Motion In Two Dimensions

4.1 The Position, Velocity, and Acceleration Vectors.

4.2 Two-Dimensional Motion with Constant Acceleration.
4.3 Projectile Motion.

4.4 Uniform Circular Motion.

4.5 Tangential and Radial Acceleration.
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Introduction

Kinematics in two dimensions:

e Describes motion in more than one dimension such
as projectile motion and uniform circular motion.

* Vectors can be used to more fully describe motion

o Still interested in displacement, velocity, and
acceleration

* Will serve as the basis of multiple types of motion
In future chapters



4.1 The Position, Velocity, and Acceleration
Vectors

The position of an object Is described by its position
vector, r

The displacement of the object is defined as the
change In its position:
Ar=r.-r, J

Path of
particle

O

® 2004 Thomson/Brooks Cole
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General Motion ldeas

In two- or three-dimensional kinematics,
everything Is the same as as In one-
dimensional motion except that we must now
use full vector notation.

* Positive and negative signs are no longer
sufficient to determine the direction



Average Velocity

The average velocity is is the
ratio of the displacement Ar¥to
the time interval At for the
displacement

Direction of v at @

®

. AT
Viyeg = —
ave At Ar; Ary Arg
The direction of v, is the same as the
direction of the displacement vector
AT,
The average velocity between points is
Independent of the path taken. 0

© 2004 Thomson/Brooks Cole
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Instantaneous Velocity

The Instantaneous velocity Is the limit of the average
velocity as the time interval becomes infinitesimally
short, or as the time interval approaches zero

. Ar dr
—lmoe = G

 The Instantaneous velocity can be positive,
negative, or zero.
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Instantaneous Velocity, graph

* The direction of the
Instantaneous velocity vector at
any point in a particle’s path Is
along a line tangent to the path
at that point and in the
direction of motion

« The magnitude of the
Instantaneous velocity vector is

the speed
* The speed Is a scalar
quantity i

Direction of v at @

Arl Ar2 Ar?,
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Average Acceleration

» The average acceleration a,,, of the particle is defined as
the change in velocity Av divided by the time interval At
during which that change occurs:

Vi =V _ AV
t,—t At

a=

* As a particle moves, Av can
be found In different ways

* The a,,, Is a vector quantity
directed along Av

® 2004 Thomson/Brooks Cole
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Instantaneous Acceleration

Is defined as the limit of the average acceleration as
At approaches zero.

Av  dv
=M T g

The Instantaneous a equals the derivative of the
velocity vector with respect to time.
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Producing An Acceleration

« Various changes In a particle’s motion may produce
an acceleration

« The magnitude of the velocity vector may change

 The direction of the velocity vector may change
 Even if the magnitude remains constant

* Both may change simultaneously
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4.2 Two-Dimensional Motion with Constant
Acceleration
* \When the two-dimensional motion has a constant

acceleration, a series of equations can be developed
that describe the motion

* These equations will be similar to those of one-
dimensional kinematics

« Motion in two dimensions can be modeled as two
Independent motions in each of the two

perpendicular directions associated with the x and y
axes.

(2.9)
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Kinematic Equations for Two-Dimensional Motion

e Position vector ¥ = xi + yj

dY¥ dx, dy,
* \elocity vV = dl; d:: yJ—v1+vJ

 Velocity vector as a function of time:

Ve = (U T a)l + (v + ayl))

(Uml + -ui'])+ (ﬂ‘,xl + aj,'])t

V=V, + at
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Graphical Representation of Final Velocity

* The velocity vector can be represented by Its
components

A A
v; 1S generally not along al v, /1.
al
the direction of either v;or %
) J
at 1 /
»n v;
Y A
U, a,l
e
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Position vector as a function of time

X=X + vl T %axti ¥ = Y + Uy 4+ Qayti’

= (x+ vyt + ta )i + (y; + vyt + Qa tQ)J

= (%1 + 9j) + (vl + v,))t + 3(a,i + a,j)

4
|
)
_|_
<l
_|_
'®]

