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Preface

This book is based on lecture notes which I have used over a number of years
to teach a course on mathematical methods to senior undergraduate students
of mathematics at King Saud University. The course is offered here as a prereq-
uisite for taking partial differential equations in the final (fourth) year of the
undergraduate program. It was initially designed to cover three main topics:
special functions, Fourier series and integrals, and a brief sketch of the Sturm–
Liouville problem and its solutions. Using separation of variables to solve a
boundary-value problem for a second-order partial differential equation often
leads to a Sturm–Liouville eigenvalue problem, and the solution set is likely to
be a sequence of special functions, hence the relevance of these topics. Typi-
cally, the solution of the partial differential equation can then be represented
(pointwise) by a Fourier series or a Fourier integral, depending on whether the
domain is finite or infinite.

But it soon became clear that these “mathematical methods” could be de-
veloped into a more coherent and substantial course by presenting them within
the more general Sturm–Liouville theory in L2. According to this theory, a
linear second-order differential operator which is self-adjoint has an orthogonal
sequence of eigenfunctions that spans L2. This immediately leads to the funda-
mental theorem of Fourier series in L2 as a special case in which the operator is
simply d2/dx2. The other orthogonal functions of mathematical physics, such
as the Legendre and Hermite polynomials or the Bessel functions, are similarly
generated as eigenfunctions of particular differential operators. The result is a
generalized version of the classical theory of Fourier series, which ties up the
topics of the course mentioned above and provides a common theme for the
book.
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In Chapter 1 the stage is set by defining the inner product space of square
integrable functions L2, and the basic analytical tools needed in the chapters
to follow. These include the convergence properties of sequences and series of
functions and the important notion of completeness of L2, which is defined
through Cauchy sequences.

The difficulty with building Fourier analysis on the Sturm–Liouville the-
ory is that the latter is deeply rooted in functional analysis, in particular the
spectral theory of compact operators, which is beyond the scope of an under-
graduate treatment such as this. We need a simpler proof of the existence and
completeness of the eigenfunctions. In the case of the regular Sturm–Liouville
problem, this is achieved in Chapter 2 by invoking the existence theorem
for linear differential equations to construct Green’s function for the Sturm–
Liouville operator, and then using the Ascoli–Arzela theorem to arrive at the
desired conclusions. This is covered in Sections 2.4.1 and 2.4.2 along the lines
of Coddington and Levinson in [6].

Chapters 3 through 5 present special applications of the Sturm–Liouville
theory. Chapter 3, which is on Fourier series, provides the prime example of a
regular Sturm–Liouville problem. In this chapter the pointwise theory of Fourier
series is also covered, and the classical theorem (Theorem 3.9) in this context
is proved. The advantage of the L2 theory is already evident from the simple
statement of Theorem 3.2, that a function can be represented by a Fourier
series if and only if it lies in L2, as compared to the statement of Theorem 3.9.

In Chapters 4 and 5 we discuss some of the more important examples of
a singular Sturm–Liouville problem. These lead to the orthogonal polynomials
and Bessel functions which are familiar to students of science and engineer-
ing. Each chapter concludes with applications to some well-known equations
of mathematical physics, including Laplace’s equation, the heat equation, and
the wave equation.

Chapters 6 and 7 on the Fourier and Laplace transformations are not really
part of the Sturm–Liouville theory, but are included here as extensions of the
Fourier series method for representing functions. These have important appli-
cations in heat transfer and signal transmission. They also allow us to solve
nonhomogeneous differential equations, a subject which is not discussed in the
previous chapters where the emphasis is mainly on the eigenfunctions.

The reader is assumed to be familiar with the convergence properties of
sequences and series of functions, which are usually presented in advanced cal-
culus, and with elementary ordinary differential equations. In addition, we have
used some standard results of real analysis, such as the density of continuous
functions in L2 and the Ascoli–Arzela theorem. These are used to prove the exis-
tence of eigenfunctions for the Sturm–Liouville operator in Chapter 2, and they
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have the advantage of avoiding any need for Lebesgue measure and integration.
It is for that reason that smoothness conditions are imposed on the coefficients
of the Sturm–Liouville operator, for otherwise integrability conditions would
have sufficed. The only exception is the dominated convergence theorem, which
is invoked in Chapter 6 to establish the continuity of the Fourier transform.
This is a marginal result which lies outside the context of the Sturm–Liouville
theory and could have been handled differently, but the temptation to use that
powerful theorem as a shortcut was irresistible.

This book follows a strict mathematical style of presentation, but the sub-
ject is important for students of science and engineering. In these disciplines,
Fourier analysis and special functions are used quite extensively for solving
linear differential equations, but it is only through the Sturm–Liouville theory
in L2 that one discovers the underlying principles which clarify why the proce-
dure works. The theoretical treatment in Chapter 2 need not hinder students
outside mathematics who may have some difficulty with the analysis. Proof of
the existence and completeness of the eigenfunctions (Sections 2.4.1 and 2.4.2)
may be skipped by those who are mainly interested in the results of the theory.
But the operator-theoretic approach to differential equations in Hilbert space
has proved extremely convenient and fruitful in quantum mechanics, where it
is introduced at the undergraduate level, and it should not be avoided where
it seems to brings clarity and coherence in other disciplines.

I have occasionally used the symbols ⇒ (for “implies”) and ⇔ (for “if and
only if”) to connect mathematical statements. This is done mainly for the
sake of typographical convenience and economy of expression, especially where
displayed relations are involved.

A first draft of this book was written in the summer of 2005 while I was
on vacation in Lebanon. I should like to thank the librarian of the American
University of Beirut for allowing me to use the facilities of their library during
my stay there. A number of colleagues in our department were kind enough
to check the manuscript for errors and misprints, and to comment on parts of
it. I am grateful to them all. Professor Saleh Elsanousi prepared the figures
for the book, and my former student Mohammed Balfageh helped me to set
up the software used in the SUMS Springer series. I would not have been able
to complete these tasks without their help. Finally, I wish to express my deep
appreciation to Karen Borthwick at Springer-Verlag for her gracious handling
of all the communications leading to publication.

M.A. Al-Gwaiz
Riyadh, March 2007
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1
Inner Product Space

An inner product space is the natural generalization of the Euclidean space
R

n, with its well-known topological and geometric properties. It constitutes
the framework, or setting, for much of our work in this book, as it provides the
appropriate mathematical structure that we need.

1.1 Vector Space

We use the symbol F to denote either the real number field R or the complex
number field C.

Definition 1.1

A linear vector space, or simply a vector space, over F is a set X on which two
operations, addition

+ : X × X → X,

and scalar multiplication
· : F × X → X,

are defined such that:

1. X is a commutative group under addition; that is,

(a) x + y = y + x for all x,y ∈X.

(b) x + (y + z) = (x + y) + z for all x,y, z ∈ X.
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(c) There is a zero, or null, element 0 ∈ X such that x + 0 = x for all
x ∈X.

