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Properties of Determinants-a

* detA =detA’
This means that the determinant does not change if we
interchange columns with rows
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This means that the determinant changes sign if we
interchange two columns or two rows



Properties of Determinants-b

e If two rows or two columns are the
same then the determinant is zero
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Properties of Determinants-c

e If we multiply the elements of one row
or one column with the same number
then the determinant is multiplied with
this number
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Properties ot Determinants-d

e If the elements of a row (or a column)
are multiples of the elements of another
row (or column) then the determinant is
Zero.
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Properties ot Determinants-e

e If any element of a row (or column) is
the sum of two numbers then the
detrminant could be considered as the
sum of other two determinants as
follows:
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Properties of Determinants-f

e If we add to the elements of a row (or a
column) the corresponding elements of
another row (or column) multiplied by a
number, then the determinant does not

change.
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This property is frequently used when we need to make the elements of a row
or column equal to zero and thus bringing the determinant to a form which can
be computed easily (like upper triangular)




Inverse Matrix-a

e | et the matrix:

( )
dy dp 4y

A = a21 a22 a23
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¢ Where we denote as 4, the minor determinant
of second order which comes out if we delete
the i-th row and the j-column



Inverse Matrix-b
A theorem

o If the detrminant det A is different than
zero (detA =0) then the inverse matrix
exists and is given by:
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