This indicates that the position vector is the
sum of three other vectors:

-The initial position vector

-The displacement resulting from v; t

-The displacement resulting from Y2 at?
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The vector representation of the position vector

r; 1S generally not in the same direction as v; or as a
r: and v; are generally not in the same direction

A

Y
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Kinematic Equations, Component Equations

The component form of the equations for v, and r¢ Iin two-
dimensional motion at a constant acceleration is equivalent to

two independent motions having constant accelerations a, and
a,.
Yy

Uxf = Ui + a,l
V=V, + ai WERS 1 at

Fxf= x; T vl T+ %axtg

<

re=r; - vii+ %atg

1
..yf: JJz' -+ U:”'t + Eﬂj,fg
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Example 4.1 Motion in a Plane

A particle moves in the xy plane, starting from the origin at t = 0 with an
Initial velocity having an x component of 20 m/s and a y component of -15
m/s. The particle experiences an acceleration in the x direction, given by a,
= 4.0 m/s.

(A) Determine the total velocity vector at any time.

(B) Calculate the velocity and speed of the particle at t = 5.0 s and the
angle the velocity vector makes with the x axis.

(C) Determine the x and y coordinates of the particle at any time t and its
position vector at this time.




Example 4.1 Motion in a Plane

A particle moves in the xy plane, starting from the origin at ¢ = 0 with an initial velocity having an x component of
20 m/s and a y component of —15 m/s. The particle experiences an acceleration in the x direction, given by a, =
4.0 m/s%.

(A) Determine the total velocity vector at any time.

SOLUTION

Conceptualize The components of the initial velocity tell

us that the particle starts by moving toward the right and x
downward. The x component of velocity starts at 20 m/s and ?
increases by 4.0 m/s every second. The y component of veloc- S

ity never changes from its initial value of —15 m/s. We sketch )Q\
a motion diagram of the situation in Figure 4.6. Because the *Jq\
particle is accelerating in the +x direction, its velocity compo- ~<
nent in this direction increases and the path curves as shown ‘J{L
in the diagram. Notice that the spacing between successive

images increases as time goes on because the speed is increas- _. ‘ ) ‘
. . . . Figure 4.6 (Example 4.1) Motion diagram for the particle.
ing. The placement of the acceleration and velocity vectors in
Figure 4.6 helps us further conceptualize the situation.

Categorize Because the initial velocity has components in both the x and y directions, we categorize this problem
as one involving a particle moving in two dimensions. Because the particle only has an x component of accelera-
tion, we model it as a particle under constant acceleration in the x direction and a particle under constant velocity in the
y direction.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Analyze To begin the mathematical analysis, we set v,; = 20 m/s, vy = —15m/s, a, = 4.0 m/s?, and a, = 0.
Use Equation 4.8 for the velocity vector: ?} =v, +at= (v, + axt}i + (v, + ajt}j
Substitute numerical values with the velocity in meters Tf} =[20 + (4.0))i+ [-15+ (OJE]j

per second and the time in seconds:

(1 v,= [(20 + 4.00)i — 15j]
Finalize Notice that the x component of velocity increases in time while the y component remains constant; this result
is consistent with our prediction.



(B) Calculate the velocity and speed of the particle at { = 5.0 s and the angle the velocity vector makes with the x axis.

SOLUTION

Analyze
Evaluate the result from Equation (1) at ¢t = 5.0 s: v,=[(20 + 4.0(5.0))i — 15j] = (40i — 15j) m/s
. vy —15

Determine the angle 6 that v; makes with the x axis 0= tan_l(—’f) = tan_l(—mﬁ) = -21°

_ U, 40m/s
att= b5.0s:
Evaluate the speed of the particle as the magnitude vy = |T'}| = \/‘Ux 24 v}f? = \/(4{])2 + (—15)*>m/s = 43 m/s
of Vy:

J

....................................................................................................................................

Finalize The negative sign for the angle 6 indicates that the velocity vector is directed at an angle of 21° below the posi-
tive x axis. Notice that if we calculate v, from the x and y components of V,, we find that vs > v;. Is that consistent with
our prediction?

