

Contents

- **1.** Overview of Photogrammetric Scanners, Technical Characteristics
- 2. Scanner Aspects, Technological Alternatives
- **3.** Perspectives
- 4. Conclusions

PhotoScan 2000

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Amsterdam, 15th July 2000

Technical Specifications of Z/I Imaging PhotoScan 2000

Mechanical movement	flatbed, stationary stage	
Soncor typo	Kodak KLI trilinear CCD,	
Sensor type	10200 pixels (5632 active)	
Scanning format x / y (mm)	275 / 250 (mm)	
Roll film width / length (mm/m)	241 mm / 150 m	
Motorised transport	manual, automatic	
Seen nivel size (um)	7 - 224, and 21 μ m	
Scan pixel size (μm)	(in multiples of two)	
Radiometric resolution (bit)	10 / 8, 12 bit	
internal / output		
	fan-cooled, tungsten,	
Illumination	halogen, 150 W,	
	diffuse, fiber optics	
Colour scan passes	1	
RGB simultaneously?	yes	
Density range	0.1 - 2.7D	
Geometric accuracy (µm)	2 μ m	
Radiometric accuracy (DN)	\pm 1.5 grey values	
	0.68 MB/s (14 μm, B/W/	
Scanning throughput	colour)	
	max. 4 MB/s (7 μ m, colour)	
and / or speed		
	max. 38 mm / s	
Host computer /	Pentium III, Windows NT/	
Interface	UltraSCSI, Unix SGI	
Approximate price (US\$)	138,000	
	incl. roll film	

UltraScan 5000 Left: Open cover and illumination arm for films. Right: roll film option

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

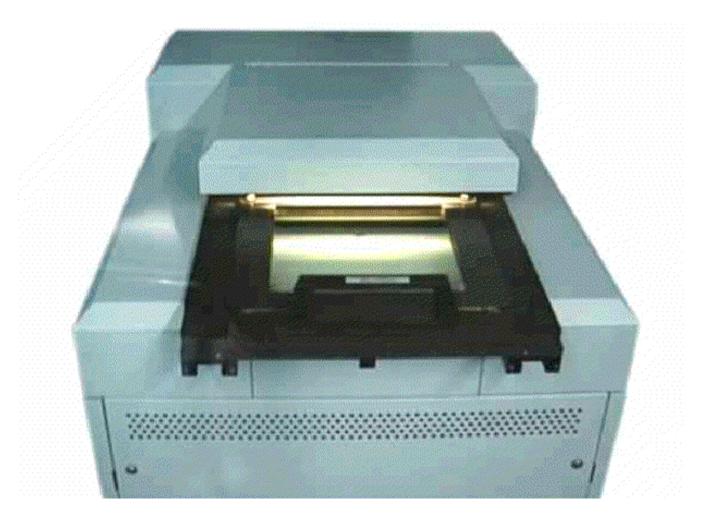
Amsterdam, 15th July 2000

Technical Specifications of Vexcel Imaging GmBH, UltraScan 5000

Mechanical movement	flatbed, stationary stage	
Sensor type	Trilinear CCD,	
Jensor type	6000 pixels, Peltier cooling	
	280/440 (for 5 μ m)	
Scanning format x / y (mm)	330/440 (for 29 μ m)	
	280/260 roll film	
Roll film width / length (mm/m) Motorised transport	Roll film support (option)	
	5 and 29 μ m base resolution and	
Scan pixel size (μm)	integer multiples(other freely	
	selectable, 2.5 -2,500)	
Radiometric resolution (bit) internal / output	12? / 16 or 8	
Illumination	controlled, stabilised	
inumination	illumination	
Colour scan passes	1	
RGB simultaneously?	yes	
Density range	0D-3.6D, 4D maximum	
Geometric accuracy (µm)	2 μ m	
Radiometric accuracy (DN)	< 1 (for 8 bits)	
Scanning throughput		
	0.45/0.37 MB/s (B/W, 10/20 μm)	
	0.83/0.74 MB/s (color, 10/20 $\mu\text{m})$	
and/or speed		
Host computer /	Windows NT / SCSI-2	
Interface	UNIX (without GUI)	
Approximate price (US\$)	39,500	

LH Systems DSW 500

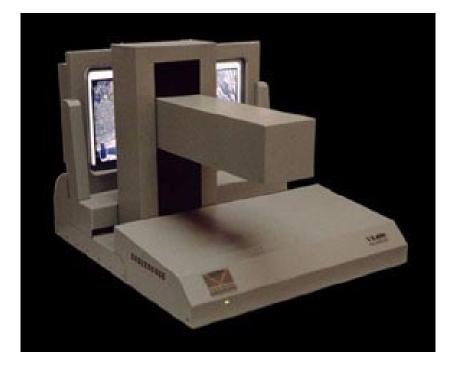
Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"


