Q1: Let $W=\{(x+1,0): x \in \mathbb{R}\}$ be a subset of the vector space \mathbb{R}^{2}. Show that W is a subspace of \mathbb{R}^{2}. (3 marks)

Q2: Let $S=\{(1,0,0),(1,1,0),(3,3,3)\}$. Show that the set S forms a basis for the vector space \mathbb{R}^{3}. (3 marks)

Q3: Let $B=\{(1,2,1),(2,0,2),(4,4,4)\}$ be a subset of the vector space \mathbb{R}^{3}. Find a subset of B that forms a basis of span(B). Also, find dim(span(B)). (3 marks)

Q4: Use the Wronskian to show that the set $\left\{1, \sin (\mathrm{x}), \mathrm{e}^{\mathrm{x}}\right\}$ is linearly independent. (2 marks)

Q5: Let $S=\{(1,1),(2,5)\}$ and $B=\{(2,-1),(1,4)\}$ be two bases of the vector space \mathbb{R}^{2}. Find the transition matrix from B to S. (3 marks)

Q6: Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
3 & 6 & 2 & 4 \\
1 & 2 & 3 & 6
\end{array}\right]
$$

(i) Find a basis for the column space of A. (3 marks)
(ii) Deduce nullity $\left(\mathrm{A}^{\top}\right)$ without solving any equations. (2 marks)

Q7: If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ in exactly one way. (2 marks)

Q8: Show that the operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$T\left(x_{1}, x_{2}\right)=\left(w_{1}, w_{2}\right)=\left(2 x_{1}+2 x_{2}, 3 x_{1}+4 x_{2}\right)$
is one-to-one, and find $T^{-1}\left(w_{1}, \mathrm{~W}_{2}\right)$. (4 marks)

