التحليل الحقيقي

أ.د. إبراهيم العليان

جامعة الملك سعود

المحتويات

- 🕕 المتتاليات
- 2 المتتاليات المطردة
- المتتاليات الجزئية ومبرهنة بولزانو-فايرشتراس
 - 🐠 معيار كوشي

المتتاليات

المتتاليات

المتتاليات

◄ يعود مفهوم تقارب المتتاليات إلى بدايات القرن التاسع عشر على يد بولزانو وكوشي.

المتتالية

تعريف

المتتالية الحقيقية (sequence of real numbers) هي دالة مجالها الأعداد الطبيعية $\mathbb N$ ومداها الأعداد الحقيقية ، أي

 $f \colon \mathbb{N} \to \mathbb{R}$

نعرف $x_n := f(n)$ نعرف

المتتالية

تعريف

المتتالية الحقيقية (sequence of real numbers) هي دالة مجالها الأعداد الطبيعية المتتالية الحقيقية ، أي ومداها الأعداد الحقيقية ، أي $f:\mathbb{N} \to \mathbb{R}$

 $oldsymbol{x}_n := f(n)$ نعرف

$$(x_1, x_2, x_3, \ldots), (x_n)_{n=1}^{\infty}, (x_n)$$

الحد النوني.

المتتالية

تعريف

المتتالية الحقيقية (sequence of real numbers) هي دالة مجالها الأعداد الطبيعية $\mathbb N$ ومداها الأعداد الحقيقية ، أي

 $f: \mathbb{N} \to \mathbb{R}$

 $x_n := f(n)$ نعرف

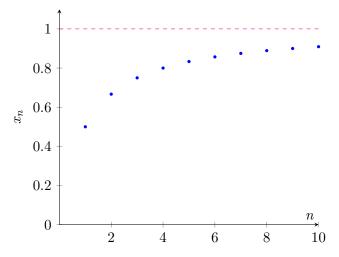
$$(x_1, x_2, x_3, \ldots), (x_n)_{n=1}^{\infty}, (x_n)$$

- بالحد النوني.
- ، هي مدى المتتالية $\{x_n:n\in\mathbb{N}\}$

مثال

$$x_n = \frac{n}{n+1}$$

$$x_n = \frac{n}{n+1}$$



هی متتالیة ثابته،
$$(2) = (2, 2, 2, \ldots)$$

هي متتالية الأعداد الزوجية.
$$(2n) = (2,4,6,\ldots)$$

$$m{\cdot} \{-1,1\}$$
 هي متتالية مداها المجموعة $((-1)^n) = (-1,1,-1,\ldots)$ ه

$$(\frac{1}{n}) = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$$

$$a_1 = 1, \quad a_{n+1} = a_n + \frac{1}{n}, \quad n \in \mathbb{N}$$

في المتتاليات، يكون التركيز على الحدود المتأخرة، فمثلا المتتالية $\frac{1}{n}$ حدودها المتأخرة تصغر وتقترب من 0.

في المتتاليات، يكون التركيز على الحدود المتأخرة، فمثلا المتتالية $\frac{1}{n}$ حدودها المتأخرة تصغر وتقترب من 0.

تعريف

المتتالية (x_n) متقاربة (convergent) إذا وجد

$$\forall \varepsilon>0 \ \exists N\in \mathbb{N}:$$

$$|x_n - x| < \varepsilon \qquad \forall n \ge N$$

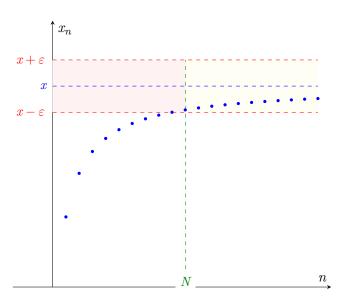
ونکتب $x_n o x_n$ أو اختصارا المحتصار ، أو اختصارا ، أو اختصارا ، أو اختصارا ،

تعریف

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} :$$

$$|x_n - x| < \varepsilon \qquad \forall n \ge N$$

 $x - \varepsilon < x_n < x + \varepsilon$



إذا وجدنا عددا $N\in\mathbb{N}$ يحقق العلاقة \blacksquare

$$|x_n - x| < \varepsilon \quad \forall n \ge N$$

Nفإن أي عدد أكبر من N يحقق هذه العلاقة.