Amsterdam, 15th July 2000

Technical Specifications of LH Systems, DSW 500

Mechanical movement	flatbed, moving stage
Sensor type	Kodak Megaplus 2029 x 2044 CCD ^a (960 ² - 1984 ² active)
Scanning format x / y (mm)	265 / 265
Roll film width / length (mm/m) Motorised transport	70 - 240 / 152
Scan pixel size (μm)	manual, automatic 4 - 20 base resolution (any up to 256x base resolution in software)
Radiometric resolution (bit) internal / output	10 / 8 or 10
Illumination	SW controlled, variable intensity, xenon flashlamp, liquid pipe optic, sphere diffusor
Colour scan passes	1
RGB simultaneously?	no, filter wheel
Density range	0.1-2.5D
Geometric accuracy (µm)	2
Radiometric accuracy (DN)	1 - 2
Scanning throughput	1.4 MB/s (12.5 μm, B/W) 1.8 MB/s (12.5 μm, color)
and/or speed	max. 100 mm/s
Host computer / Interface	Sun Ultra 10, 60 / fast 32-bit wide SCSI-2 Windows NT, dual PIII
Approximate price (US\$)	145,000 / 125,000 with/without roll film

^a Other options: 1024x1536, 2056x3072 pixels (price vs. throughput)


ISM Scan XL-10

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Amsterdam, 15th July 2000

Technical Specifications of ISM, Scan XL-10

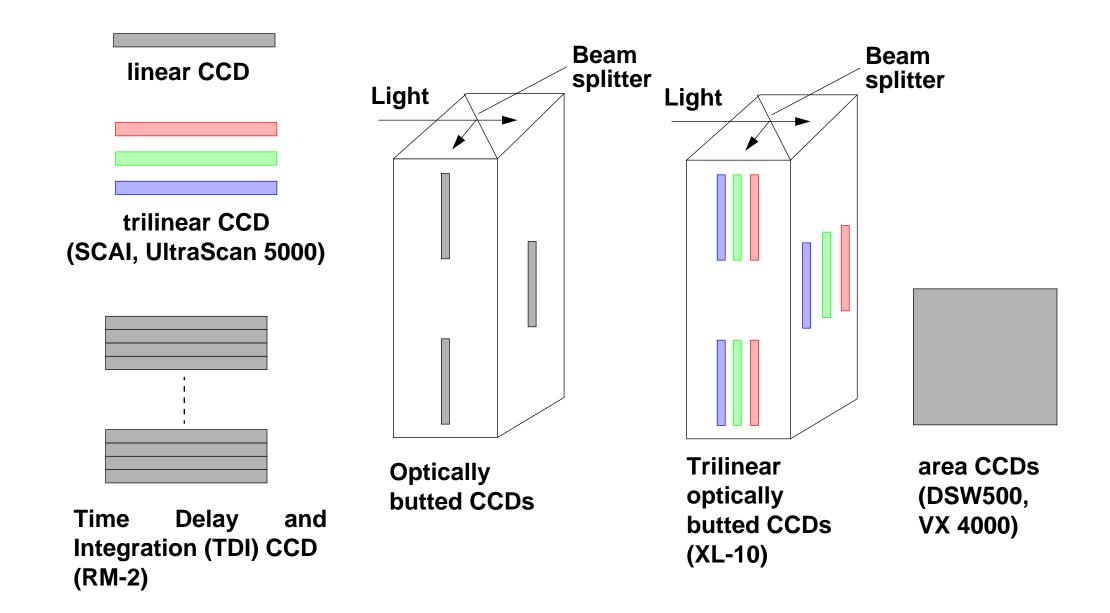
Mechanical movement1-D moving stageSensor typeKodak trilinear CCDs, 3 optically butted 3 x 8,000 pixelsScanning format x / y (mm)254 / 254Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1 yesRGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3Radiometric accuracy (DN)0.73 MB/s (20 μm, color) 0.37 MB/s (20 μm, B/W) max. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (ILS\$)95,000			
1-D moving stageSensor typeKodak trilinear CCDs, 3 optically butted 3 x 8,000 pixelsScanning format x / y (mm)254 / 254Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (µm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1 yesDensity range0.1 - 2.4DGeometric accuracy (µm)< 3	Mechanical movement	flatbed,	
Sensor type3 optically butted 3 x 8,000 pixelsScanning format x / y (mm)254 / 254Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1 RGB simultaneously?Density range0.1 - 2.4DGeometric accuracy (μm)< 3		1-D moving stage	
3 x 8,000 pixelsScanning format x / y (mm)254 / 254Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1 RGB simultaneously?Yes1Density range0.1 - 2.4DGeometric accuracy (μm)< 3		Kodak trilinear CCDs,	
Scanning format x / y (mm)254 / 254Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1 RGB simultaneously?Density range0.1 - 2.4DGeometric accuracy (μm)< 3	Sensor type	3 optically butted	
Roll film width / length (mm/m) Motorised transport241 manual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3		3 x 8,000 pixels	
Motorised transportmanual, automaticScan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3	Scanning format x / y (mm)	254 / 254	
Scan pixel size (μm)10 - 320 (in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3	Roll film width / length (mm/m)	241	
Scan pixel size (μm)(in multiples of two)Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3	Motorised transport	manual, automatic	
Radiometric resolution (bit) internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (µm)< 3	Scan pixel size (um)	10 - 320	
internal / output10 / 8IlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (µm)< 3	Scan pixel Size (µm)	(in multiples of two)	
Internal / outputDaylight, fluorescentIlluminationDaylight, fluorescentColour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (µm)< 3	Radiometric resolution (bit)	10 / 8	
Colour scan passes1RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3	internal / output	1070	
RGB simultaneously?yesDensity range0.1 - 2.4DGeometric accuracy (μm)< 3	Illumination	Daylight, fluorescent	
Density range0.1 - 2.4DGeometric accuracy (μm)< 3	Colour scan passes	1	
Geometric accuracy (μm)< 3Radiometric accuracy (DN)0.73 MB/s (20 μm, color)Scanning throughput0.73 MB/s (20 μm, color)and/or speed0.37 MB/s (20 μm, B/W)Most computer / InterfaceDual Pentium, Windows NTApproximate price (US\$)95,000	RGB simultaneously?	yes	
Radiometric accuracy (DN)Scanning throughput0.73 MB/s (20 μm, color) 0.37 MB/s (20 μm, B/W) 0.59 MB/s (10 μm, B/W) max. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (UIS\$)95,000	Density range	0.1 - 2.4D	
Scanning throughput0.73 MB/s (20 μm, color) 0.37 MB/s (20 μm, B/W) 0.59 MB/s (10 μm, B/W) max. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (US\$)95,000	Geometric accuracy (µm)	< 3	
Scanning throughput0.37 MB/s (20 μm, B/W)and/or speed0.59 MB/s (10 μm, B/W)Most computer /max. 35 mm/sHost computer /Dual Pentium, WindowsInterfaceNT95,000	Radiometric accuracy (DN)		
and/or speed0.37 MB/s (20 μm, B/W) 0.59 MB/s (10 μm, B/W) max. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (US\$)95,000	Scanning throughput	0.73 MB/s (20 μm, color)	
and/or speedmax. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (US\$)95,000	Scanning throughput	0.37 MB/s (20 μm, B/W)	
Max. 35 mm/sHost computer / InterfaceDual Pentium, Windows NTApproximate price (US\$)95,000	and/or speed	0.59 MB/s (10 μm, B/W)	
Interface NT Approximate price (US\$) 95,000	and/or speed	max. 35 mm/s	
Approximate price (US\$) 95,000	Host computer /	Dual Pentium, Windows	
Approximate price (US\$)	Interface	NT	
	Approximate price (US¢)	95,000	
	Approximate price (035)	incl. roll film	