(d) For each x ∈ X there is an additive inverse −x ∈X such that
x + (−x) = 0.

2. Scalar multiplication between the elements of F and X satisfies

(a) a · (b · x) = (ab) · x for all a, b ∈ F and all x ∈X,

(b) 1 · x = x for all x ∈X.

3. The two distributive properties

(a) a · (x + y) =a · x+a · y

(b) (a + b) · x =a · x+b · x

hold for any a, b ∈ F and x,y ∈X.

X is called a real vector space or a complex vector space depending on
whether F = R or F = C. The elements of X are called vectors and those
of F scalars.

From these properties it can be shown that the zero vector 0 is unique,
and that every x ∈ X has a unique inverse −x. Furthermore, it follows that
0 ·x = 0 and (−1) ·x = −x for every x ∈ X, and that a ·0 = 0 for every a ∈ F.
As usual, we often drop the multiplication dot in a · x and write ax.

Example 1.2

(i) The set of n-tuples of real numbers

R
n = {(x1, . . . , xn) : xi ∈ R},

under addition, defined by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

and scalar multiplication, defined by

a · (x1, . . . , xn) = (ax1, . . . , axn),

where a ∈ R, is a real vector space.

(ii) The set of n-tuples of complex numbers

C
n = {(z1, . . . , zn) : zi ∈ C},
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on the other hand, under the operations

(z1, . . . , zn) + (w1, . . . , wn) = (z1 + w1, . . . , zn + wn),

a · (z1, . . . , zn) = (az1, . . . , azn), a ∈ C,

is a complex vector space.

(iii) The set C
n over the field R is a real vector space.

(iv) Let I be a real interval which may be closed, open, half-open, finite, or
infinite. P(I) denotes the set of polynomials on I with real (complex) coeffi-
cients. This becomes a real (complex) vector space under the usual operation
of addition of polynomials, and scalar multiplication

b · (anxn + · · · + a1x + a0) = banxn + · · · + ba1x + ba0,

where b is a real (complex) number. We also abbreviate P(R) as P.

(v) The set of real (complex) continuous functions on the real interval I, which
is denoted C(I), is a real (complex) vector space under the usual operations
of addition of functions and multiplication of a function by a real (complex)
number.

Let {x1, . . . ,xn} be any finite set of vectors in a vector space X. The sum

a1x1 + · · · + anxn =
n∑

i=1

aixi, ai ∈ F,

is called a linear combination of the vectors in the set, and the scalars ai are
the coefficients in the linear combination.

Definition 1.3

(i) A finite set of vectors {x1, . . . ,xn} is said to be linearly independent if

n∑

i=1

aixi = 0 ⇒ ai = 0 for all i ∈ {1, . . . , n},

that is, if every linear combination of the vectors is not equal to zero except
when all the coefficients are zeros. The set {x1, . . . ,xn} is linearly dependent
if it is not linearly independent, that is, if there is a collection of coefficients
a1, . . . , an, not all zeros, such that

∑n
i=1 aixi = 0.

(ii) An infinite set of vectors {x1,x2,x3, . . .} is linearly independent if every
finite subset of the set is linearly independent. It is linearly dependent if it is
not linearly independent, that is, if there is a finite subset of {x1,x2,x3, . . .}
which is linearly dependent.
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It should be noted at this point that a finite set of vectors is linearly depen-
dent if, and only if, one of the vectors can be represented as a linear combination
of the others (see Exercise 1.3).

Definition 1.4

Let X be a vector space.

(i) A set A of vectors in X is said to span X if every vector in X can be
expressed as a linear combination of elements of A. If, in addition, the vectors
in A are linearly independent, then A is called a basis of X.

(ii) A subset Y of X is called a subspace of X if every linear combination of
vectors in Y lies in Y. This is equivalent to saying that Y is a vector space in
its own right (over the same scalar field as X).

If X has a finite basis then any other basis of X is also finite, and both
bases have the same number of elements (Exercise 1.4). This number is called
the dimension of X and is denoted dimX. If the basis is infinite, we take
dim X = ∞.

In Example 1.2, the vectors

e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),
...

en = (0, . . . , 0, 1)

form a basis for R
n over R and C

n over C. The vectors

d1 = (i, 0, . . . , 0),

d2 = (0, i, 0, . . . , 0),
...

dn = (0, . . . , 0, i),

together with e1, . . . , en, form a basis of C
n over R. On the other hand, the

powers of x ∈ R,
1, x, x2, x3, . . . ,

span P and, being linearly independent (Exercise 1.5), they form a basis for
the space of real (complex) polynomials over R (C). Thus both real R

n and
complex C

n have dimension n, whereas real C
n has dimension 2n. The space

of polynomials, on the other hand, has infinite dimension. So does the space of
continuous functions C(I), as it includes all the polynomials on I (Exercise 1.6).



1.1 Vector Space 5

Let Pn(I) be the vector space of polynomials on the interval I of degree
≤ n. This is clearly a subspace of P(I) of dimension n + 1. Similarly, if we
denote the set of (real or complex) functions on I whose first derivatives are
continuous by C1(I), then, under the usual operations of addition of functions
and multiplication by scalars, C1(I) is a vector subspace of C(I) over the
same (real or complex) field. As usual, when I is closed at one (or both) of
its endpoints, the derivative at that endpoint is the one-sided derivative. More
generally, by defining

Cn(I) = {f ∈ C(I) : f (n) ∈ C(I), n ∈ N},

C∞(I) =
∞⋂

n=1
Cn(I),

we obtain a sequence of vector spaces

C(I) ⊃ C1(I) ⊃ C2(I) ⊃ · · · ⊃ C∞(I)

such that Ck(I) is a (proper) vector subspace of Cm(I) whenever k > m. Here
N is the set of natural numbers {1, 2, 3, . . .} and N0 = N ∪ {0}. The set of
integers {. . . ,−2,−1, 0, 1, 2, . . .} is denoted Z. If we identify C0(I) with C(I),
all the spaces Cn(I), n ∈ N0, have infinite dimensions as each includes the
polynomials P(I). When I = R, or when I is not relevant, we simply write Cn.

EXERCISES

1.1 Use the properties of the vector space X over F to prove the foll-
owing.

(a) 0 · x = 0 for all x ∈X.

(b) a · 0 = 0 for all a ∈ F.

(c) (−1) · x = −x for all x ∈X.

(d) If a · x = 0 then either a = 0 or x = 0.

1.2 Determine which of the following sets is a vector space under the
usual operations of addition and scalar multiplication, and whether
it is a real or a complex vector space.

(a) Pn(I) with complex coefficients over C

(b) P(I) with imaginary coefficients over R

(c) The set of real numbers over C

(d) The set of complex functions of class Cn(I) over R
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1.3 Prove that the vectors x1, . . . ,xn are linearly dependent if, and only
if, there is an integer k ∈ {1, . . . , n} such that

xk =
∑

i�=k

aixi, ai ∈ F.

