[Solution Key] MATH-244 (Linear Algebra); Mid-term Exam; Semester 432

Question 1:

a) Find the values of λ for which the matrix $\begin{bmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2 + \lambda \\ 2 & 3 & \lambda^2 \end{bmatrix}$ is invertible.

Solution:
$$\begin{bmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2 + \lambda \\ 2 & 3 & \lambda^2 \end{bmatrix}^{-1} \text{ exists } \Leftrightarrow \begin{vmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2 + \lambda \\ 2 & 3 & \lambda^2 \end{vmatrix} = \lambda^2 + \lambda - 6 \neq 0 \Leftrightarrow \lambda \in \mathbb{R} - \{-3, 2\}.$$
 [2 marks]

b) By using properties of the determinants, show that

$$\begin{vmatrix} a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} c & b & a \\ f & e & d \\ i & h & g \end{vmatrix}$$

 $\begin{vmatrix} a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} c & b & a \\ f & e & d \\ i & h & g \end{vmatrix}.$ Solution: $\begin{vmatrix} a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} a+b+c & d+e+f & g+h+i \\ b & e & h \\ a & d & g \end{vmatrix}$ (by taking transpose)

$$= \begin{vmatrix} c & b & a \\ f & e & d \\ i & h & g \end{vmatrix}$$
 (by the row operations $R_1 + (-1)R_2$, $R_1 + (-1)R_3$). [2 marks]

c) Let $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix}$. Find adj(A) and A^{-1} .

Solution:
$$adj(A) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -2 \\ 1 & 1 & -3 \end{bmatrix}.$$
 [2 marks]

Since
$$|A| = 1$$
, we get $A^{-1} = |A|^{-1}adj(A) = adj(A) = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -2 \\ 1 & 1 & -3 \end{bmatrix}$. [1+1 marks]

Question 2:

a) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$. Show that the *linear system* AX = B has a *unique solution* for any fixed $\alpha, \beta, \gamma \in \mathbb{R}$.

Solution: Since
$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{vmatrix} = 5 \neq 0$$
, A^{-1} exists. So, the linear system has the unique solution $X = A^{-1}B = A^{-1} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$

for any fixed α , β , $\gamma \in \mathbb{R}$. [2 marks]

b) Solve the following system of linear equations by using the Cramer's rule:

$$x - y + z = 0$$

$$x + y + z = 2$$

$$x + 2y + 4z = 3$$

Solution:
$$|A| = 6$$
, $|A_{\mathcal{X}}| = 6$, $|A_{\mathcal{Y}}| = 6$ and $|A_{\mathcal{Z}}| = 0$. Hence, $x = \frac{|A_{\mathcal{X}}|}{|A|} = \frac{6}{6} = 1$, $y = \frac{|A_{\mathcal{Y}}|}{|A|} = \frac{6}{6} = 1$ and $z = \frac{|A_{\mathcal{Z}}|}{|A|} = \frac{0}{6} = 0$.

[1+3(.5) + 3(.5)marks]

c) Use any of the elimination methods to show that the following system of linear equations is inconsistent:

$$-x + 2y - 5z = 3$$
$$x - 3y + z = 4$$

$$5x - 13y + 13z = 8.$$

Solution: Since $\begin{bmatrix} -1 & 2 & -5 & 3 \\ 1 & -3 & 1 & 4 \\ 5 & -13 & 13 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 4 \\ 0 & 1 & 4 & -7 \\ 0 & 0 & 0 & 2 \end{bmatrix}$, the given linear system is inconsistent. [(2+1) marks]

Question 3:

a) Let $\{v_1, v_2, v_3\}$ be a linearly independent subset of vector space V. Show that the subset $\{w_1, w_2, w_3\}$ is linearly independent in V, where $w_1 = v_1 + 2v_3$, $w_2 = v_1 + v_2 + v_3$ and $w_3 = v_2 + v_3$.

b) Show that $F := \{(x, y, z) \in \mathbb{R}^3 | y - z = 0, y + z = 0\}$ is a vector subspace of Euclidean space \mathbb{R}^3 . Then find a basis and dimension of F.

Solution: $(x, y, z) \in F \Leftrightarrow (x, y, z) = (x, 0, 0) = x(1, 0, 0)$. So, $\mathbf{F} = span(\{(1, 0, 0)\})$; which is a vector subspace of \mathbb{R}^3 . [3 marks] Hence, $\{(1, 0, 0)\}$ is a basis of \mathbf{F} and so $\dim(F) = 1$.

c) Show that $B := \{t^2 + 2, -t + 1, 2t - 1\}$ is a basis of the real vector space $P_2(t)$ of all polynomials in real variable t having degree ≤ 2 . Then find the coordinate vector of the polynomial $t^2 + 3t + 3$ with respect to the basis R.

Solution: If
$$0=\alpha(t^2+2)+\beta(-t+1)+\gamma(2t-1)=\alpha t^2+(2\gamma-\beta)t+2\alpha+\beta-\gamma$$
 then $\alpha=\beta=\gamma=0$. So, the set B is linearly independent in the vector space $P_2(t)$. However, $\dim(P_2(t).)=3$. So, B is a basis of $P_2(t)$. [(2+1) marks]

Now, if $t^2+3t+3=\alpha(t^2+2)+\beta(-t+1)+\gamma(2t-1)=\alpha t^2+(2\gamma-\beta)t+2\alpha+\beta-\gamma$, then

$$\alpha = 1, \ \beta = 5 \text{ and } \gamma = 4. \text{ Hence,} \quad [t^2 + 3t + 3]_B = \begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}.$$
 [2 marks]