Vexcel VX 4000. On the right with roll film option.

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

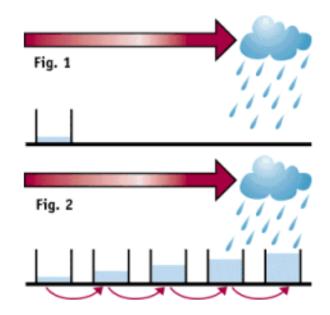
Technical Specifications of Vexcel Imaging Corp., VX 4000HT/DT (VX 5000 in Amsterdam)

Mechanical movement	vertical back-lit stage, moving sensor/optics	
	invisible réseau	
	area CCD	
Sensor type	1024 x 1024 / 768 x 494	
Scanning format x / y (mm)	508 / 254	
Roll film width / length (mm/m)	70 - 241 / 305	
Motorised transport	manual, automatic	
Scan pixel size (μm)	7.5 - 210 / 8.5 - 120,	
Scan pixel Size (µm)	continuously variable	
Radiometric resolution (bit)	8/8	
internal / output	070	
Illumination	cold cathode,	
inumination	variable intensity	
Colour scan passes	1	
RGB simultaneously?	no	
Density range	0.2 - 2D	
Geometric accuracy (µm)	4 - 5 or	
	1/3 of scan pixel size	
Radiometric accuracy (DN)	± 2	
	0.35 MB/s	
Scanning throughput		
	Windows NT and	
Host computer /	X-Windows PCs required /	
Interface	RS 232 and 422	
Approvimete price (UC¢)	60,000 (for VX4000DT)	
Approximate price (US\$)	excl. roll film	


Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

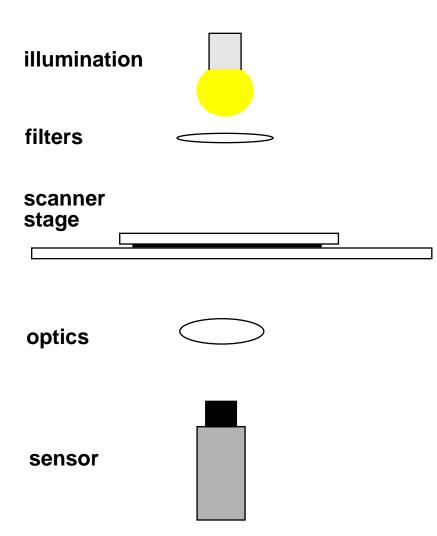
Amsterdam, 15th July 2000

Technical Specifications of Wehrli and Assoc. Inc., RM-2 Rastermaster


Mechanical movement	flatbed,	
	moving stage	
	Dalsa TDI linear CCD,	
Sensor type	96 x 2048 pixels (1024 active)	
	(option, Peltier cooling)	
Scanning format x / y (mm)	250 / 250	
Roll film width / length (mm/m)	No cupport	
Motorised transport	No support	
	10 - 80 or 12 - 96	
Scan pixel size (µm)	(in multiples of two, other in	
	software)	
Radiometric resolution (bit)	10 or 0 / 0	
internal / output	12 or 8 / 8	
Illumination	stabilised, high frequency,	
munination	fluorescent, variable intensity	
Colour scan passes	3	
RGB simultaneously?	no	
Density range	0.2D - 2D	
Geometric accuracy (µm)	< 4	
Radiometric accuracy (DN)		
	1.2 MB/s (12 μ m, B/W)	
Scanning throughput	0.9 MB/s (12 µm, colour)	
Host computer /	Pentium PC, Windows NT/	
Host computer /	DOS	
Interface	PCI bus / SCSI	
Approximate price (US\$)	55,000	

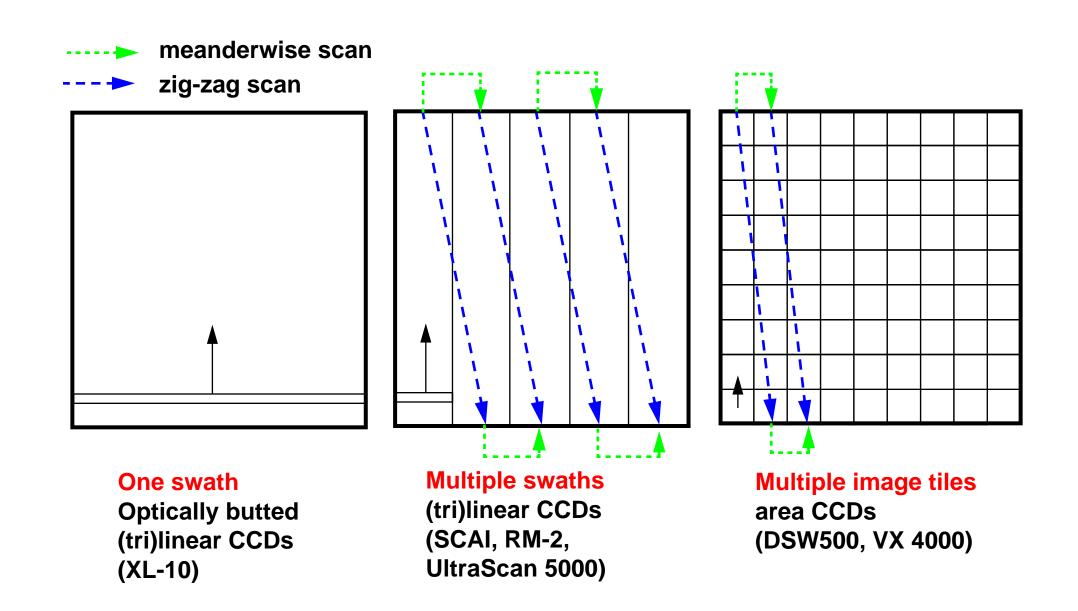
Sensor Types

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"



Principle of Time Delay and Integration

Collection of same signal by multiple parallel CCD lines (stages). Suitable for low-illumination and moving object applications.


Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Amsterdam, 15th July 2000

Scanning options

- 1. Scanner stage moves, rest fixed (DSW500, XL-10, RM-2)
- 2. Scanner stage fixed, rest moves (SCAI, VX 4000, UltraScan 5000)
- Illumination covers only IFOV of sensor (except VX 4000 -> whole scan area illuminated)
- Filters can also be between optics and sensor or on the sensor elements
- Vertical distance of optics and sensor to scanner stage fixed or variable (optical zoom)

- Coupling to photogrammetric systems
- 3 price groups
- Sensors: USED linear (1000 8000 pixels), area (770 x 500 2000 x 3000 pixels)

POSSIBLE Kodak KLI 14400 (14,400 pixels), Lockheed Martin F-979F 9,216² pixels Linear sensors: trilinear, optically butted, TDI & cooled

- Mechanical scanning
 - moving sensor (SCAI, VX) vs. moving stage (all others)
 - 2-D or 1-D mechanical movement (only OrthoVision)
- Illumination: only IFOV or whole film (VX)