إذا وجدنا عددا $N\in\mathbb{N}$ يحقق العلاقة

$$|x_n - x| < \varepsilon \qquad \forall \ n \ge N$$

فإن أي عدد أكبر من N يحقق هذه العلاقة.

 ε عندما نُغير قيمة ε ، فقد نحتاج لتغيير قيمة N، وفي الغالب، كلما كانت قيمة ε أصغر، كلما احتجنا لاختيار قيمة أكبر للعدد ε

$$\lim \frac{1}{n} = 0$$
 أثبت باستخدام التعريف أن ا

$$\lim rac{1}{n}=0$$
 أثبت باستخدام التعريف أن ا $\lim rac{1}{2^n}=0$ أثبت باستخدام التعريف أن

$$\limrac{1}{2^n}\!=0$$
 أثبت باستخدام التعريف أن

إذا كانت المتتالية (x_n) تحقق أنه لكل $\varepsilon>0$ يوجد $N\in\mathbb{N}$ وثابت (x_n) على م أو $\varepsilon>0$ لا يعتمد على n أو $\varepsilon>0$ بيث

$$|x_n - x| < C\varepsilon \quad \forall n \ge N$$

 $x_n o x$ فإن

كيف نثبت أن متتالية غير متقاربة؟

كيف نثبت أن متتالية غير متقاربة؟

 $N\in\mathbb{N}$ حتى نبېن إن المتتالية (x_n) غير متقاربة إلى x، يكفي أن نوجد $n_N\geq N$ بحيث لكل عوجد $n_N\geq N$

$$|x_{n_N} - x| \ge \varepsilon_0$$

$$\lim \frac{3n}{5n+9} = \frac{3}{5}$$

أثبت باستخدام التعريف

$$\lim \frac{3n}{5n+9} = \frac{3}{5}$$

$$\lim \frac{n^2 + 2n}{n^3 - 4} = 0$$

أثبت باستخدام التعريف

$$\lim \frac{3n}{5n+9} = \frac{3}{5}$$

$$\lim \frac{n^2 + 2n}{n^3 - 4} = 0$$

$$\lim \frac{3n+2}{n+1} = 3$$
 ترين: أثبت باستخدام التعريف أن

المتتالية $((-1)^n)$ غير متقاربة. lacksquare

- المتتالية $((-1)^n)$ غير متقاربة.
 - المتتالية (n) غير متقاربة.

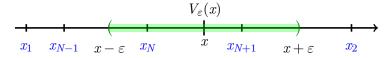
m يعتمد تقارب المتتالية على الحدود المتأخرة والتي تسمى ذيل المتتالية. الذيل (x_{m+1},x_{m+2},\dots) هو (x_n) همثلا الذيل الثالث للمتالية $(7,9,\dots)$ هو $(1,3,5,7,9,\dots)$

- m يعتمد تقارب المتتالية على الحدود المتأخرة والتي تسمى ذيل المتتالية. الذيل (x_{m+1},x_{m+2},\dots) هو (x_n) همثلا الذيل الثالث للمتالية $(7,9,\dots)$ هو $(1,3,5,7,9,\dots)$
 - من تعریف المتتالیة المتقاربة نجد أن

$$|x_n - x| \to 0 \iff x_n \to x$$

جميع حدود المتتالية ما عدا x_1,x_2,\dots,x_{N-1} تقع في جوار- x_1,x_2,\dots,x_{N-1} با ما حدود المتتالية ما عدا $V_{arepsilon}(x)=(x-arepsilon,x+arepsilon)$