(C) Determine the xand y coordinates of the particle at any time ¢ and its position vector at this time.

SOLUTION

Analyze

Use the components of Equation 4.9 with x; = y; = 0 at Xp = vyt + sa i’ = 20t + 2.0¢°
t = 0 and with xand y in meters and ¢in seconds:

J’f = 'U:“:t = _153
Express the position vector of the particle at any time £ i'} = xﬁ + yfj = (20t + 2.06%)1 — 15:3

Finalize Let us now consider a limiting case for very large values of t.
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4.3 Projectile Motion

« An object may move in both the x and y directions
simultaneously

* The form of two-dimensional motion we will deal
with Is called projectile motion
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Assumptions of Projectile Motion

* The free-fall acceleration g Is constant over the
range of motion and is directed downward

* The effect of air friction Is negligible

With these assumptions, an object in projectile
motion will follow a parabolic path

* This path is called the trajectory
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Verifying the Parabolic Trajectory

 Reference frame: the y direction is vertical and
positive Is upward.

 Acceleration components
a, = - g (as In one-dimensional free fall)

a, =0
« Initial velocity components | Vi
U, ; ’
V,; =V, COS 0 ’
Vyi = V;sin @ 0,
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* Displacements

Xf= Uyl = (vg- cos 0,)t

V= vyt t t2=(vz-sin9}.;)t—%gt2

2

« Combining the equations gives:

y = (tan 6,)x — ( g )x2

2v;2 cos? 6

* This is in the form of y = ax — bx? which is the standard
form of a parabola



Consider the motion as the superposition of the
motions in the x- and y-directions

 The x-direction has constant velocity
a, =0
 The y-direction is free fall
a, =-g
 The vector expression for the position vector of the
projectile as a function of time

¥, =7F,+ Vit+ gt



The final position is the
vector sum of the initial
position, the position y
resulting from the initial
velocity and the position
resulting from the
acceleration

— —

f: I, + ?gt_l_ %th
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Projectile Motion Diagram

The y component of

velocity is zero at the

Th t f
Y peak of the path. € x component o

1 velocity remains

constant because

v\_ 0 V@ g there is no

@ acceleration in the x

= g O w /1 direction.
Vi :

0, \\® v

The projectile is launched
with initial velocity v;.
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Therefore, when solving projectile motion problems, use two
analysis models:

1) the particle under constant velocity in the horizontal

direction B
2) the particle under constant acceleration in the vertical
direction - B
“}f ~ ”}'i gl
z(‘{)‘ + U}f)ﬁ
Vr = ya + vy it — —g't

vy — 2g(5 = )
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Horizontal Range and Maximum Height of a
Projectile

* When analyzing projectile motion, two
characteristics are of special interest

 The range R, Is the horizontal distance of the
projectile y

* The maximum height the
projectile reaches is h

0,

© 2004 Thomson/Brooks Cole
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Height of a Projectile, equation

We can determine h by noting that at the peak, Upp = 0. Therefore, we can use
Equation 4.8a to determine the time {4 at which the projectile reaches the peak:

Uyr = Uy + ayt
0= UfSil’l 33' — gtA

v; sin 6;

g
Substituting this expression for fy into the y part of Equation 4.9a and replacing
y = ya with A, we obtain an expression for 4 in terms of the magnitude and direction of
the initial velocity vector:

tAz

.sin 6. .sin 6 \2
h= (v sin 6) v;sin 6; ég( v; sin ﬂ,_)
g g
212 p.
5= v;~ sin” 6; (4.13)
2g

8/20/2023 Phys 103 29



Height of a Projectile, equation

* The maximum height of the projectile can be found
In terms of the initial velocity vector:

 This equation is valid only for symmetric motion
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Range of a Projectile, equation

The range R is the horizontal position of the projectile at a time that is twice
the time at which it reaches its peak, that is, at time ¢g = 2#s. Using the x part of Equa-
tion 4.9a, noting that v,; = v,g = v; cos 0; and setting xg = Rat { = 2{,, we find that