Overview of photogrammetric scanners

- Geometric accuracy: 2 5 μm (worse results have been achieved in some tests)
- Minimum pixel size (4 12.5 μm)
- Photogrammetric software (interior orientation, image pyramid)
- UNIX and Windows NT, standard interfaces (SCSI-II)
- One colour scan pass (except RM)
- Diffuse illumination, often with fiber optics
- Typical scan throughput 1MB/s
- Tendency, ADC with 10-12 bit

Overview of photogrammetric scanners

- Maximum density 1.5 2.3D (often less than declared)
- Radiometric accuracy 1 2 grey levels (often more, local noise, log LUT, dust)
- Still problems with negatives, esp. colour ones
- Colour balance no major issue, yet!
- Calibration problems may occur -> poor algorithms, software errors
 Potential for improvement (normalisation, local systematic errors)
- Improved software, hardware real-time LUTs, on-line effect of changes
- Automatic density control does not exist -> roll film scanning
- Increased output image formats
- Important new feature: roll film scanning (all except RM)

Roll film scanning (important parameters)

- Good radiometric performance -> negatives
- Automatic density control
- Automatic coarse and fine film detection (also with gaps), free scan area definition
- Image re-orientation
- User selection of scanned images, e.g. every second
- Automatic detection of beginning/end of the film
- No film damage
- Film width and length, reel diameter, rewinding speed
- High contrast of fiducials causes problems (saturation)

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Illumination

- Relation to speed, heat
- Spectral properties (fit to filters, sensor)
- Temporal stability
- Uniformity
- Diffuse
- Variable intensity (or ET) -> balanced colours
- Halogen, xenon, fluorescent

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Quantisations bits

- Often 10 12 bit -> reduction to 8-bit (linear, log LUT), user influence?
- Wrong statements (relation) of bits to dynamic range, e.g.

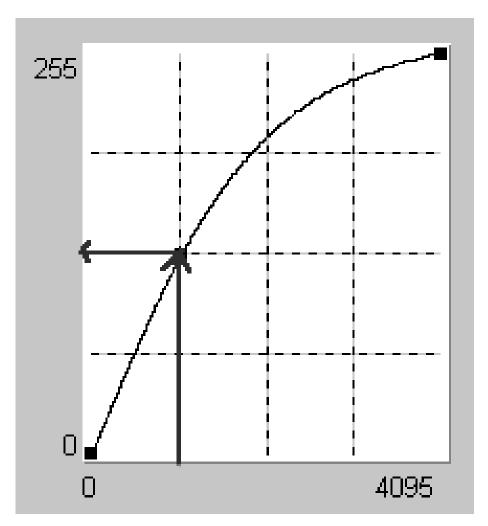
if 10-bit ADC -> DR = log (1023) = 3 D

- Sometimes selling argument, not necessarily better than 8-bit
- Number of required bits depends on noise and input signal range
- Meaningful grey level discrimination, if e.g. noise < 0.5 grey levels
 - -> for lowest noise among all densities 0.5 grey values, 8-bit suffice

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

- Advantages of more bits
 - less quantisation error
 - effective # of bits less with high speed ADC -> buy two bits more
 - finer radiometric corrections possible
 - possibly better image with appropriate reduction to 8-bit (research needed)

 If noise same, increase bits, only if input signal range also increases (example)


Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

24 bit Uncorrected Input		24 bit Scanner Output		
Photo Density	CCD Response		Mapped Response	
0.1	255			255
0.4	128			227
0.7	64			198
1.0	32			170
1.3	16			142
1.6	8			113
1.9	4			85
2.2	2			57
2.5	1			28
2.8	0			0

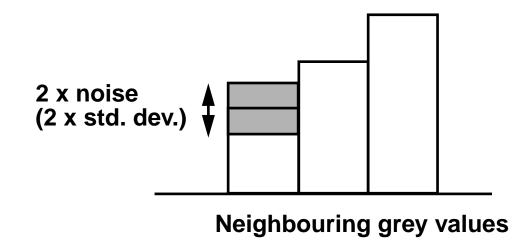
Mapping by a LUT (logarithmic) to achieve equal grey values steps for equal density steps. In the uncorrected input, it is assumed that for each higher density, the corresponding grey value is halved.

30 bit Uncorrected Input		24 bit Scanner	Output
Photo Density	CCD Response	Mapped Response	
0.1	1 0 23		255
0.4	512		233
0.7	256		209
1.0	128		186
1.3	64		163
1.6	32		140
1.9	16		116
2.2	8		93
2.5	4		70
2.8	2		46
3.1	1		23
3.4	0		0

Same as above but for 10-bit input and 8-bit output.

Mapping via a LUT of 12-bit input data to 8-bit output. What is the optimal mapping?

