00 s.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular 
Acceleration

3. A wheel starts from rest and rotates with constant angular 
acceleration to reach an angular speed of 12.0 rad/s in 3.00 s. Find (a) 
the magnitude of the angular acceleration of the wheel and (b) the 
angle in radians through which it rotates in this time. 

SOLUTIONS TO PROBLEM:

29



PROBLEMS
Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular 
Acceleration

5. An electric motor rotating a grinding wheel at 100 rev/min is switched 
off. With constant negative angular acceleration of magnitude 2.00 
rad/s2, (a) how long does it take the wheel to stop? (b) Through how 
many radians does it turn while it is slowing down?

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular 
Acceleration

6. A centrifuge in a medical laboratory rotates at an angular speed of 3 
600 rev/min. When switched off, it rotates 50.0 times before coming to 
rest. Find the constant angular acceleration of the centrifuge.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.2 Rotational Kinematics: Rotational Motion with Constant Angular 
Acceleration

8. A rotating wheel requires 3.00 s to rotate through 37.0 revolutions. Its 
angular speed at the end of the 3.00-s interval is 98.0 rad/s. What is the 
constant angular acceleration of the wheel?

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.3 Angular and Linear Quantities

12. A racing car travels on a circular track of radius 250 m. If the car 
moves with a constant linear speed of 45.0 m/s, find (a) its angular 
speed and (b) the magnitude and direction of its acceleration.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.3 Angular and Linear Quantities

13. A wheel 2.00 m in diameter lies in a vertical plane and rotates with a 
constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at 
t= 0, and the radius vector of a certain point P on the rim makes an 
angle of 57.3° with the horizontal at this time. At t =2.00 s, find (a) the 
angular speed of the wheel, (b) the tangential speed and the total 
acceleration of the point P, and (c) the angular position of the point P.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.3 Angular and Linear Quantities

16. A car accelerates uniformly from rest and reaches a speed of 22.0 
m/s in 9.00 s. If the diameter of a tire is 58.0 cm, find (a) the number of 
revolutions the tire makes during this motion, assuming that no slipping 
occurs. (b) What is the final angular speed of a tire in revolutions per 
second?

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.3 Angular and Linear Quantities

17. A disk 8.00 cm in radius rotates at a constant rate of 1 200 rev/min 
about its central axis. Determine (a) its angular speed, (b) the tangential 
speed at a point 3.00 cm from its center, (c) the radial acceleration of a 
point on the rim, and (d) the total distance a point on the rim moves in 
2.00 s.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.3 Angular and Linear Quantities

18. A car traveling on a flat (unbanked) circular track accelerates 
uniformly from rest with a tangential acceleration of 1.70 m/s2. The car 
makes it one quarter of the way around the circle before it skids off the 
track. Determine the coefficient of static friction between the car and 
track from these data.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.4 Rotational Kinetic Energy

20. Rigid rods of negligible mass lying along the y axis connect three particles (Fig. 
P10.20). If the system rotates about the x axis with an angular speed of 2.00 rad/s, find 
(a) the moment of inertia about the x axis and the total rotational kinetic energy 

evaluated from 
1

2
𝐼 𝜔2and (b) the tangential speed of each particle and the total kinetic 

energy evaluated from σ𝑖
1

2
𝑚𝑖𝑣𝑖

2 .

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.4 Rotational Kinetic Energy

21. The four particles in Figure P10.21 are connected by rigid rods of 
negligible mass. The origin is at the center of the rectangle. If the system 
rotates in the xy plane about the z axis with an angular speed of 6.00 
rad/s, calculate (a) the moment of inertia of the system about the z axis 
and (b) the rotational kinetic energy of the system.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.6 Torque

31. Find the net torque on the wheel in Figure P10.31 about the axle 
through O if a =10.0 cm and b= 25.0 cm.

SOLUTIONS TO PROBLEM:

40



PROBLEMS
Section 10.7 Relationship between Torque and Angular Acceleration

35. A model airplane with mass 0.750 kg is tethered by a wire so that it 
flies in a circle 30.0 m in radius. The airplane engine provides a net 
thrust of 0.800 N perpendicular to the tethering wire. (a) Find the 
torque the net thrust produces about the center of the circle. (b) Find 
the angular acceleration of the airplane when it is in level flight.

(c) Find the linear acceleration of the airplane tangent to its flight path.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.7 Relationship between Torque and Angular Acceleration

37. A block of mass m1=2 kg and a block of mass m2= 6 kg are connected by a 
massless string over a pulley in the shape of a solid disk having radius R =0.250 m and 
mass M =10 kg. These blocks are allowed to move on a fixed block-wedge of angle 
𝞱=30.0° as in Figure P10.37. The coefficient of kinetic friction is 0.360 for both blocks. 
Draw free-body diagrams of both blocks and of the pulley. Determine (a) the 
acceleration of the two blocks and (b) the tensions in the string on both sides of the 
pulley.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Section 10.8 Work, Power, and Energy in Rotational Motion

46. A 15.0-kg object and a 10.0-kg object are suspended, joined by a cord that passes 
over a pulley with a radius of 10.0 cm and a mass of 3.00 kg (Fig. P10.46). The cord has 
a negligible mass and does not slip on the pulley. The pulley rotates on its axis without 
friction. The objects start from rest 3.00 m apart. Treat the pulley as a uniform disk, 
and determine the speeds of the two objects as they pass each other.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Additional Problems

70. The reel shown in Figure P10.70 has radius R and moment of inertia I. One end of 
the block of mass m is connected to a spring of force constant k, and the other end is 
fastened to a cord wrapped around the reel. The reel axle and the incline are 
frictionless. The reel is wound counterclockwise so that the spring stretches a distance 
d from its unstretched position and is then released from rest. (a) Find the angular 
speed of the reel when the spring is again unstretched. (b) Evaluate the angular speed 
numerically at this point if I =1 kg ·m2, R =0.3 m, k =50 N/m, m =0.5 kg, d =0.2 m, and 
𝞱=37.0°.

SOLUTIONS TO PROBLEM:
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PROBLEMS
Additional Problems

71. Two blocks, as shown in Figure P10.71, are connected by a string of 
negligible mass passing over a pulley of radius 0.250 m and moment of 
inertia I. The block on the frictionless incline is moving up with a 
constant acceleration of 2.00 m/s2. (a) Determine T1 and T2, the 
tensions in the two parts of the string. (b) Find the moment of inertia of 
the pulley.

SOLUTIONS TO PROBLEM:
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