R= Um'IB = ('Ui COS§ Bi)?tﬂ

2v;sin 0; 2v;2 sin 6, cos 6,

= (v; cos 6)) =
g

Using the identity sin 26 = 2sin fcos § (see Appendix B.4), we write R in the more
compact form

v,;2sin 26,

g

(4.14)

R =
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Range of a Projectile, equation

 The range of a projectile can be expressed In terms
of the initial velocity vector:

‘03'2 SiIl 293

g

R =

* This is valid only for symmetric trajectory
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More About the Range of a Projectile

y(m)

150 —
v;=50m/s

100

50

x(m)

50 100 150 200 250

© 2004 Thomson/Brooks Cole
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Range of a Projectile, final

* The maximum range R, ., occurs at & = 45°

» Complementary angles will produce the same
range
« The maximum height will be different for the

two angles
* The times of the flight 2™
) . o o v; = 50 m/s
will be different for the TN Complementary
100 |- ! Y=~ angle 0. result in the
two angles SN TN A amevieot®
50 1 //Y\\ ‘“‘*\\\
__390——\—____ NS
R

x (m)

100 150 200 250
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Example 4.3 Long Jump

A long-jumper leaves the ground at an angle of 20.0° above
the horizontal and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction?
(Assume his motion is equivalent to that of a particle.)

8/20/2023 Phys 103

35

Sipa via AP Images



(A) How far does he jump in the horizontal direction?

The range of the jumper Is given by:

v,” sin 20. (ll 0 m/s)” sin 2(20.0°)
g 9.80 m /s’

R =

8/20/2023 Phys 103
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The horizontal motion is described by

xr= xg = (v;cos 0;)tg = (11.0 m/s) (cos 20.0°) ¢g

The value of xg can be found if the time of landing {3z is
known. We can find g by remembering that a; = — g and by
using the y part of Equation 4.8a. We also note that at the top
of the jump the vertical component of velocity vy, is zero:

Uyr = Uyp = U; SIn 6; — gip
0 = (11.0 m/s) sin 20.0° — (9.80 m/s?) ¢,
ta = 0.384 s
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This is the time at which the long-jumper is at the fop of
the jump. Because of the symmetry of the vertical motion,

another 0.384 s passes before the jumper returns to the
ground. Therefore, the time at which the jumper lands is
tg = 2tp = 0.768 s. Substituting this value into the above ex-
pression for x gives

x;= xg = (11.0 m/s) (cos 20.0°) (0.768 s) = 7.94m

This is a reasonable distance for a world-class athlete.
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(B) What is the maximum height reached?

v;°sin’;  (11.0 m/s)*(sin 20.0°)*
2¢ 2(9.80 m/s?)

h =

8/20/2023 Phys 103
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(B) What is the maximum height reached?

Ymax — YA = (v; sin 6;) 5 — %8&2
= (11.0 m/s) (sin 20.0°) (0.384 s)

—3(9.80 m/s%)(0.3845)> = 0.722m

8/20/2023 Phys 103
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Example 4.4 A Bull’s-Eye Every Time

In a popular lecture demonstration, a projectile is fired at a
target in such a way that the projectile leaves the gun at the
same time the target is dropped from rest. Show that if the gun
IS Initially aimed at the stationary target, the projectile hits the
falling target as shown in the figure.

Target (i—® i
~
. \'\\" -~ - T
&5\‘%/ - | l gtE
\i}: > : l xp tan 6
e Point of : };'_‘_
Gun O \ 0 collision 1,1 y
|
/l*'l X -
|
)



Example 4.4 A Bull’s-Eye Every Time

In a popular lecture demonstration, a projectile is fired at a target in such a way that the projectile leaves the gun at
the same time the target is dropped from rest. Show that if the gun is initially aimed at the stationary target, the pro-
jectile hits the falling target as shown in Figure 4.12a.