Number of bits in A/D conversion	Max. possible grey values	Log of largest grey value
4	$2^4 = 16$	Log (15) = 1.2
5	32	1.5
8	256	2.4
10	1024	3.0
12	4096	3.6
14	16384	4.2


Log (largest GV) IS NOT the max detectable density

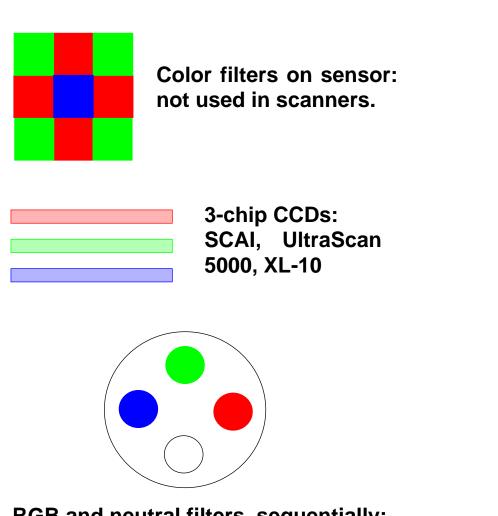
Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Number of bits required

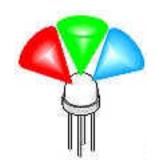
- Assumption: maximum storage capacity of each sensor element = 50,000 electrons
- Proposition: noise < 0.5 grey value. But note: noise varies with density (higher for lower densities), so proposition should be valid for all densities

- Example: noise = 100 electrons -> min quantisation step (1 grey value) = 200 electrons
 - -> 50,000 / 200 = 250 grey values needed -> 8-bit suffice (buy 1-2 bits more).

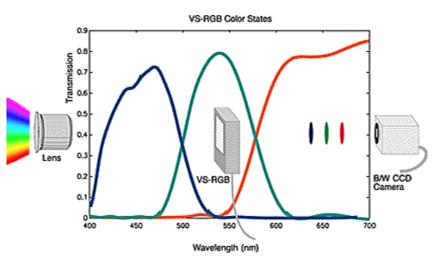
Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"


Dynamic range

• Definition of min. and max. detectable density. From min to max density:


No saturation, linear response, separable neighbouring densities

- To increase max D -> increase signal, decrease noise
- Increase signal by: light focussing, increase of illumination, ET, CCD quantum efficiency, max charge storage capacity
- Reduce noise by: multiple scans, slow scan, cooling, appropriate CCD and electronics
- Limiting factor -> film granularity
 - 0.008 0.033D for 1D and 38 μm pixel size
 - 0.039-0.161D for 2.5D and 12.5 μm pixel size
 - -> argument in favour of digital cameras



RGB and neutral filters, sequentially: a) for each IFOV (DSW500, VX 4000) b) for whole scan area (RM-2)

strobing RGB LED arrays for sequential line scan with monochrome CCDs: used in slide scanners.

electronically tunable, < 1 ms speed, LC filter (for area CCDs) for sequential scan with monochrome CCDs

- Spatial multiplexing (colour filters on sensor, 1-chip, not used in scanners)
- 3-chip CCDs (SCAI, OrthoVision)
- Temporal multiplexing (sequential for each IFOV, only area CCDs, DSW300, VX)
- Temporal multiplexing (sequential for whole film, linear CCDs, RM)
- Disadvantages of 3-linear CCDs change of ET impossible or creates artifacts
 - no change of illumination intensity possible
 - multiplexing -> crosstalk or 3 ADC/electronics
 - geometric errors more possible (mounting etc.)
- Colour misregistration due to: mechanical positioning, optics, electronics

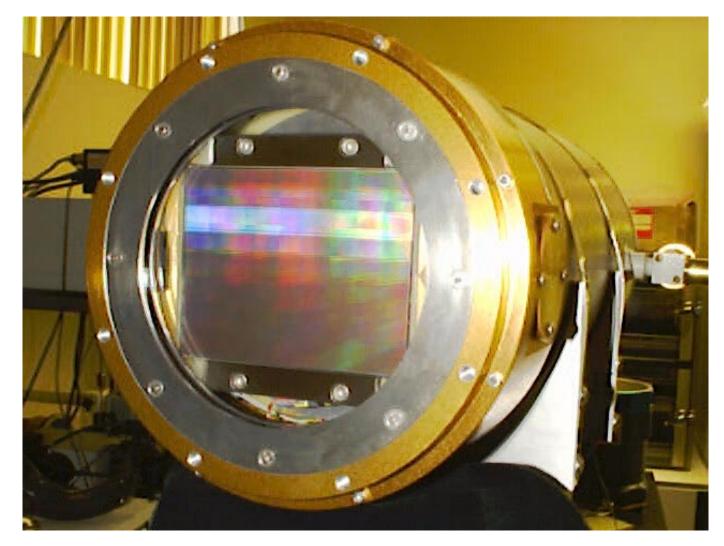
- Danger of geometric errors in optically butted or trilinear CCDs
 - -> better colour registration under conditions
- More correlated noise -> vertical stripes
- Sensor normalisation easier, but errors have larger spatial influence
- Unequal treatment of x/y directions -> smear, possibly smaller y-pixel size
- Changes of scan speed -> oscillations of grey values, e.g. ±2 grey values
- Usually smaller pixel size -> smaller max charge storage capacity
- Longer -> higher demands upon optics