Conclude from this that any set of vectors, whether finite or infinite,
is linearly dependent if, and only if, one of its vectors is a finite linear
combination of the other vectors.

1.4 Let X be a vector space. Prove that, if A and B are bases of X and
one of them is finite, then so is the other and they have the same
number of elements.

1.5 Show that any finite set of powers of x, {1, x, x2, . . . , xn : x ∈
I}, is linearly independent. Hence conclude that the infinite set
{1, x, x2, . . . : x ∈ I} is linearly independent.

1.6 If Y is a subspace of the vector space X, prove that dimY ≤ dim X.

1.7 Prove that the vectors

x1 = (x11, . . . , x1n),
...

xn = (xn1, . . . , xnn),

where xij ∈ R, are linearly dependent if, and only if, det(xij) = 0,
where det(xij) is the determinant of the matrix (xij).

1.2 Inner Product Space

Definition 1.5

Let X be a vector space over F. A function from X ×X to F is called an inner
product in X if, for any pair of vectors x,y ∈X, the inner product (x,y) 	→
〈x,y〉 ∈ F satisfies the following conditions.

(i) 〈x,y〉 = 〈y,x〉 for all x,y ∈X.

(ii) 〈ax+by, z〉 = a 〈x, z〉 + b 〈y, z〉 for all a, b ∈ F, x,y, z ∈ X.

(iii) 〈x,x〉 ≥ 0 for all x ∈X.

(iv) 〈x,x〉 = 0 ⇔ x = 0.

A vector space on which an inner product is defined is called an inner product
space.
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The symbol 〈y,x〉 in (i) denotes the complex conjugate of 〈y,x〉 , so that
〈x,y〉 = 〈y,x〉 if X is a real vector space. Note also that (i) and (ii) imply

〈x,ay〉 = 〈ay,x〉 = ā 〈x,y〉 ,

which means that the linearity property which holds in the first component of
the inner product, as expressed by (ii), does not apply to the second component
unless F = R.

Theorem 1.6 (Cauchy–Bunyakowsky–Schwarz Inequality)

If X is an inner product space, then

|〈x,y〉|2 ≤ 〈x,x〉 〈y,y〉 for all x,y ∈X.

Proof

If either x = 0 or y = 0 this inequality clearly holds, so we need only consider
the case where x = 0 and y = 0. Furthermore, neither side of the inequality
is affected if we replace x by ax where |a| = 1. Choose a so that 〈ax,y〉 is
a real number; that is, if 〈x,y〉 = |〈x,y〉| eiθ, let a = e−iθ. Therefore we may
assume, without loss of generality, that 〈x,y〉 is a real number. Using the above
properties of the inner product, we have, for any real number t,

0 ≤ 〈x+ty,x+ty〉 = 〈x,x〉 + 2 〈x,y〉 t + 〈y,y〉 t2. (1.1)

This is a real quadratic expression in t which achieves its minimum at t =
−〈x,y〉 / 〈y,y〉 . Substituting this value for t into (1.1) gives

0 ≤ 〈x,x〉 − 〈x,y〉2

〈y,y〉 ,

and hence the desired inequality.

We now define the norm of the vector x as

‖x‖ =
√

〈x,x〉.

Hence, in view of (iii) and (iv), ‖x‖ ≥ 0 for all x ∈X, and ‖x‖ = 0 if and only
if x = 0. The Cauchy–Bunyakowsky–Schwarz inequality, which we henceforth
refer to as the CBS inequality, then takes the form

|〈x,y〉| ≤ ‖x‖ ‖y‖ for all x,y ∈X. (1.2)
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Corollary 1.7

If X is an inner product space, then

‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x,y ∈ X. (1.3)

Proof

By definition of the norm,

‖x + y‖2 = 〈x + y,x + y〉
= ‖x‖2 + 〈x,y〉 + 〈y,x〉 + ‖y‖2

= ‖x‖2 + 2Re 〈x,y〉 + ‖y‖2
.

But Re 〈x,y〉 ≤ |〈x,y〉| ≤ ‖x‖ ‖y‖ by the CBS inequality, hence

‖x + y‖2 ≤ ‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

Inequality (1.3) now follows by taking the square roots of both sides.

By defining the distance between the vectors x and y to be ‖x − y‖, we see
that for any three vectors x,y, z ∈X,

‖x − y‖ = ‖x − z + z − y‖
≤ ‖x − z‖ + ‖z − y‖ .

This inequality, and by extension (1.3), is called the triangle inequality, as
it generalizes a well known inequality between the sides of a triangle in the
plane whose vertices are the points x,y, z. The inner product space X is now
a topological space, in which the topology is defined by the norm ‖·‖ , which is
derived from the inner product 〈·, ·〉.

Example 1.8

(a) In R
n we define the inner product of the vectors

x =(x1, . . . , xn), y = (y1, . . . , yn)

by
〈x,y〉 = x1y1 + . . . + xnyn, (1.4)

which implies

‖x‖ =
√

x2
1 + · · · + x2

n.
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In this topology the vector space R
n is the familiar n-dimensional Euclidean

space. Note that there are other choices for defining the inner product 〈x,y〉,
such as c(x1y1 + · · ·+ xnyn) where c is any positive number, or c1x1y1 + · · ·+
cnxnyn where ci > 0 for every i. In either case the provisions of Definition 1.5
are all satisfied, but the resulting inner product space would not in general be
Euclidean.

(b) In C
n we define

〈z,w〉 = z1w̄1 + · · · + znw̄n (1.5)

for any pair z,w ∈ C
n. Consequently,

‖z‖ =
√

|z1|2 + · · · + |zn|2.

(c) A natural choice for the definition of an inner product on C([a, b]), by

analogy with (1.5), is

〈f, g〉 =
∫ b

a

f(x)g(x)dx, f, g ∈ C([a, b]), (1.6)

so that

‖f‖ =

[∫ b

a

|f(x)|2 dx

]1/2

.

It is a simple matter to verify that the properties (i) through (iv) of the
inner product are satisfied in each case, provided of course that F= C when
the vector space is C

n or complex C([a, b]). To check (iv) in Example 1.8(c),
we have to show that

[∫ b

a

|f(x)|2 dx

]1/2

= 0 ⇔ f(x) = 0 for all x ∈ [a, b].

We need only verify the forward implication (⇒), as the backward implication
(⇐) is trivial. But this follows from a well-known property of continuous, non-
negative functions: If ϕ is continuous on [a, b], ϕ ≥ 0, and

∫ b

a
ϕ(x)dx = 0, then

ϕ = 0 (see [1], for example). Because |f |2 is continuous and nonnegative on
[a, b] for any f ∈ C([a, b]),

‖f‖ = 0 ⇒
∫ b

a

|f(x)|2 dx = 0 ⇒ |f |2 = 0 ⇒ f = 0.