SOLUTION

Conceptualize We conceptualize the problem by studying Figure 4.12a. Notice that the problem does not ask for
numerical values. The expected result must involve an algebraic argument.

The velocity of the projectile (red
arrows) changes in direction and
magnitude, but its acceleration
(purple arrows) remains constant.

"l"au‘gv&tjFTH 5 L

» - |
2 e
£ &r!.,\ - - | l 2
= i | 2
= W -

R xr tan 0,
8 W | l r tan 6,
@ e —— T T T - —
= R - 00
=3 z= Point of A
E 4 e yr
Z \ Vs collision ¥ ;
5 X
2
© X1 -
]
=3
3 b ]|
@
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Categorize Because both objects are subject only to gravity, we categorize this problem as one involving two objects
in free fall, the target moving in one dimension and the projectile moving in two. The target T is modeled as a particle
under constant acceleration in one dimension. The projectile P is modeled as a particle under constant acceleration in the
y direction and a particle under constant velocity in the x direction.

Analyze Figure 4.12b shows that the initial y coordinate y,; of the target is x; tan 6, and its initial velocity is zero. It falls

with acceleration a; = —g.
Write an expression for the y coordinate (1) yr=yr + (0)t — gt* = xrtan 0, — 1gt*

of the target at any moment after release,
noting that its initial velocity is zero:

Write an expression for the y coordinate (2) yp = yip T vypt — 5gt> = 0 + (v,psin®,)t — 5g6* = (v;psind,)t — 5812
of the projectile at any moment:

Write an expression for the x coordinate xp = X;p + U upt = 0 + (v;pc080,)t = (v;p cos 0,)t
of the projectile at any moment:

. . . . Xp

Solve this expression for time as a function L= 79
. .. .. v;p COS 0;

of the horizontal position of the projectile: P '

X
Substitute this expression into Equation (2): () yp = (vjp sin Gi)(ip) — %g.lr2 = xptan 6, — %gﬁ

Finalize Compare Equations (1) and (3). We see that when the x coordinates of the projectile and target are the
same—that is, when x = xp—their y coordinates given by Equations (1) and (3) are the same and a collision results.
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Example 4.5 That’s Quite an Arm!

A stone is thrown from the top of a building upward at an angle of
30.0° to the horizontal with an initial speed of 20.0 m/s, as shown in
the figure. If the height of the building is 45.0 m,

(A) how long does it take the stone to reach the ground?
(B) What Is the speed of the stone just before it strikes the ground?

v, —200m/s

. — —

I)W’a = 30.0° "~

A ,\ ~

45.0 m

——
L}
i
[
B
B
E
B
B

|
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Example 4.5 That’s Quite an Arm!

A stone is thrown from the top of a building upward at an angle of 30.0° to the horizontal with an initial speed of
20.0 m/s as shown in Figure 4.13. The height from which the stone is thrown is 45.0 m above the ground.

(A) How long does it take the stone to reach the ground?

SOLUTION

Conceptualize Study Figure 4.13, in which we have indi-
cated the trajectory and various parameters of the motion
of the stone.

Categorize We categorize this problem as a projectile
motion problem. The stone is modeled as a particle under con-
stant acceleration in the ydirection and a particle under constant 45.0 m
velocity in the x direction.

Analyze We have the information x, = y, = 0, Y= —45.0 m,

Figure 4.13
a, = —g and v; = 20.0 m/s (the numerical value of y, is (E?(amplc 44) A
negative because we have chosen the point of the throw as stone is thrown from v
the origin). the top of a building.
Find the initial x and y components of the stone’s v, = v;cos 0; = (20.0 m/s) cos 30.0° = 17.3 m/s
locity:
veloey v, = v;sin §; = (20.0m/s) sin 30.0° = 10.0 m/s
Express the vertical position of the stone from the particle Y=yt vt — égr2
under constant acceleration model:
Substitute numerical values: —45.0m = 0 + (10.0 m/s)t + 3(—9.80 m/s?)¢?
Solve the quadratic equation for ¢: t=422s
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(B) What is the speed of the stone just before it strikes the ground?