- Cannot work in stop-and-go mode
- Less electronic noise
- Adjustable integration time
- Higher speed

- TDI in RM no better performance:
 - 1.5D dynamic range
 - systematic radiometric deviations along CCD

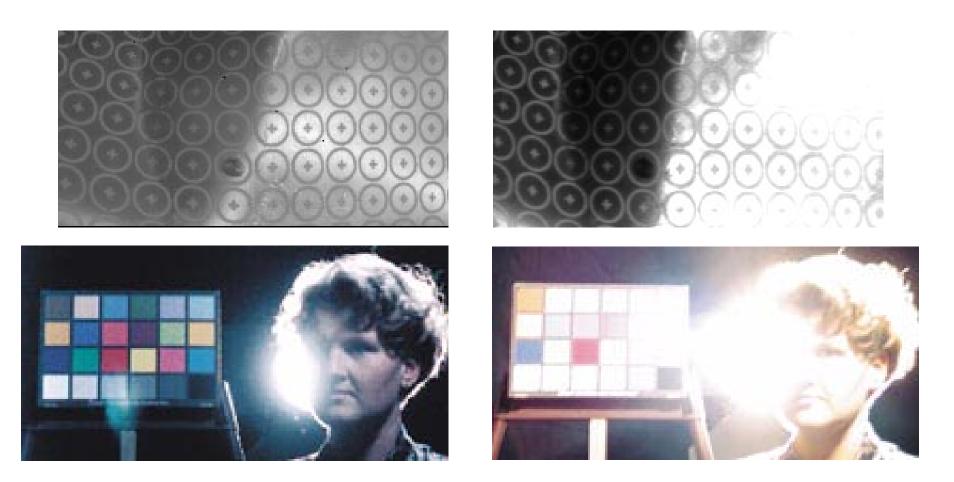
Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Area CCDs


- Resolution > 4K x 4K pixels impractical
- Only advantages of higher resolution
 - slightly faster scan
 - radiometric differences between tiles spatially less

Alternative technologies

- CMOS sensors
- CID sensors
- IEEE-1394 standard: no framegrabber, computer controlled, fast transfer rates


Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Area CCDs: Large Chip

A very large CCD (7000 x 9000 pixels, 84 x 108 mm) at Steward Observatory, Univ. of Arizona. Developed by Philips for American Digital Imaging. Such chips are very expensive, usually have defect pixels, and may exhibit deviations from planarity.

Left: High Dynamic Range CMOS camera (logarithmic response, dynamic range beyond 140 dB) Right: standard CCD

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Amsterdam, 15th July 2000

- Overestimated by manufacturers and users
- Scan time includes: prescan, parameter setting, scan, integration, ADC and H/W processing, transfer, save on disk, S/W processing (subsampling, mosaicking, re-orientation, formatting, compression, display and control), possible rescan
- Depends on pixel size, film (B/W, colour), image format, film orientation
- Firm specs exclude interactive operations, for native image format, no rescan
- Bottlenecks: transfer and save, electronic bandwidth, scan speed, integration time

- Not sacrifice quality for speed:
 - high dynamic range and SNR
 - colour balance -> for blue longer ET or lower scan speed
 - less effective bits for fast ADC
 - vibrations
 - stage settling (area CCDs)
- Example for an aerial image:

linear CCD, 10,000 pixels, 14 μm pixel size, 2.5 MHz scanning rate, 4 ms ET -> 1.8 min

10 times faster -> 11 s ; gain = ?

• Slow scan also leads to advantages regarding: scan mechanism, illumination and heating, smear, lag noise, electronic bandwidth, internal image buffer / transfer rate

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

- No agreement among users, scientists, manufacturers
- Depends on application, data amount able to be handled
- Today, limit for practical handling -> 10 15 μ m
- DTM, AT, often ortho-image generation -> sufficient results with 25 30 μm
- Interpretation, mapping, fine details -> 10 15 μm
- Preserve original aerial film resolution -> 6 12 μ m, for reconnaissance down to 4 μ m

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

- Optical zoom: optomechanically (UltraScan, DSW 500 planned?) or self-calibration (réseau, VX 4000)
- Electronic zoom with low-pass filtering and resampling in hardware (RM-2, SCAI, XL-10)
 - linear CCDs: only in CCD direction, in scan direction increase of scan speed
 - area CCDs: in both direction
 - problems with linear CCDs (smear in scan direction, different pixel size and resolution in 2 directions may occur)
- On-chip electronic binning
 - with area CCDs possible, (usually by factor 2) but not used
 - with linear CCDs in line direction or both (used in UltraScan)
- Software zoom (multiples of 2, any integer multiples, any output pixel size) (DSW500)
- Multiple lenses (in DTP scanners)
- Hybrid methods: e.g. UltraScan, 2 optical settings, electronic binning (integer multiples) -> many "native" resolutions, software interpolation -> any pixel size