In this study, we are mainly concerned with function spaces on which an
inner product of the type (1.6) is defined. In addition to the topological struc-
ture which derives from the norm ‖·‖, this inner product endows the space with
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a geometrical structure that extends some desirable notions, such as orthogo-
nality, from Euclidean space to infinite-dimensional spaces. This is taken up in
Section 1.3. Here we examine the Euclidean space R

n more closely.

Although we proved the CBS and the triangle inequalities for any inner
product in Theorem 1.6 and its corollary, we can also derive these inequalities
directly in R

n. Consider the inequality

(a − b)2 = a2 − 2ab + b2 ≥ 0 (1.7)

which holds for any pair of real numbers a and b. Let

a =
xi√

x2
1 + · · · + x2

n

, b =
yi√

y2
1 + · · · + y2

n

, xi, yi ∈ R.

If
∑n

j=1 x2
j = 0 and

∑n
j=1 y2

j = 0, then (1.7) implies

xiyi√∑
x2

j

√∑
y2

j

≤ 1
2

x2
i∑
x2

j

+
1
2

y2
i∑
y2

j

,

where the summation over the index j is from 1 to n. After summing on i from
1 to n, the right-hand side of this inequality reduces to 1, and we obtain

∑
xiyi ≤

√∑
x2

i

√∑
y2

i .

This inequality remains valid regardless of the signs of xi and yi, therefore we
can write

|
∑

xiyi| ≤
√∑

x2
i

√∑
y2

i

for all x =(x1, . . . , xn) = 0 and y =(y1, . . . , yn) = 0 in R
n. But because the

inequality becomes an equality if either ‖x‖ or ‖y‖ is 0, this proves the CBS
inequality

|〈x,y〉| ≤ ‖x‖ ‖y‖ for all x,y ∈ R
n.

From this the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖ immediately follows.
Now we define the angle θ ∈ [0, π] between any pair of nonzero vectors x

and y in R
n by the equation

〈x,y〉 = ‖x‖ ‖y‖ cos θ.

Because the function cos : [0, π] → [−1, 1] is injective, this defines the angle θ

uniquely and agrees with the usual definition of the angle between x and y in
both R

2 and R
3. With x = 0 and y = 0,

〈x,y〉 = 0 ⇔ cos θ = 0,

which is the condition for the vectors x,y ∈ R
n to be orthogonal. Consequently,

we adopt the following definition.
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Definition 1.9

(i) A pair of nonzero vectors x and y in the inner product space X is said to
be orthogonal if 〈x,y〉 = 0, symbolically expressed by writing x⊥y. A set of
nonzero vectors V in X is orthogonal if every pair in V is orthogonal.

(ii) An orthogonal set V ⊆ X is said to be orthonormal if ‖x‖ = 1 for every
x ∈V.

A typical example of an orthonormal set in the Euclidean space R
n is

given by

e1 = (1, 0, . . . , 0),

e2 = (0, 1, . . . , 0),
...

en = (0, . . . , 0, 1),

which, as we have already seen, forms a basis of R
n.

In general, if the vectors

x1,x2, . . . ,xn (1.8)

in the inner product space X are orthogonal, then they are necessarily linearly
independent. To see that, let

a1x1 + · · · + anxn = 0, ai ∈ F,

and take the inner product of each side of this equation with xk, 1 ≤ k ≤ n.

In as much as 〈xi,xk〉 = 0 whenever i = k, we obtain

ak 〈xk,xk〉 = ak ‖xk‖2 = 0, k ∈ {1, · · · , n}
⇒ ak = 0 for all k.

By dividing each vector in (1.8) by its norm, we obtain the orthonormal set
{xi/ ‖xi‖ : 1 ≤ i ≤ n}.

Let us go back to the Euclidean space R
n and assume that x is any vector

in R
n. We can therefore represent it in the basis {e1, . . . , en} by

x =
n∑

i=1

aiei. (1.9)

Taking the inner product of Equation (1.9) with ek, and using the orthonormal
property of {ei},

〈x, ek〉 = ak, k ∈ {1, . . . , n}.
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This determines the coefficients ai in (1.9), and means that any vector x in R
n

is represented by the formula

x =
n∑

i=1

〈x, ei〉 ei.

The number 〈x, ei〉 is called the projection of x on ei, and 〈x, ei〉 ei is the
projection vector in the direction of ei. More generally, if x and y = 0 are any
vectors in the inner product space X, then 〈x,y/ ‖y‖〉 is the projection of x on
y, and the vector 〈

x,
y

‖y‖

〉
y

‖y‖ =
〈x,y〉
‖y‖2 y

is its projection vector along y.

Suppose now that we have a linearly independent set of vectors {x1, . . . , xn}
in the inner product space X. Can we form an orthogonal set out of this set? In
what follows we present the so-called Gram–Schmidt method for constructing
an orthogonal set {y1, . . . ,yn} out of {xi} having the same number of vectors:
We first choose

y1 = x1.

The second vector is obtained from x2 after extracting the projection vector of
x2 in the direction of y1,

y2 = x2 −
〈x2,y1〉
‖y1‖2 y1.

The third vector is x3 minus the projections of x3 in the directions of y1 and y2,

y3 = x3 −
〈x3,y1〉
‖y1‖2 y1 −

〈x3,y2〉
‖y2‖2 y2.

We continue in this fashion until the last vector

yn = xn − 〈xn,y1〉
‖y1‖2 y1 − · · · − 〈xn,yn−1〉

‖yn−1‖2 yn−1,

and the reader can verify that the set {y1, . . . ,yn} is orthogonal.

EXERCISES

1.8 Given two vectors x and y in an inner product space, under what
conditions does the equality ‖x + y‖2 = ‖x‖2 + ‖y‖2 hold? Can this
equation hold even if the vectors are not orthogonal?

1.9 Let x,y ∈ X, where X is an inner product space.
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(a) If the vectors x and y are linearly independent, prove that x + y
and x − y are also linearly independent.

(b) If x and y are orthogonal and nonzero, when are x + y and
x − y orthogonal?

1.10 Let ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = x2, −1 ≤ x ≤ 1. Use (1.6) to
calculate

(a) 〈ϕ1, ϕ2〉

(b) 〈ϕ1, ϕ3〉

(c) ‖ϕ1 − ϕ2‖
2

(d) ‖2ϕ1 + 3ϕ2‖ .

1.11 Determine all orthogonal pairs on [0, 1] among the functions ϕ1(x) =
1, ϕ2(x) = x, ϕ3(x) = sin 2πx, ϕ4(x) = cos 2πx. What is the largest
orthogonal subset of {ϕ1, ϕ2, ϕ3, ϕ4}?

1.12 Determine the projection of f(x) = cos2 x on each of the functions
f1(x) = 1, f2(x) = cos x, f3(x) = cos 2x, −π ≤ x ≤ π.

1.13 Verify that the functions ϕ1, ϕ2, ϕ3 in Exercise 1.10 are linearly in-
dependent, and use the Gram–Schmidt method to construct a cor-
responding orthogonal set.