Analyze Use the velocity equation in the particle  v,,= v,; — gt
under constant acceleration model to obtain the y

component of the velocity of the stone just before

it strikes the ground:

Substitute numerical values, using ¢ = 4.22 s: Uy = 10.0m/s + (—9.80 m/s?)(4.22s) = —31.3 m/s

Use this component with the horizontal compo- v = '\/'Uxf2 + vyf = \/( 17.3m/s)> + (—31.3m/s)? = 35.8m/s
nent v, = v,; = 17.3 m/s to find the speed of the
stone at t = 4.22 s:

Finalize Is it reasonable that the y component of the final velocity is negative? Is it reasonable that the final speed is
larger than the initial speed of 20.0 m/s?

WLUARLES What if a horizontal wind is blowing in the same direction as the stone is thrown and it causes the stone
to have a horizontal acceleration component a, = 0.500 m/s*? Which part of this example, (A) or (B), will have a dif-
ferent answer?

Answer Recall that the motions in the x and y directions are independent. Therefore, the horizontal wind cannot
affect the vertical motion. The vertical motion determines the time of the projectile in the air, so the answer to part
(A) does not change. The wind causes the horizontal velocity component to increase with time, so the final speed will
be larger in part (B). Taking a, = 0.500 m/s?, we find Uy = 19.4 m/s and U= 36.9 m/s.
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Example 4.6 The Stranded Explorers

A plane drops a package of supplies to a party of explorers,
as shown in Figure 4.15. If the plane is traveling horizontally
at 40.0 m/s and is 100 m above the ground, where does the
package strike the ground relative to the point at which it is
released?

Solution Conceptualize what is happening with the assis-
tance of Figure 4.15. The plane is traveling horizontally
when it drops the package. Because the package is in free-
fall while moving in the horizontal direction, we calegorize

100 m

N

Figure 4.15 (Example 4.6) A package of emergency supplies is
dropped from a plane to stranded explorers.

8/20/2023

this as a projectile motion problem. To analyze the problem,
we choose the coordinate system shown in Figure 4.15, in
which the origin is at the point of release of the package.
Consider first its horizontal motion. The only equation avail-
able for finding the position along the horizontal direction
is x= x; + vt (Eq. 4.9a). The initial x component of the
package velocity is the same as that of the plane when the
package is released: 40.0 m/s. Thus, we have

Xp= (40.0 m/s) ¢

If we know ¢, the time at which the package strikes the
ground, then we can determine xy, the distance the package
travels in the horizontal direction. To find f, we use the
equations that describe the vertical motion of the package.
We know that, at the instant the package hits the ground, its
y coordinate is y; = — 100 m. We also know that the initial
vertical component of the package velocity v; is zero be-
cause at the moment of release, the package has only a hori-
zontal component of velocity.

From Equation 4.9a, we have

1
y=agt?
—100 m = —5(9.80 m/s?)¢2
t=4.52s

Substitution of this value for the time into the equation
for the x coordinate gives

xp= (40.0 m/s)(4.525) = 181m

The package hits the ground 181 m to the right of the drop
point. To finalize this problem, we learn that an object
dropped from a moving airplane does not fall straight down.
It hits the ground at a point different from the one right
below the plane where it was released. This was an impor-
tant consideration for free-fall bombs such as those used in
World War II.
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Example 4.7 The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal
direction with a speed of 25.0 m/s as shown in Figure. The
landing incline below him falls off with a slope of 35.0°.
Where does he land on the incline?

-
() » o]
—L = = 35.0
\‘/\\ g
\\\\ \ \
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Example 4.7 The End of the Ski Jump

A skijjumper leaves the ski track moving in the horizontal di-
rection with a speed of 25.0 m/s, as shown in Figure 4.16.
The landing incline below him falls off with a slope of 35.0°.
Where does he land on the incline?