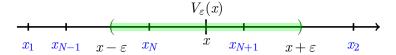
جيع حدود المتتالية ما عدا x_1,x_2,\dots,x_{N-1} تقع في جوار- x_1,x_2,\dots,x_{N-1} با جيد x_1,x_2,\dots,x_{N-1} با جيد x_1,x_2,\dots,x_{N-1} با جيد x_1,x_2,\dots,x_{N-1}



نقول إن V جوارا للنقطة x، إذا كان هناك V بحيث

$$(x-\varepsilon,x+\varepsilon)\subset V$$

جيع حدود المتتالية ما عدا x_1,x_2,\dots,x_{N-1} تقع في جوار- x_1,x_2,\dots,x_{N-1} للعدد x_1,x_2,\dots,x_{N-1} . $V_{\varepsilon}(x)=(x-\varepsilon,x+\varepsilon)$



عيث $\varepsilon>0$ بعيث انقول إن V جوارا للنقطة x، إذا كان هناك و

$$(x-\varepsilon,x+\varepsilon)\subset V$$

x يمكن تعريف التقارب باستخدام لغة الجوار كما يلي المتتالية (x_n) متقاربة ونهايتها x إذا كان كل جوار V للنقطة x يحوي كل حدود المتتالية ما عدا عدد منته منها.

مبرهنة

إذا كانت المتتالية (x_n) متقاربة، فإن نهايتها وحيدة.

المتتاليات المحدودوة

تعریف

المتتالية $K \in \mathbb{R}$ محدودة (bounded) إذا وجد المتتالية

$$|x_n| \le K \quad \forall \ n \in \mathbb{N}$$

أي إن مدى المتتالية $\{x_n\}$ مجموعة محدودة .

المتتاليات المحدودوة

تعریف

المتتالية (x_n) محدودة (bounded) إذا وجد (x_n) المتتالية

 $|x_n| \le K \quad \forall \ n \in \mathbb{N}$

أي إن مدى المتتالية $\{x_n\}$ مجموعة محدودة .

مبرهنة

المتتالية المتقاربة محدودة.

المتتاليات المحدودوة

تعریف

المتتالية $K \in \mathbb{R}$ محدودة (bounded) إذا وجد المتتالية

 $|x_n| \le K \quad \forall \ n \in \mathbb{N}$

. أي إن مدى المتتالية $\{x_n\}$ مجموعة محدودة

مبرهنة

المتتالية المتقاربة محدودة.

هل العكس صحيح؟

المتتاليات المحدودوة

تعریف

المتتالية (x_n) محدودة (bounded) إذا وجد المتتالية

 $|x_n| \le K \quad \forall \ n \in \mathbb{N}$

. أي إن مدى المتتالية $\{x_n\}$ مجموعة محدودة

مبرهنة

المتتالية المتقاربة محدودة.

هل العكس صحيح؟ متى يكون العكس صحيحا؟

مبرهنة

مبرهنة

إذا كانت
$$0 \neq x \to x$$
 ، فإنه يوجد $0 > M$ و $N \in \mathbb{N}$ بحيث

$$n \ge N \implies |x_n| > M$$

العمليات على المتتاليا<u>ت</u>

مبرهنة

إذا كانت (x_n) متتالية متقاربة ونهايتها x و (y_n) متتالية متقاربة ونهايتها y ، فإن x+y متقاربة ونهايتها x+y

العمليات على المتتاليات

مبرهنة

إذا كانت (x_n) متتالية متقاربة ونهايتها x و (y_n) متتالية متقاربة ونهايتها y ، فإن الم

x+y المتتالية (x_n+y_n) متقاربة ونهايتها ا

.xy المتتالية (x_ny_n) متقاربة ونهايتها

العمليات على المتتاليات

مبرهنة

- إذا كانت (x_n) متتالية متقاربة ونهايتها x و (y_n) متتالية متقاربة ونهايتها y ، فإن
 - x+y المتتالية (x_n+y_n) متقاربة ونهايتها 💶
 - xy المتتالية (x_ny_n) متقاربة ونهايتها xy
 - kxا اذا كان $k \in \mathbb{R}$ ، فإن المتتالية kx متقاربة ونهايتها ه.