1.14 Prove that the set of functions {1, x, |x|} is linearly independent on
[−1, 1], and construct a corresponding orthonormal set. Is the given
set linearly independent on [0, 1]?

1.15 Use the result of Exercise 1.3 and the properties of determinants to
prove that any set of functions {f1, . . . , fn} in Cn−1(I), I being a
real interval, is linearly dependent if, and only if, det(f (j)

i ) = 0 on
I, where 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1.

1.16 Verify that the following functions are orthogonal on [−1, 1].

ϕ1(x) = 1, ϕ2(x) = x2 − 1
3
, ϕ3(x) =

{
x/ |x| , x = 0
0, x = 0.

Determine the corresponding orthonormal set.

1.17 Determine the values of the coefficients a and b which make the
function x2 + ax + b orthogonal to both x + 1 and x − 1 on [0, 1].

1.18 Using the definition of the inner product as expressed by Equation
(1.6), show that ‖f‖ = 0 does not necessarily imply that f = 0
unless f is continuous.
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1.3 The Space L2

For any two functions f and g in the vector space C([a, b]) of complex contin-
uous functions on a real interval [a, b], we defined the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)dx, (1.10)

from which followed the definition of the norm

‖f‖ =
√
〈f, f〉 =

√∫ b

a
|f(x)|2 dx. (1.11)

As in R
n, we can also show directly that the CBS inequality holds in C([a, b]).

For any f, g ∈ C([a, b]), we have
∥
∥
∥
∥
|f |
‖f‖ − |g|

‖g‖

∥
∥
∥
∥

2

=
∫ b

a

[
|f(x)|
‖f‖ − |g(x)|

‖g‖

]2
dx ≥ 0,

where we assume that ‖f‖ = 0 and ‖g‖ = 0. Hence
∫ b

a

|f(x)|
‖f‖

|g(x)|
‖g‖ dx ≤ 1

2 ‖f‖2

∫ b

a

|f(x)|2 dx +
1

2 ‖g‖2

∫ b

a

|g(x)|2 dx = 1

⇒ 〈|f | , |g|〉 ≤ ‖f‖ ‖g‖ .

Using the monotonicity property of the integral
∣
∣
∣
∣
∣

∫ b

a

ϕ(x)dx

∣
∣
∣
∣
∣
≤
∫ b

a

|ϕ(x)| dx,

we therefore conclude that

|〈f, g〉| ≤ 〈|f | , |g|〉 ≤ ‖f‖ ‖g‖ .

If either ‖f‖ = 0 or ‖g‖ = 0 the inequality remains valid, as it becomes an
equality. The triangle inequality

‖f + g‖ ≤ ‖f‖ + ‖g‖

then easily follows from the relation fḡ + f̄g = 2Re fḡ ≤ 2 |fg| .
As we have already observed, the nonnegative number ‖f − g‖ may be re-

garded as a measure of the “distance” between the functions f, g ∈ C([a, b]). In
this case we clearly have ‖f − g‖ = 0 if, and only if, f = g on [a, b]. This is the
advantage of dealing with continuous functions, for if we admit discontinuous
functions, such as

h(x) =
{

1, x = 1
0, x ∈ (1, 2],

(1.12)

then ‖h‖ = 0 whereas h = 0.
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Nevertheless, C([a, b]) is not a suitable inner product space for pursuing this
study, for it is not closed under limit operations as we show in the next section.
That is to say, if a sequence of functions in C([a, b]) “converges” (in a sense
to be defined in Section 1.4) its “limit” may not be in C([a, b]). So we need
to enlarge the space of continuous functions over [a, b] in order to avoid this
difficulty. But in this larger space, call it X([a, b]), we can only admit functions
for which the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)dx

is defined for every pair f, g ∈ X([a, b]). Now the CBS inequality |〈f, g〉| ≤
‖f‖ ‖g‖ ensures that the inner product of f and g is well defined if ‖f‖ and ‖g‖
exist (i.e., if |f |2 and |g|2 are integrable). Strictly speaking, this is only true if
the integrals are interpreted as Lebesgue integrals, for the Riemann integrability
of f2 and g2 does not guarantee the Riemann integrability of fg (see Exercise
1.21); but in this study we shall have no occasion to deal with functions which
are integrable in the sense of Lebesgue but not in the sense of Riemann. For
our purposes, Riemann integration, and its extension to improper integrals, is
adequate. The space X([a, b]) which we seek should therefore be made up of
functions f such that |f |2 is integrable on [a, b].

We use the symbol L2(a, b) to denote the set of functions f : [a, b] → C such
that ∫ b

a

|f(x)|2 dx < ∞.

By defining the inner product (1.10) and the norm (1.11) on L2(a, b), we can
use the triangle inequality to obtain

‖αf + βg‖ ≤ ‖αf‖ + ‖βg‖
= |α| ‖f‖ + |β| ‖g‖ for all f, g ∈ L2(a, b), α, β ∈ C,

hence αf + βg ∈ L2(a, b) whenever f, g ∈ L2(a, b). Thus L2(a, b) is a linear
vector space which, under the inner product (1.10), becomes an inner product
space and includes C([a, b]) as a proper subspace.

In L2(a, b) the equality ‖f‖ = 0 does not necessarily mean f(x) = 0 at every
point x ∈ [a, b]. For example, in the case where f(x) = 0 on all but a finite
number of points in [a, b] we clearly have ‖f‖ = 0. We say that f = 0 pointwise
on a real interval I if f(x) = 0 at every x ∈ I. If ‖f‖ = 0 we say that f = 0 in
L2(I). Thus the function h defined in (1.12) equals 0 in L2(I), but not pointwise.
The function 0 in L2(I) really denotes an equivalence class of functions, each
of which has norm 0. The function which is pointwise equal to 0 is only one
member, indeed the only continuous member, of that class. Similarly, we say
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that two functions f and g in L2(I) are equal in L2(I) if ‖f − g‖ = 0, although
f and g may not be equal pointwise on I. In the terminology of measure theory,
f and g are said to be “equal almost everywhere.” Hence the space L2(a, b)
is, in fact, made up of equivalence classes of functions defined by equality in
L2(a, b), that is, functions which are equal almost everywhere.

Thus far we have used the symbol L2(a, b) to denote the linear space of func-
tions f : [a, b] → C such that

∫ b

a
|f(x)|2 dx < ∞. But because this integral is not

affected by replacing the closed interval [a, b] by [a, b), (a, b], or (a, b), L2(a, b)
coincides with L2([a, b)), L2((a, b]) and L2((a, b)). The interval (a, b) need not
be bounded at either or both ends, and so we have L2(a,∞), L2(−∞, b) and
L2(−∞,∞) = L2(R). In such cases, as in the case when the function is un-
bounded, we interpret the integral of |f |2 on (a, b) as an improper Riemann
integral. Sometimes we simply write L2 when the underlying interval is not
specified or irrelevant to the discussion.

Example 1.10

Determine each function which belongs to L2 and calculate its norm.