Solution We can conceptualize this problem based on obser-
vations of winter Olympic ski competitions. We observe the
skier to be airborne for perhaps 4 s and go a distance of
about 100 m horizontally. We should expect the value of 4,
the distance traveled along the incline, to be of the same or-
der of magnitude. We categorize the problem as that of a par-
ticle in projectile motion.

To analyze the problem, it is convenient to select the be-
ginning of the jump as the origin. Because v,; = 25.0 m/s
and v = 0, the x and y component forms of Equation 4.9a
are

(1) xp= vyt = (25.0 m/s)1

)
(2)  yr= vt + gag® = —5(9.80 m/s?) ¢

8/20/2023
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From the right triangle in Figure 4.16, we see that the
jumper’s x and y coordinates at the landing point are
xp= dcos 35.0° and y,= —dsin 35.0°. Substituting these
relationships into (1) and (2), we obtain

(3) d cos 35.0° = (25.0 m/s)¢t
(4) —d sin 35.0° = — %(9.80 m/s?) 2

Solving (3) for ¢t and substituting the result into (4), we find
that d = 109 m. Hence, the x and y coordinates of the point
at which the skier lands are

x;= d cos 35.0° = (109 m)cos 35.0° = 89.3m

yr= —dsin 35.0° = —(109 m)sin 35.0° = —625m

To finalize the problem, let us compare these results to our
expectations. We expected the horizontal distance to be on
the order of 100 m, and our result of 89.3 m is indeed on




Example 4.7 The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal direction with a speed of 25.0 m/s as shown in Figure 4.14.
The landing incline below her falls off with a slope of 35.0°. Where does she land on the incline?

Conceptualize We can conceptualize this problem based on memories
of observing winter Olympic ski competitions. We estimate the skier to
be airborne for perhaps 4 s and to travel a distance of about 100 m hori-
zontally. We should expect the value of d, the distance traveled along
the incline, to be of the same order of magnitude.

Categorize We categorize the problem as one of a particle in projectile
motion. As with other projectile motion problems, we use the particle
under constant velocity model for the horizontal motion and the particle
under constant acceleration model for the vertical motion.
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Analyze It is convenient to select the beginning of the jump as the ori-
gin. The initial velocity components are v,; = 25.0 m/s and v;; = 0. From
the right triangle in Figure 4.14, we see that the jumper’s xand y coordi-
nates at the landing point are given by x,= dcos ¢ and y, = —dsin ¢.

Express the coordinates of the jumper as a function of (1) x= vt
time, using the particle under constant velocity model

for x and the position equation from the particle under
constant acceleration model for y: (3) dcos¢p = vt

(2) y= vt — 2g1*

4) —dsing¢g = —%gtg

Solve Equation (3) for ¢and substitute the result into —dsin ¢ = —ég(

Equation (4):

2v 2 sin ¢ _ 2(25.0 m/s)? sin 35.0°
gcos® ¢ (9.80 m/s?) cos® 35.0°

Solve for d and substitute numerical values: d=

Evaluate the x and y coordinates of the point at which x,= dcosd = (109 m) cos 35.0° = 89.3 m

the skier lands:
€ skier lands yy= —dsin¢ = —(109 m) sin 35.0° = —62.5m

Finalize Let us compare these results with our expectations. We expected the horizontal distance to be on the order of
100 m, and our result of 89.3 m is indeed on this order of magnitude. It might be useful to calculate the time interval
that the jumper is in the air and compare it with our estimate of about 4 s.
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4.4 Uniform Circular Motion

« Uniform circular motion occurs when an object
moves In a circular path with a constant speed v.

 Even though an object moves at a constant speed In
a circular path, it still has an acceleration.

 The acceleration depends on the change in the
velocity vector.