العمليات على المتتاليات

مبرهنة

- إذا كانت (x_n) متتالية متقاربة ونهايتها x و (y_n) متتالية متقاربة ونهايتها y ، فإن
 - x+y المتتالية (x_n+y_n) متقاربة ونهايتها ا
 - xy المتتالية (x_ny_n) متقاربة ونهايتها ء
 - kx اذا كان $k \in \mathbb{R}$ ، فإن المتتالية (kx_n) متقاربة ونهابتها،
- إذا كان $y_n \neq 0$ ، لكل $y_n \neq 0$ ، و $y \neq 0$ ، فإن المتتالية $y_n \neq 0$ ، متقاربة ونهايتها $y_n \neq 0$

مثال

. و جد

$$\lim \frac{2n+1}{n}$$

1

مثال

أو جد

$$\lim \frac{2n+1}{n}$$

1

2

 $\lim \frac{5n+1}{2n^2+4}$

مبرهنة

مبرهنة
$$y_n o x_n o x_n$$
 و $y_n o y_n$ و

$$x_n \le y_n \quad \forall n \in \mathbb{N}$$

 $x \leq y$ فإن

مبرهنة

إذا كانت
$$x_n o x_n$$
 و $y_n o y_n$ و

$$x_n \le y_n \quad \forall n \in \mathbb{N}$$

 $x \leq y$ فإن

ملاحظة

x < y أن x < y لكل $x \in \mathbb{N}$ هل نستنتج أن x < y ماذا لو كانت

مبرهنة الحصر

مبرهنة إذا كانت

$$x_n \le y_n \le z_n \quad \forall n \ge N_0$$

، L متقاربة ونهايتها ، $\lim x_n = \lim z_n = L$ وكان

مبرهنة الحصر

مبرهنة إذا كانت

$$x_n \le y_n \le z_n \quad \forall n \ge N_0$$

. L متقاربة ونهايتها ، $\lim x_n = \lim z_n = L$ وكان

مثال أوجد النهاية

 $\lim \frac{\sin n}{n^2}$

مبرهنة

مبرهنة ذات الحدين

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

با العكس صحيح ، إذا كان $x_n o x_n$ ، أثبت أن |x| o |x|

باذا كان
$$x_n o x_n$$
 ، فأثبت أن $|x_n| o |x_n$ ، هل العكس صحيح الخات العكس العكس العرب العرب

.
$$\lim a^n = 0$$
 إذا كان $0 < a < 1$ ، فأثبت أن

بان کان
$$x_n \to x$$
 ، فأثبت أن $|x_n| \to |x$ ، هل العکس صحيح الح

.
$$\lim a^n = 0$$
 إذا كان $0 < a < 1$ ، فأثبت أن

،
$$\lim c^{\frac{1}{n}}=1$$
 إذا كان $c>0$ ، فأثبت أن $c>0$

- بان کان $x_n \to x$ ، فأثبت أن $|x_n| \to |x$ ، هل العکس صحيح الح
 - . $\lim a^n = 0$ إذا كان 0 < a < 1 فأثبت أن
 - ، $\lim c^{\frac{1}{n}}=1$ إذا كان c>0 ، فأثبت أن c>0
 - $\lim n^{\frac{1}{n}} = 1$ أثبت أن

بان کان
$$x_n \to x$$
 ، فأثبت أن $|x_n| \to |x$ ، هل العکس صحیح ا

.
$$\lim a^n = 0$$
 إذا كان $0 < a < 1$ فأثبت أن 2

،
$$\lim c^{\frac{1}{n}}=1$$
 إذا كان $c>0$ ، فأثبت أن 1

$$\lim n^{\frac{1}{n}} = 1$$
 أثبت أن

$$\sqrt{x_n} o \sqrt{x}$$
 أَذْبُت أَن $x_n o x$ وكان $x_n o x$ ، وكان $x_n o x$ أَذْبُت أَن $x_n o x$