(i) f(x) =
{

1, 0 ≤ x < 1/2
0, 1/2 ≤ x ≤ 1.

(ii) f(x) = 1/
√

x, 0 < x < 1.

(iii) f(x) = 1/ 3
√

x, 0 < x < 1.

(iv) f(x) = 1/x, 1 < x < ∞.

Solution

(i)

‖f‖2 =
∫ 1

0

f2(x)dx =
∫ 1/2

0

dx =
1
2
.

Therefore f ∈ L2(0, 1) and ‖f‖ = 1/
√

2.

(ii)

‖f‖2 =
∫ 1

0

1
x

dx = lim
ε→0+

∫ 1

ε

1
x

dx = − lim
ε→0+

log ε = ∞

⇒ f /∈ L2(0, 1).

(iii)

‖f‖2 =
∫ 1

0

1
x2/3

dx = lim
ε→0+

3(1 − ε1/3) = 3

⇒ f ∈ L2(0, 1), ‖f‖ =
√

3.
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(iv)

‖f‖2 =
∫ ∞

1

1
x2

dx = lim
b→∞

−
(

1
b
− 1
)

= 1

⇒ f ∈ L2(1,∞), ‖f‖ = 1.

Example 1.11

The infinite set of functions {1, cos x, sin x, cos 2x, sin 2x, . . .} is orthogonal in
the real inner product space L2(−π, π). This can be seen by calculating the
inner product of each pair in the set:

〈1, cos nx〉 =
∫ π

−π

cos nx dx = 0, n ∈ N.

〈1, sin nx〉 =
∫ π

−π

sin nx dx = 0, n ∈ N.

〈cos nx, cos mx〉 =
∫ π

−π

cos nx cos mx dx

=
1
2

∫ π

−π

[cos(n − m)x + cos(n + m)x]dx

=
1
2

[
1

n − m
sin(n − m)x +

1
n + m

sin(n + m)x
]∣
∣
∣
∣

π

−π

= 0, n = m.

〈sin nx, sin mx〉 =
∫ π

−π

sinnx sin mx dx

=
1
2

∫ π

−π

[cos(n − m)x − cos(n + m)x]dx

= 0, n = m.

〈cos nx, sin mx〉 =
∫ π

−π

cos nx sin mx dx = 0, n,m ∈ N,

because cos nx sin mx is an odd function. Furthermore,

‖1‖ =
√

2π,

‖cos nx‖ =
[∫ π

−π

cos2 nx dx

]1/2

=
√

π,

‖sinnx‖ =
[∫ π

−π

sin2 nx dx

]1/2

=
√

π, n ∈ N.
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Thus the set {
1√
2π

,
cos x√

π
,
sinx√

π
,
cos 2x√

π
,
sin 2x√

π
, · · ·

}

,

which is obtained by dividing each function in the orthogonal set by its norm,
is orthonormal in L2(−π, π).

Example 1.12

The set of functions

{einx : n ∈ Z} = {. . . , e−i2x, e−ix, 1, eix, ei2x, . . .}

is orthogonal in the complex space L2(−π, π), because, for any n = m,

〈
einx, eimx

〉
=
∫ π

−π

einxeimxdx

=
∫ π

−π

einxe−imxdx

=
1

i(n − m)
ei(n−m)x

∣
∣
∣
∣

π

−π

= 0.

By dividing the functions in this set by

∥
∥einx

∥
∥ =

[∫ π

−π

einxeinxdx

]1/2

=
√

2π, n ∈ Z,

we obtain the corresponding orthonormal set
{

1√
2π

einx : n ∈ Z

}

.

If ρ is a positive continuous function on (a, b), we define the inner product
of two functions f, g ∈ C(a, b) with respect to the weight function ρ by

〈f, g〉ρ =
∫ b

a

f(x)ḡ(x)ρ(x)dx, (1.13)

and we leave it to the reader to verify that all the properties of the inner
product, as given in Definition 1.5, are satisfied. f is then said to be orthogonal
to g with respect to the weight function ρ if 〈f, g〉ρ = 0. The induced norm

‖f‖ρ =

[∫ b

a

|f(x)|2 ρ(x)dx

]1/2

satisfies all the properties of the norm (1.11), including the CBS inequality
and the triangle inequality. We use L2

ρ(a, b) to denote the set of functions f :
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(a, b) → C, where (a, b) may be finite or infinite, such that ‖f‖ρ < ∞. This is
clearly an inner product space, and L2(a, b) is then the special case in which
ρ ≡ 1.

EXERCISES

1.19 Prove the triangle inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖ for any f, g ∈
L2(a, b).

1.20 Verify the CBS inequality for the functions f(x) = 1 and g(x) = x

on [0, 1].

1.21 Let the functions f and g be defined on [0, 1] by

f(x) =
{

1, x ∈ Q ∩ [0, 1]
−1, x ∈ Q

c ∩ [0, 1]
, g(x) = 1 for all x ∈ [0, 1],

where Q is the set of rational numbers. Show that both f2 and g2

are Riemann integrable on [0, 1] but that fg is not.

1.22 Determine which of the following functions belongs to L2(0,∞) and
calculate its norm.

(i) e−x, (ii) sin x, (iii)
1

1 + x
, (iv)

1
3
√

x
.

1.23 If f and g are positive, continuous functions in L2(a, b), prove that
〈f, g〉 = ‖f‖ ‖g‖ if, and only if, f and g are linearly dependent.

1.24 Discuss the conditions under which the equality ‖f + g‖ = ‖f‖+‖g‖
holds in L2(a, b).

1.25 Determine the real values of α for which xα lies in L2(0, 1).

1.26 Determine the real values of α for which xα lies in L2(1,∞).

1.27 If f ∈ L2(0,∞) and limx→∞ f(x) exists, prove that limx→∞
f(x) = 0.

1.28 Assuming that the interval (a, b) is finite, prove that if f ∈ L2(a, b)
then the integral

∫ b

a
|f(x)| dx exists. Show that the converse is false

by giving an example of a function f such that |f | is integrable on
(a, b), but f /∈ L2(a, b).

1.29 If the function f : [0,∞) → R is bounded and |f | is integrable,
prove that f ∈ L2(0,∞). Show that the converse is false by giving
an example of a bounded function in L2(0,∞) which is not integrable
on [0,∞).



20 1. Inner Product Space

1.30 In L2(−π, π), express the function sin3 x as a linear combination of
the orthogonal functions {1, cos x, sin x, cos 2x, sin 2x, . . .}.

1.31 Define a function f ∈ L2(−1, 1) such that
〈
f, x2 + 1

〉
= 0 and

‖f‖ = 2.

1.32 Given ρ(x) = e−x, prove that any polynomial in x belongs to
L2

ρ(0,∞).

1.33 Show that if ρ and σ are two weight functions such that ρ ≥ σ ≥ 0 on
(a, b), then L2

ρ(a, b) ⊆ L2
σ(a, b).

