(without calculators)
Wednesday 5-7-1442

Time: 8-9:30 am

240 Math

College of Science
Math. Department

Q1: If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right], B^{T}=\left[\begin{array}{cc}1 & 2 \\ 0 & 2 \\ -1 & 0\end{array}\right], C=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2\end{array}\right]$ and $P(x)=\frac{1}{4} x^{2}-x+2$, then
find the following:
(a) $P(A)=\frac{1}{4} A^{2}-A+2 I$

$$
\begin{aligned}
& \frac{1}{4}\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]-\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]+2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{cc}
8 & 16 \\
4 & 8
\end{array}\right]-\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]-\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

(b) $\operatorname{adj}(A)=$

$$
\begin{gathered}
\operatorname{adj}\left(\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]\right)=\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]^{T}=\left[\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right] \\
\operatorname{adj}(A)=C^{T}=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]^{T}
\end{gathered}
$$

(c) the inverse of C

$$
\begin{aligned}
& {[C \mid I]=\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 0 \\
1 & 2 & 2 & 0 & 0 & 1
\end{array}\right] \xrightarrow[(-1) R_{13}]{(-2) R_{12}}\left[\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{array}\right]} \\
& \underset{(-1) R_{23}}{(-1) R_{21}}\left[\begin{array}{lll|lll}
1 & 0 & 1 & 3 & -1 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right] \xrightarrow{(-1) R_{31}}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 2 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & 1
\end{array}\right]=\left[I \mid C^{-1}\right]
\end{aligned}
$$

(d) Solution of $\mathrm{Bx}=0$ by Gauss-Jordan Elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 2 & 0
\end{array}\right] \xrightarrow{(-2) R_{12}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 2
\end{array}\right] \xrightarrow{\left(\frac{1}{2}\right) R_{2}}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]} \\
& x-z=0 \& y+z=0 \\
& z=t, x=t, y=-t, t \in \mathbb{R}
\end{aligned}
$$

(e) $T_{B}(1,2,3)$
$T_{B}(1,2,3)=B\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 2 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}-2 \\ 6\end{array}\right]$
Q2: Find the determinant of the following matrix, then find the cofactor C_{12} :
(4 marks)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 5 & 4 & 4 \\
3 & 6 & 6 & 7 \\
4 & 8 & 10 & 8
\end{array}\right]} \\
& \left|\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 5 & 4 & 4 \\
3 & 6 & 6 & 7 \\
4 & 8 & 10 & 8
\end{array}\right| \underset{\substack{(-4) R_{14} \\
(-2) R_{13} \\
(-313}}{=}\left|\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0
\end{array}\right| \xlongequal[R_{34}]{=}-\left|\begin{array}{llll}
1 & 2 & 2 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=-1(1)(2)(1)=-2 \\
& C_{12}=(-1)^{1+2}\left|\begin{array}{ccc}
2 & 4 & 4 \\
3 & 6 & 7 \\
4 & 10 & 8
\end{array}\right|=-4\left|\begin{array}{ccc}
1 & 2 & 2 \\
3 & 6 & 7 \\
2 & 5 & 4
\end{array}\right| \\
& \underset{(-2) R_{13}}{(-3) R_{12}}-4\left|\begin{array}{lll}
1 & 2 & 2 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right|{ }_{R_{23}}^{=} 4\left|\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=4(1)(1)(1)=4
\end{aligned}
$$

Q3: (a) Prove that if A is an invertible matrix, then $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1} .(2$ marks $)$

$$
\begin{aligned}
& A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I|=1 \\
& \Rightarrow|A|\left|A^{-1}\right|=1 \Rightarrow\left|A^{-1}\right|=\frac{1}{|A|} \\
& \text { as }|A| \neq 0
\end{aligned}
$$

(b) Prove that if A is an invertible symmetric matrix, then A^{-1} is symmetric. (2 marks)

$$
\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}=A^{-1}
$$

(c) If $B=\left[\begin{array}{ll}1 & 5 \\ 1 & 2\end{array}\right]$, then find $\operatorname{tr}(\mathrm{B})$. (1 mark)
$\operatorname{tr}(B)=1+2=3$.
(d) If A is a square matrix of order 2 such that $\operatorname{det}(A)=3$, then find $\operatorname{det}\left(2\left(A^{\top}\right)^{-1}\right)$. (2 marks)

$$
\begin{aligned}
& \operatorname{det}\left(2\left(A^{T}\right)^{-1}\right)=2^{2} \operatorname{det}\left(\left(A^{T}\right)^{-1}\right)=4 \operatorname{det}\left(\left(A^{-1}\right)^{T}\right) \\
& =4 \operatorname{det}\left(A^{-1}\right)=\frac{4}{3}
\end{aligned}
$$

(e) If the solution set of the system $A x=b$ is $\{(2 r+1, s-1): r, s \in \mathbb{R}\}$, then find the solution set of the system $A x=0$. (2 marks)

The system $A x=b$ is consistent. So the number of free variables is 2 . But the system has already 2 variables since the solution set is a subset of \mathbb{R}^{2}. So the system does not have any leading variable. So the (REF) of A is 0 and hence A is 0 also. Thus, $b=0$ as $b=A x=0 x=0$. So $A x=b$ is already a homogeneous linear system and the has the same solution set of A.
(We can also write the solution set by $\{(r, s): r, s \in \mathbb{R}\}$).

