Math. Department

Q1: Let $W=\{(2 x+3,0): x \in \mathbb{R}\}$ be a subset of the Euclidean vector space \mathbb{R}^{2}. Show that W is a subspace of \mathbb{R}^{2}. (4 marks)

Q2: Let $S=\{(1,1,0),(1,2,0),(3,4,5)\}$.
(i) Show that the set S forms a basis for the vector space \mathbb{R}^{3}. (3 marks)
(ii) Find the vector $v \in \mathbb{R}^{3}$, where $(v)_{s}=(2,2,1)$. (1 mark)

Q3: Let $B=\{(1,2,1),(3,0,3),(5,4,5)\}$ be a subset of the vector space \mathbb{R}^{3}. Find a subset of B that forms a basis for span(B). (3 marks)

Q4: Use the Wronskian to show that the set $\{x, \sin (x), \cos (x)\}$ is linearly independent. (2 marks)

Q5: Let $S=\{(1,2),(3,7)\}$ and $B=\{(2,1),(1,3)\}$ be two bases for the vector space \mathbb{R}^{2}. Find the transition matrix from B to S. (3 marks)

Q6: Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
2 & 3 & 4 & 5 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

(i) Find bases for col(A) and row(A). (4 marks)
(ii) Deduce nullity $\left(\mathrm{A}^{\top}\right)$ without solving any equations. (2 marks)

Q7:(i) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$ in exactly one way. (1 mark)
(ii) For any matrix A, prove that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$. (1 mark)
(iii) Let $\mathrm{S}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}\right\}$ be a linearly independent set in the vector space P_{3}. Is S a basis for P_{3} ? Why? (1 mark)