1.4 Sequences of Functions

Much of the subject of this book deals with sequences and series of functions,
and this section presents the background that we need on their convergence
properties. We assume that the reader is familiar with the basic theory of
numerical sequences and series which is usually covered in advanced calculus.

Suppose that for each n ∈ N we have a (real or complex) function fn : I → F

defined on a real interval I. We then say that we have a sequence of functions
(fn : n ∈ N) defined on I. Suppose, furthermore, that, for every fixed x ∈ I,

the sequence of numbers (fn(x) : n ∈ N) converges as n → ∞ to some limit in
F. Now we define the function f : I → F, for each x ∈ I, by

f(x) = lim
n→∞

fn(x). (1.14)

That means, given any positive number ε, there is a positive integer N such
that

n ≥ N ⇒ |fn(x) − f(x)| < ε. (1.15)

Note that the number N depends on the point x as much as it depends on
ε, hence N = N(ε, x). The function f defined in Equation (1.14) is called the
pointwise limit of the sequence (fn).

Definition 1.13

A sequence of functions fn : I → F is said to converge pointwise to the function
f : I → F, expressed symbolically by

lim
n→∞

fn = f, lim fn = f, or fn → f ,

if, for every x ∈ I, limn→∞ fn(x) = f(x).
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Example 1.14

(i) Let fn(x) =
1
n

sin nx, x ∈ R. In as much as

lim
n→∞

fn(x) = lim
n→∞

1
n

sin nx = 0 for every x ∈ R,

the pointwise limit of this sequence is the function f(x) = 0, x ∈ R.

(ii) For all x ∈ [0, 1],

fn(x) = xn →
{

0, 0 ≤ x < 1
1, x = 1,

hence the limit function is

f(x) =
{

0, 0 ≤ x < 1
1, x = 1,

(1.16)

as shown in Figure 1.1.
(iii) For all x ∈ [0,∞),

fn(x) =
nx

1 + nx
→ f(x) =

{
0, x = 0
1, x > 0.

Example 1.15

For each n ∈ N, define the sequence fn : [0, 1] → R by

fn(x) =

⎧
⎨

⎩

0, x = 0
n, 0 < x ≤ 1/n

0, 1/n < x ≤ 1.

Figure 1.1 The sequence fn(x) = xn.



22 1. Inner Product Space

Figure 1.2

To determine the limit f, we first note that fn(0) = 0 for all n. If x > 0,
then there is an integer N such that 1/N < x, in which case

n ≥ N ⇒ 1
n
≤ 1

N
< x ⇒ fn(x) = 0.

Therefore fn → 0 (see Figure 1.2).

If the number N in the implication (1.15) does not depend on x, that is, if
for every ε > 0 there is an integer N = N(ε) such that

n ≥ N ⇒ |fn(x) − f(x)| < ε for all x ∈ I, (1.17)

then the convergence fn → f is called uniform, and we distinguish this from
pointwise convergence by writing

fn
u→ f.

Going back to Example 1.14, we note the following.

(i) Since

|fn(x) − 0| =
∣
∣
∣
∣
1
n

sin nx

∣
∣
∣
∣ ≤

1
n

for all x ∈ R,

we see that any choice of N greater than 1/ε will satisfy the implication (1.17),
hence

1
n

sin nx
u→ 0 on R.

(ii) The convergence xn → 0 is not uniform on [0, 1) because the implication

n ≥ N ⇒ |xn − 0| = xn < ε
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cannot be satisfied on the whole interval [0, 1) if 0 < ε < 1, but only on [0, n
√

ε),
because xn > ε for all x ∈ ( n

√
ε, 1). Hence the convergence fn → f, where f is

given in (1.16), is not uniform.

(iii) The convergence
nx

1 + nx
→ 1, x ∈ (0,∞)

is also not uniform in as much as the inequality
∣
∣
∣
∣

nx

1 + nx
− 1
∣
∣
∣
∣ =

1
1 + nx

< ε

cannot be satisfied for values of x in (0, (1 − ε)/nε] if 0 < ε < 1.

Remark 1.16

1. The uniform convergence fn
u→ f clearly implies the pointwise convergence

fn → f (but not vice versa). Hence, when we wish to test for the uniform
convergence of a sequence fn, the candidate function f for the uniform limit of
fn should always be the pointwise limit.

2. In the inequalities (1.15) and (1.17) we can replace the relation < by ≤ and
the positive number ε by cε, where c is a positive constant (which does not
depend on n).

3. Because the statement |fn(x) − f(x)| ≤ ε for all x ∈ I is equivalent to

sup
x∈I

|fn(x) − f(x)| ≤ ε,

we see that fn
u→ f on I if, and only if, for every ε > 0 there is an integer N

such that
n ≥ N ⇒ sup

x∈I
|fn(x) − f(x)| ≤ ε,

which is equivalent to the statement

sup
x∈I

|fn(x) − f(x)| → 0 as n → ∞. (1.18)

Using the criterion (1.18) for uniform convergence on the sequences of
Example 1.14, we see that, in (i),

sup
x∈R

∣
∣
∣
∣
1
n

sin nx

∣
∣
∣
∣ ≤

1
n
→ 0,

thus confirming the uniform convergence of sinnx/n to 0. In (ii) and (iii), we
have

sup
x∈[0,1]

|xn − f(x)| = sup
x∈[0,1)

xn = 1 � 0,
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sup
x∈[0,∞)

∣
∣
∣
∣

nx

1 + nx
− f(x)

∣
∣
∣
∣ = sup

x∈(0,∞)

(

1 − nx

1 + nx

)

= 1 � 0,

hence neither sequence converges uniformly.

Although all three sequences discussed in Example 1.14 are continuous, only
the first one, (sin nx/n), converges to a continuous limit. This would seem to
indicate that uniform convergence preserves the property of continuity as the
sequence passes to the limit. We should also be interested to know under what
conditions we can interchange the operations of integration or differentiation
with the process of passage to the limit. In other words, when can we write

∫

I

lim fn(x)dx = lim
∫

I

fn(x)dx, or (lim fn)′ = lim f ′
n on I?

The answer is contained in the following theorem, which gives sufficient condi-
tions for the validity of these equalities. This is a standard result in classical
real analysis whose proof may be found in a number of references, such as [1]
or [14].

Theorem 1.17

Let (fn) be a sequence of functions defined on the interval I which converges
pointwise to f on I.

(i) If fn is continuous for every n, and fn
u→ f, then f is continuous on I.

(ii) If fn is integrable for every n, I is bounded, and fn
u→ f, then f is integrable

on I and ∫

I

f(x)dx = lim
∫

I

fn(x)dx.

(iii) If fn is differentiable on I for every n, I is bounded, and f ′
n converges

uniformly on I, then fn converges uniformly to f, f is differentiable on I, and

f ′
n

u→ f ′ on I.

Remark 1.18

Part (iii) of Theorem 1.17 remains valid if pointwise convergence of fn on I is
replaced by the weaker condition that fn converges at any single point in I, for
such a condition is only needed to ensure the convergence of the constants of
integration in going from f ′

n to fn.

