Properties of fluid :

Viscosity	$\tau=\mu \frac{v}{y}$ for liner velocity variation	Unit	
		Force unit	$\frac{F * T}{L 2}$
	$\tau=\mu \frac{d v}{d y}$ for non liner velocity variation	Mass unit	$\frac{M}{L * T}$
dynamic Viscosity	$v=\frac{\mu}{\rho}$	$\frac{L 2}{L}$	

Example :

A Fluid is placed in the area between two parallel plate the upper plate is movable and connected to weight by a cable as show in finger calculator the velocity of the plate of the plate for tow case . $\mathrm{M}=0.002 \mathrm{~kg}, \mathrm{y}=5 \mathrm{~mm}, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s} 2, \mathrm{~A}=0.5 \mathrm{~m} 2$
a- The fluid is glycerin ($\mathrm{M}=0.95 \frac{\mathrm{~N} . \mathrm{s}}{\mathrm{m} 2}$)
b- The fluid is water ($\mathrm{M}=0.0089 \frac{\mathrm{N.S}}{\mathrm{~m} 2}$)
Solution :-
$w=M . g$
0.002 * $9.81=$
$\tau=\mu * \frac{v}{y}$
$\tau=\frac{F}{A} \quad=\quad \tau=\frac{F}{0.5}$
$\tau=\mu * \frac{v}{y}=\tau=\frac{F}{0.5}=0.95 * \frac{v}{0.005}$

An 18 kg slab slider show a 15° in clinked plain on $3-\mathrm{mm}$ think film of oil at $20 \mathrm{C}(\mu=8.14 \mathrm{E}-$ $2 \mathrm{~N} . \mathrm{S} / \mathrm{m} 2$) contact area is 0.3 m 2 find the terminal velocity of the slab ?

Solution :
$\mathrm{A}=0.3 \mathrm{~m}^{2}$
$\tau=M * \frac{v}{y}$
$\operatorname{sum} \mathrm{F}=\mathrm{w} \sin 15-\tau A$
$\mathrm{w} \sin 15=\tau A$

$18 * 9.81 \sin 15=8.14 E-2 * \frac{v}{0.003} * 0.3$
$W \cos 15$
$W=m g$
$V=5.61 \mathrm{~m} / \mathrm{s}$
$v=0.3 y-y 2$
$\mathrm{V}=$ velocity in m / s
$M=0.88$
$Y=$ distant " mater " from the plate

Determent the share stress at $Y=0$ and $Y=0.1$
Solution :
$\tau=\mu * \frac{d v}{d y}$
At $Y=0$
$\frac{d v}{d y}=0.3-2 y=\tau=0.88 *(0.3(0)-2(0))=\tau=0.264 \frac{\mathrm{~N}}{\mathrm{~m} 2}$
At $Y=0.1$

$$
\frac{d v}{d y}=0.3-2 y=\tau=0.88 *(0.3(0.1)-2(0.1))=\tau=0.088 \frac{\mathrm{~N}}{\mathrm{~m} 2}
$$

Pressure:

$p=\gamma * h$
unit :
$\mathrm{N} / \mathrm{m} 2$, ib/ft2

Example :-
$p=\gamma^{*} h$
$\mathrm{p}=5$ * 9.81
$\mathrm{p}=49.03 \mathrm{KN} / \mathrm{m} 2$
$P 1=0$
$p 2=\gamma * h$
$p 2=0.8 * 9.81 * 0.9=$
$p=0+\gamma * h+\gamma w * h w$
$p=0+0.8 * 9.81 * 0.9+(9.81 * 2.1)$

