King Saud University
First Semester 2013/14
Department of Mathematics
College of Sciences

Integral Calculus (M-106), S. 2

Exercise 1:

Evaluate the sum.

1) $\sum_{j=1}^{4}\left(j^{2}+1\right) \quad$ 2) $\left.\left.\sum_{j=1}^{4}\left(2^{j}+1\right) \quad 3\right) \sum_{j=1}^{4} j(j-1) \quad 4\right) \sum_{j=1}^{1000} 2$

Exercise 2:

Express the sum in terms of n

1) $\left.\sum_{j=1}^{n}\left(j^{2}-5 j+1\right) 2\right) \sum_{j=1}^{n}\left(j^{3}+2 j^{2}-j+4\right)$

Exercise 3:

Express in summation notation.

1) $1+5+9+13+17$
2) $\frac{1}{2}+\frac{2}{5}+\frac{3}{8}+\frac{4}{11}$
3) $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{x^{n}}{n}$

Exercise 4:

Let $f(x)=\sqrt{x}$, and let R be the region under the graph of f from 1 to 5. Approximate the area A of R using:

1) an inscribed reclangular polygon with $\Delta x=0.1$
2) a circumscribed rectangular polygon with $\Delta x=0.1$.

Exercise 5:

Let A be the area under the graph of the given function $f(x)=x^{3 s}+1$ from 1 to 3. Approximate A by dividing the interval $[a, b]$ into subintervals of equal length Δx using:

1) $A_{I P}$: Area of an inscribed recrangular polygon
2) $A_{C P}$: Area of a circumscribed rectangular polygon

Exercise 6:

Let us consider $f(x)=x^{2}+1$,
a) Find the area under the graphs of f from 0 to b for any $b>0$, by subdividing the interval $[0, b]$ into n equal parts, using an inscribed reclangular polygon.
b) Find the area under the graph of f corresponding to the interval $[1,3]$ by using a).

Exercise 7:

Find the Riemann sum R_{P} for the given function $f(x)$ on the indicated inteval with a regular partition P of the size n by choosing on each subinterval of $P(a)$ The left-hand endpoint, (b) the right-hand endpoint and (c) the midpoint.

1) $f(x)=x^{3},[-2,6], n=6$
2) $f(x)=x^{2} \sqrt{\cos x},[0,1], n=5$

Exercise 8:

Verifiy the inequality without evaluating the integrals.

1) $\int_{1}^{2}\left(3 x^{2}+4\right) d x \geq \int_{1}^{2}\left(2 x^{2}+5\right) d x$
2) $\int_{2}^{4}\left(x^{2}-6 x+8\right) d x \leq 0$
3) $\int_{2}^{4}\left(5 x^{2}-x+1\right) d x \geq 0$
$\frac{\pi}{3}$
4) $\int_{\pi}(\sec x-2) d x \leq 0$
$-\frac{\pi}{3}$

Exercise 9:

The integral $\int_{a}^{b} f(x) d x$ of the continous function f over the interval $[a, b]$ can be evaluted. a) Find a number z that satisfies the conclusion of the mean value theorem and b) Find the average value of the function f on $[a, b]$, where:

1) $\int_{-2}^{1}\left(x^{2}+1\right) d x=6$
2) $\int_{-1}^{8} 3 \sqrt{x+1} d x=54$
3) $\int_{-2}^{-1} \frac{8}{x^{3}} d x=-3$.