المتتاليات المطردة

المتتاليات المطردة

المتتاليات المطردة

تعريف

المتتالية (x_n) متزايدة (increasing) إذا كان

$$x_{n+1} \ge x_n \quad \forall n \in \mathbb{N}$$

 $x_{n+1} > x_n \quad \forall n \in \mathbb{N}$ إذا كانت (strictly increasing) متزايدة فعلا متزايدة إدا كان (decreasing) إذا كان $x_{n+1} \leq x_n \quad \forall n \in \mathbb{N}$ (strictly decreasing) متناقصة فعلا متناقصة فعلا ($x_n \in \mathbb{N}$

إذا كانت (x_n) متزايدة أو متناقصة فهي تسمى مطردة.

ملاحظة

المتتالية (x_n) متزايدة، إذا وفقط إذا كانت المتتالية (x_n) متناقصة.

$$(\frac{1}{n})$$
 II (n^2) 2

$$((-1)^n)$$
 3

$$\left(\frac{(-1)^n}{n}\right)$$
 4

أثبت أن المتتالية
$$(x_n)$$
 متناقصة، حيث

$$x_n = \frac{2}{n+3}$$

أثبت أن المتتالية
$$(x_n)$$
 متناقصة، حيث

$$x_n = \frac{2}{n+3}$$

$$x_n = \frac{n}{n^2 + 1}$$

المتتاليات المطردة

مبرهنة

المتتالية المطردة متقاربة، إذا وفقط إذا كانت محدودة. كما أنه
$$(x_n)$$
 متزايدة ومحدودة، فإن

$$\lim x_n = \sup \{x_n : n \in \mathbb{N}\}\$$

$$x_n \uparrow \sup \{x_n\}$$
 ونكتب (x_n) متناقصة ومحدودة، فإن

$$\lim x_n = \inf \{ x_n : n \in \mathbb{N} \} \qquad x_n \downarrow \inf \{ x_n \}$$

احسب (
$$x_n$$
) انت $x_1=0, \; x_{n+1}=\frac{1}{2}x_n+3$ فأثبت ان انت $x_n=0, \; x_{n+1}=\frac{1}{2}x_n+3$ خالتها

احسب (
$$x_n$$
) اخت ان $x_1=0, \; x_{n+1}=\frac{1}{2}x_n+3$ احسب إذا كانت $x_1=0, \; x_{n+1}=\frac{1}{2}x_n+3$ اختاب نهایتها

$$x_1 = 10$$
 ماذا لوكانت ماذا

احسب (
$$x_n$$
) انت $x_1=0, \; x_{n+1}=\frac{1}{2}x_n+3$ فأثبت ان انت $x_n=0, \; x_{n+1}=\frac{1}{2}$ احسب نهایتها

$$x_1 = 10$$
 ماذا لوكانت ماذا

$$x_1 = 0, \ x_{n+1} = 2x_n + 3$$
 ماذا لوكانت

إذا كانت
$$\sqrt{2x_n}$$
 احسب نهايتها $x_1=1,\;x_{n+1}=\sqrt{2x_n}$ إذا كانت

إذا كانت
$$(x_n)$$
 متقاربة، ثم $x_1=1,\; x_{n+1}=rac{1}{2}(x_n+rac{3}{x_n})$ متقاربة، ثم احسب نهايتها

اذا کانت
$$(x_n)$$
 متقاربة، ثم $x_1=1,\;x_{n+1}=rac{1}{2}(x_n+rac{3}{x_n})$ متقاربة، ثم احسب نهایتها $x_1=1,\;\;x_2=2$ $x_3=rac{7}{4},\;\;x_4=rac{97}{56}$

إذا كانت (x_n) متقاربة، $x_1=1,\; x_{n+1}=\frac{1}{2}(x_n+\frac{3}{x_n})$ متقاربة، ثم احسب نهايتها

$$x_1=1, \quad x_2=2 \quad x_3=rac{7}{4}, \quad x_4=rac{97}{56}$$
ماذا تلاحظ على المتتالية ونهايتها؟

الأعداد الحقيقية الممتدة

تعريف

تسمى المجموعة
$$\bar{\mathbb{R}}=\mathbb{R}\cup\{-\infty,\infty\}=[-\infty,\infty]$$
 ، مجموعة الأعداد الحقيقية الممتدة.