Geometric / radiometric calibrations

- Sometimes: incomplete, slow, not often / accurate enough, not whole scan format, robust against dust?, manual measurements required / allowed
- Radiometric problems: stripes, electronic noise, sensor normalisation (electronic dust)
- Geometry could/should improved, even with best scanners
 - -> local systematic errors 6 8 mm: should not be ignored, correction possible
- Calibration by user: patterns, software, how often?
- Stress proper environmental and maintenance conditions
- Manufacturers -> provide technical specifications, tolerances, quality certificate

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

Radiometric problems - Improvement

- Careful choice and co-ordination of illumination, optical components, colour filters, sensor, mechanical scanning, camera electronics
- Possible additional measures (avoiding changes of current hardware):
 - averaging (not possible with line-CCDs)
 - cooling
 - longer exposure time/higher illumination
 - slower scan and read-out
- Software/calibration methods, adapt scan parameters for film type, density range
- Aims:
 - reduce the noise to minimum and cover for each image whole dynamic range, with proper color balance BEFORE ADC
 - after ADC, improve using software. All preprocessing possibly in 16-bit
 - intelligent reduction to 8-bit

- Understimated but increasingly important:
 - automated image analysis (DTM, AT, feature extraction) heavily depends on image quality
 - demands on image quality increase (digital orthoimages, visualisation)
 - geometry and radiometry are siamese sisters
- Colour is getting cheaper and is increasingly used
- Colour is essential in orthoimages, visualisation and automated feature extraction
 - **Competition from:**
- High-res satellite imagery
- Airborne digital sensors, esp. planned digital photogrammetric cameras

Current photogrammetric market situation

	Amount sold	Still in use	Equivalent to digital systems	Time span	Annual selling rate
Film cameras	3,500	50%		Last 60 years	20-25, stable
Film scanners	600	90%		Since 1990	
Analogue plotters	10,000	60% (6000)	3000 (36%)	Last 70 years	
Analytical plotters	3,700	80% (3000)	2300 (28%)	Since 1980	35-40, - 5% - 10% / year
Digital systems	3,000	98% (3,000)	3000 (36%)	Since 1990	

Scanners needed by digital systems and hybrid production modes (digital and analogue/ analytical)

Arguments for Scanners

- Highres spaceborne images can not replace in most cases film cameras
- In the next future digital photogrammetric cameras can not replace film cameras
 - can not reach film camera performance in most aspects
 - digital and film cameras produced by same firms
 - technology not mature enough or in development
 - software development for digital cameras needed -> 4-6 years transition to maturity most critical factor for success or not of digital cameras
 - production chains, hardware, software geared towards23 cm x 23 cm film
- Costs: digital cameras more expensive, nobody will just throw away existing film cameras, scanners and analytical/analogue plotters

CONCLUSION

- Long co-existence of film and digital cameras (10-20 years)
- Scanners will still be required, with improved performance, for at least a decade, albeit with a decreasing demand

- Number of scanners since 1996 fairly stable (6 main products)
- Changes with DSW, SCAI, RM-2 and introduction of UltraScan
- Improvement of performance, functionality, costs (2nd generation scanners)
 - roll film, software, faster, slightly better geometry and radiometry
- Significant differences between scanners wrt geometry, radiometry, software
- Geometric accuracy of 2 μm RMS feasible and sufficient (< 0.25 pixel)
 Larger local errors of 6-8 μm need to be better modelled
- Radiometric accuracy of 1-2 grey values in best case. Artifacts create larger systematic errors -> need of improvement (stripes, electronic noise)

Tutorial "Overview, Evaluation and Testing of Digital Photogrammetric Stations"

- Dynamic range still low (1.5 2.2D)
- Good geometric and radiometric balance between color channels possible
 - improved performance in blue in comparison to old CCD technology possible
- Need for tests, and frequent, accurate, automated calibrations (manufacturers, users)
- Importance of environmental and maintenance conditions
- Need of tests for color reproduction (esp. relative accuracy)
- Is quality control and scanner homogeneity sufficient ??
 - -> Quality assurance certificate, error tolerances

• Software

- Automatic density control (esp. for roll films)
- Adaptivity to film at hand
- On-line visualisation or better automation of scan parameter settings
- New functionality needed

On-the-fly image processing, dodging, correction of light fall-off, hots spots -> negative roll film scanning

- Future developments
 - sensors: more pixels, better radiometry
 - more quantisation bits -> intelligent reduction to 8-bits?
 - faster scans
 - extended software functionality, better calibration