Properties of fluid

Properties of fluid :

Viscosity	$\tau = \mu \frac{v}{y}$ for liner velocity variation	Unit	
Dynamic viscosity		Force unit $\frac{F * T}{L2}$	
	$ au = \mu \frac{dv}{dy}$ for non liner velocity variation	Mass unit $\frac{\overline{M}}{L * T}$	
dynamic Viscosity	$v = \frac{\mu}{\rho}$	$\frac{L2}{L}$	

Example :

A Fluid is placed in the area between two parallel plate the upper plate is movable and connected to weight by a cable as show in finger calculator the velocity of the plate of the plate for tow case . M = 0.002 kg, y = 5 mm, g= 9.81 m/s2, A = 0.5 m2

- a- The fluid is glycerin (M= $0.95 \frac{N.s}{m^2}$)
- b- The fluid is water (M= $0.0089 \frac{N.s}{m^2}$)

Solution :-

w = M.g

0.002 * 9.81 =

 $\tau = \mu * \frac{v}{y}$

$$au = rac{F}{A} = au = rac{F}{0.5}$$

$$\tau = \mu * \frac{v}{y} = \tau = \frac{F}{0.5} = 0.95 * \frac{v}{0.005}$$

An 18 kg slab slider show a 15° in clinked plain on 3- mm think film of oil at 20 C (μ = 8.14 E - 2 N.S/m2) contact area is 0.3 m2 find the terminal velocity of the slab ?

v = 0.3 y - y2

V= velocity in m/s

M= 0.88

Y= distant " mater " from the plate

Determent the share stress at Y=0 and Y=0.1

Solution :

 $\tau = \mu * \frac{dv}{dy}$

At Y=0

$$\frac{dv}{dy} = 0.3 - 2y = \tau = 0.88 * (0.3(0) - 2(0)) = \tau = 0.264 \frac{N}{m^2}$$

At Y = 0.1

$$\frac{dv}{dy} = 0.3 - 2y = \tau = 0.88 * (0.3(0.1) - 2(0.1)) = \tau = 0.088 \frac{N}{m2}$$

<u>Pressure</u> :		
$p = \gamma * h$		
unit :	н	
N/m2 , ib/ft2		
Example :-		
p = ^ү *h	5 m Wa	Water
p = 5 * 9.81		
p = 49.03 KN/m2		

P1 = 0

- $p2 = \gamma * h$
- p2 = 0.8 * 9.81 * 0.9 =
- $p = 0 + \gamma * h + \gamma w * h w$
- p = 0 + 0.8 * 9.81 * 0.9 + (9.81 * 2.1)