 $M,\infty]\subset G$ بقول إن $M\in\mathbb{R}$ بخيث ∞ إذا وجد

ملاحظات

- $\sup A = \infty$ إذا كانت A غير محدودة من أعلى، فإن
- $\inf A = -\infty$ إذا كانت A غير محدودة من أسفل، فإن

ملاحظات

- $\sup A = \infty$ إذا كانت A غير محدودة من أعلى، فإن
- $\inf A = -\infty$ إذا كانت A غير محدودة من أسفل، فإن
 - $\sup \phi = \dots \blacktriangleleft$
 - $\inf \phi = \dots$

$$\lim x_n = \infty$$

إذا كان لكل
$$M\in\mathbb{R}^+$$
، يوجد $N\in\mathbb{N}$ بحيث

$$x_n > M \qquad \forall \ n \ge N$$

إذا كانت (x_n) متتالية، فإننا نقول إن (x_n) نتباعد إلى ∞ ونكتب

إذا كانت
$$(x_n)$$
 متزايدة. ثم أوجد $x_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ إذا كانت $\lim x_n$

إذا كانت المتتالية
$$(x_n)$$
 غير محدودة من أعلى فهل $\lim x_n = \infty$

المتتاليات الجزئية

المتتاليات الجزئية

المتتاليات الجزئية

تعريف

لتكن (x_n) متتالية ، (n_k) متتالية من الأعداد الطبيعية المتزايدة فعلا، أي $n_1 < n_2 < n_3 < \dots$ متتالية جزئية من $(x_{n_k}) = (x_{n_1}, x_{n_2}, \dots)$ متتالية جزئية من (x_n) متتالية جزئية من (x_n)

إي إن المتتالية الجزئية ناتجة عن بعض عناصر المتتالية الأصلية وإعادة ترقيم الحدود الباقية.

المتتاليات الجزئية

اتعریف ٔ

لتكن (x_n) متتالية ، (n_k) متتالية من الأعداد الطبيعية المتزايدة فعلا، أي $n_1 < n_2 < n_3 < \dots$ متتالية جزئية من $(x_{n_k}) = (x_{n_1}, x_{n_2}, \dots)$ متتالية جزئية من (x_n) من (x_n) من (x_n)

إي إن المتتالية الجزئية ناتجة عن بعض عناصر المتتالية الأصلية وإعادة ترقيم الحدود الباقية.

$$(x_4, x_7, x_8, \ldots)$$

- هو متتالية جزئية. (x_n) هو متتالية جزئية.
- الحدود الفردية تشكل متتالية جزئية من (x_n) حيث $n_k = 2k-1$ ، وكذلك الحدود الزوجية.
 - $(\frac{1}{n})$ متتالیة جزئیة من $(\frac{1}{2},1,\frac{1}{5},\ldots)$ هل
 - (2n) متتالیة جزئیة من $(4,8,9,\ldots)$ هل

ملاحظة

$$k \in \mathbb{N}$$
 لكل $n_k \geq k$ أن يقتضي أن $n_1 < n_2 < n_3 < \dots$ الشرط

ملاحظات

- إذا أمكن إيجاد متتاليتين جزئيتين (x_{k_n}) و (x_{m_n}) متقاربتين لنهايتين مختلفتين، فإن المتتالية (x_n) ليست متقاربة.
 - إذا أوجدنا متتالية جزئية (x_{n_k}) غير متقاربة، فإن المتتالية (x_n) ليست متقاربة.