 The velocity vector Is always tangent to the path of
the object.
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Changing Velocity in Uniform Circular Motion

 The change In the velocity
vector Is due to the change
In direction

 The vector diagram shows \'
AV = V. - V.
V= V-V = Av
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Centripetal Acceleration

* The acceleration Is always
« perpendicular to the path of the motion
* points toward the center of the circle of motion

* This acceleration is called the centripetal
acceleration
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Centripetal Acceleration

* The magnitude of the centripetal acceleration vector
IS given by
2

 The direction of the centripetal acceleration vector
Is always changing, to stay directed toward the
center of the circle of motion
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Centripetal Acceleration

From the average acceleration:

_ V;—V, Av
a= = —
t, -t At
AV = V¢ - V; | Av]|
U
| = |Av| _ v |Ar]
At r At
02
a, = ——

r
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Period

* The period, T, Is the time required for one complete
revolution

* The speed of the particle would be the
circumference of the circle of motion divided by the
period, or ,

ntr

U:T

 Therefore, the period is
27T

U

* The period of a particle in uniform circular motion is a measure of the
number of seconds for one revolution of the particle around the circle.



Angular Speed

* The inverse of the period Is the rotation rate and Is
measured In revolutions per second.

 One full revolution of the particle around the circle
corresponds to an angle of 27 radians

 The product of 27t and the rotation rate gives the
angular speed w of the particle, measured In
radians/s or st :



v v
w=2w(—)=— - U= rw
2Tr r

* We can express the centripetal acceleration of a
particle in uniform circular motion in terms of
angular speed as

v (rw)? o
a, — — a, — a, — 1w
r r
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Example 4.8 The Centripetal Acceleration of the Earth

What is the centripetal acceleration of the Earth as it moves
in its orbit around the Sun?

8/20/2023

( 277?)2
v? T 472y

e = r N r - T2
~ 47%(1.496 X 101 m) ( 1yr )2
(1 yr)? 3.156 X 107 s

= 5.93 X 1073 m/s2

To finalize this problem, note that this acceleration is much
smaller than the free-fall acceleration on the surface of the
Earth. An important thing we learned here is the technique
of replacing the speed v in terms of the period T of the
motion.
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4.5 Tangential and Radial Acceleration

Tangential Acceleration

 The magnitude of the velocity could also be
changing

* In this case, there would be a tangential
acceleration
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Total Acceleration

 The tangential acceleration a=a, +a
causes the change in the
speed of the particle

 The radial acceleration comes
from a change in the direction
of the velocity vector

(b)

® 2004 Thomson/Brooks Cole
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Total Acceleration, equations

. . d|v
* The tangential acceleration: a, = %
] ] '02
 The radial acceleration: a, = —a,= ——
r

* The total acceleration:
» Magnitude a = \/arz +a;
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Total Acceleration, In Terms of Unit Vectors

 Define the following unit vectors
r and 6 )
7 1s a unit vector lying along the radius vector

)

6 Is a unit vector tangent to the circle 0

* The total acceleration is (6

0

a=a;t+a,=
dt r (a)

© 2004 Thomson/Brooks Cole

8/20/2023 Phys 103 64



Example 4.9 Over the Rise

A car exhibits a constant acceleration of 0.300 m/s? parallel
to the roadway. The car passes over a rise in the roadway
such that the top of the rise is shaped like a circle of radius
500 m. At the moment the car is at the top of the rise, its ve-
locity vector is horizontal and has a magnitude of 6.00 m/s.
What is the direction of the total acceleration vector for the
car at this instant?

a,=0.300 m/s?
a, L
m
e = ¢
—- Y aT
v=6.00m/s a
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v _ (6.00 m/s)? B

= —— = — 2
a, . 00 0 0.0720 m/s

The radial acceleration vector is directed straight downward

while the tangential acceleration vector has magnitude

0.300 m/ s and is horizontal. Because a = a, + a,;, the mag-
nitude of a 1s

a="Va2+a2=Y(—0.0720)2 + (0.300)2 m/s2
= 0.309 m/s2

If ¢ is the angle between a and the horizontal, then

— 2
$ = tan" -~ = tanl( 0.0720 m/s ) = —135°

a; 0.300 m/s?

This angle is measured downward from the horizontal.
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Exercises

Problems: 1, 3, 5, 6, 8, 14, 15, 17, 19, 20, 22, 23, 25,
29