المتتالية $((-1)^n)$ ليست متقاربة. lacksquare

- المتتالية $((-1)^n)$ ليست متقاربة. \blacksquare
- المتتالية $\left(\frac{(-1)^n n}{n+1}\right)$ ليست متقاربة.

المتتالية
$$((-1)^n)$$
 ليست متقاربة.

المتتالية
$$\left(\frac{(-1)^n n}{n+1}\right)$$
 ليست متقاربة.

$$x_n := \left\{ \begin{array}{ll} n & n \in \mathbb{N}_1 \\ \frac{1}{n} & n \in \mathbb{N}_2 \end{array} \right.$$

فإن (x_n) ليست متقاربة.

يٰذا کان
$$a < a < 1$$
 فيٰن $0 < a < 1$ ايذا کان السم السما

 $\lim x_n = x$ فإن (x_n) متقاربة ، ولها متتالية جزئية متقاربة من

 $\lim x_n = x$ فإن (x_n) متقاربة ، ولها متتالية جزئية متقاربة من

المتتالية الجزئية المطردة

ا إذا كانت (x_n) متتالية، فإن لها متتالية جزئية مطردة.

مبرهنة

مبرهنة بولزانو-فايرشتراس

إذا كانت (x_n) متتالية محدودة ، فإن لها متتالية جزئية متقاربة.

مبرهنة

إذا كانت (x_n) محدودة ، وجميع متتالياتها الجزئية المتقاربة لها نفس النهاية، فإن (x_n) متقاربة إلى نفس النهاية.

معيار كوشي

معيار كوشي

سؤال

كيف نثبت أن متتالية متقاربة؟

متتالية كوشي

تعریف (x_n) متتالیة کوشي، إذا کان

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} :$

 $|x_n - x_m| < \varepsilon \quad \forall n, m \ge N$

متتالية كوشي

تعريف

تسمى المتتالية (x_n) متتالية كوشي، إذا كان

 $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} :$

$$|x_n - x_m| < \varepsilon \quad \forall n, m \ge N$$

وهذا يعني أن الحدود المتأخرة للمتابعة قريبة من بعضها.

أثبت أن
$$(x_n)$$
 متتالية كوشي

$$x_n = \frac{1}{n}$$

أثبت أن
$$(x_n)$$
 متتالية كوشي

$$x_n = \frac{1}{n}$$

أثبت أن
$$(x_n)$$
 ليست متتالية كوشي

$$x_n = \sqrt{n}$$

أثبت أن
$$(x_n)$$
 متتالية كوشي $x_n=rac{1}{n}$ أثبت أن (x_n) ليست متتالية كوشي أثبت أن المتتالية الآتية كوشي $x_n=\sqrt{n}$ $x_n=rac{2n}{3n+1}$

متتالية كوشي

مبرهنة إذا كانت المتتالية (x_n) متقاربة، فهي من نوع كوشي.

مبرهنة إذا كانت (x_n) من نوع كوشي، فإنها محدودة.

مبرهنة

إذا كانت (x_n) من نوع كوشي، فإنها محدودة.

مبرهنة

المتتالية (x_n) متقاربة إذا وفقط إذا كانت من نوع كوشي.

,
$$x_1 = 1, x_2 = 2$$
 إذا كان

$$x_n = \frac{1}{2}(x_{n-1} + x_{n-2}), \quad n = 3, 4, \dots$$

أثبت أن
$$(x_n)$$
 متقاربة.

,
$$x_1 = 1, x_2 = 2$$
 إذا كان

$$x_n = \frac{1}{2}(x_{n-1} + x_{n-2}), \quad n = 3, 4, \dots$$

أثبت أن (x_n) متقاربة.

$$x_3 = \frac{3}{2}, \quad x_4 = \frac{7}{4}, \quad x_5 = \frac{13}{8}$$

$$x_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$

تمرين

أثبت أن المتتالة
$$rac{1}{k^2}$$
 أثبت أن المتتالة أ $rac{1}{k^2}$