Going back to Example 1.14, we observe that the uniform convergence of
sinnx/n to 0 satisfies part (i) of Theorem 1.17. It also satisfies (ii) over any
bounded interval in R. But (iii) is not satisfied, in as much as the sequence
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d

dx

(
1
n

sinnx

)

= cos nx

is not convergent. The sequence (xn) is continuous on [0, 1] for every n, but its
limit is not. This is consistent with (i), because the convergence is not uniform.
The same observation applies to the sequence nx/(1 + nx).

In Example 1.15 we have
∫ 1

0

fn(x)dx =
∫ 1/n

0

ndx = 1 for all n ∈ N

⇒ lim
∫ 1

0

fn(x)dx = 1,

whereas ∫ 1

0

lim fn(x)dx = 0.

This implies that the convergence fn → 0 is not uniform, which is confirmed
by the fact that

sup
0≤x≤1

fn(x) = n.

On the other hand,

lim
∫ 1

0

xndx = 0 =
∫ 1

0

lim xndx,

although the convergence xn → 0 is not uniform, which indicates that not all
the conditions of Theorem 1.17 are necessary.

Given a sequence of (real or complex) functions (fn) defined on a real in-
terval I, we define its nth partial sum by

Sn(x) = f1(x) + · · · + fn(x) =
n∑

k=1

fk(x), x ∈ I.

The sequence of functions (Sn), defined on I, is called an infinite series (of
functions) and is denoted

∑
fk. The series is said to converge pointwise on

I if the sequence (Sn) converges pointwise on I, in which case
∑

fk is called
convergent. Its limit is the sum of the series

lim
n→∞

Sn(x) =
∞∑

k=1

fk(x), x ∈ I.

Sometimes we shall find it convenient to identify a convergent series with its
sum, just as we occasionally identify a function f with its value f(x). A series
which does not converge at a point is said to diverge at that point. The se-
ries

∑
fk is absolutely convergent on I if the positive series

∑
|fk| is pointwise
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convergent on I, and uniformly convergent on I if the sequence (Sn) is uni-
formly convergent on I. In investigating the convergence properties of series
of functions we naturally rely on the corresponding convergence properties of
sequences of functions, as discussed earlier, because a series is ultimately a
sequence. But we shall often resort to the convergence properties of series of
numbers, which we assume that the reader is familiar with, such as the various
tests of convergence (comparison test, ratio test, root test, alternating series
test), and the behaviour of such series as the geometric series and the p-series
(see [1] or [3]).

Applying Theorem 1.17 to series, we arrive at the following result.

Corollary 1.19

Suppose the series
∑

fn converges pointwise on the interval I.

(i) If fn is continuous on I for every n and
∑

fn converges uniformly on I,
then its sum

∑∞
n=1 fn is continuous.

(ii) If fn is integrable on I for every n, I is bounded, and
∑

fn converges
uniformly, then

∑∞
n=1 fn is integrable on I and

∫

I

∞∑

n=1
fn(x)dx =

∞∑

n=1

∫

I

fn(x)dx.

(iii) If fn is differentiable on I for every n, I is bounded, and
∑

f ′
n converges

uniformly on I, then
∑

fn converges uniformly and its limit is differentiable
on I and satisfies ( ∞∑

n=1
fn

)′
=

∞∑

n=1
f ′

n.

This corollary points out the relevance of uniform convergence to manipu-
lating series, and it would be helpful if we had a simpler and more practical
test for the uniform convergence of a series than applying the definition. This
is provided by the following theorem, which gives a sufficient condition for the
uniform convergence of a series of functions.

Theorem 1.20 (Weierstrass M-Test)

Let (fn) be a sequence of functions on I, and suppose that there is a sequence
of (nonnegative) numbers Mn such that

|fn(x)| ≤ Mn for all x ∈ I, n ∈ N.

If
∑

Mn converges, then
∑

fn converges uniformly and absolutely on I.
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Proof

Let ε > 0. We have

∣
∣
∣
∣

∞∑

k=1

fk(x) −
n∑

k=1

fk(x)
∣
∣
∣
∣ ≤

∞∑

k=n+1

|fk(x)|

≤
∞∑

k=n+1

Mk for all x ∈ I, n ∈ N.

Because the series
∑

Mk is convergent, there is an integer N such that

n ≥ N ⇒
∞∑

k=n+1

Mk < ε

⇒
∣
∣
∣
∣

∞∑

k=1

fk(x) −
n∑

k=1

fk(x)
∣
∣
∣
∣ < ε for all x ∈ I.

By definition, this means
∑

fk is uniformly convergent on I. Absolute conver-
gence follows by comparison with Mn.

Example 1.21

(i) The trigonometric series
∑ 1

n2
sin nx

is uniformly convergent on R because
∣
∣
∣
∣

1
n2

sin nx

∣
∣
∣
∣ ≤

1
n2

and the series
∑

1/n2 is convergent. Because sin nx/n2 is continuous on R for
every n, the function

∑∞
n=1 sinnx/n2 is also continuous on R. Furthermore, by

Corollary 1.19, the integral of the series on any finite interval [a, b] is

∫ b

a

( ∞∑

n=1

1
n2

sin nx

)

dx =
∞∑

n=1

1
n2

∫ b

a

sin nx dx

=
∞∑

n=1

1
n3

(cos na − cos nb)

≤ 2
∞∑

n=1

1
n3

,

which is convergent. On the other hand, the series of derivatives

∞∑

n=1

d

dx

(
1
n2

sinnx

)

=
∞∑

n=1

1
n

cos nx
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is not uniformly convergent. In fact, it is not even convergent at some values
of x, such as the integral multiples of 2π. Hence we cannot write

d

dx

∞∑

n=1

1
n2

sin nx =
∞∑

n=1

1
n

cos nx for all x ∈ R.

(ii) By the M-test, both the series

∑ 1
n3

sin nx

and ∞∑

n=1

d

dx

(
1
n3

sinnx

)

=
∞∑

n=1

1
n2

cos nx

are uniformly convergent on R. Hence the equality

d

dx

∞∑

n=1

1
n3

sinnx =
∞∑

n=1

1
n2

cos nx

is valid for all x in R.

EXERCISES

1.34 Calculate the pointwise limit where it exists.

(a)
xn

1 + xn
, x ∈ R.

(b) n
√

x, 0 ≤ x < ∞.

(c) sin nx, x ∈ R.

1.35 Determine the type of convergence (pointwise or uniform) for each
of the following sequences.

(a)
xn

1 + xn
, 0 ≤ x ≤ 2.

(b) n
√

x, 1/2 ≤ x ≤ 1.

(c) n
√

x, 0 ≤ x ≤ 1.

1.36 Determine the type of convergence for the sequence

fn(x) =
{

nx, 0 ≤ x < 1/n

1, 1/n ≤ x ≤ 1,

and decide whether the equality

lim
∫ 1

0

fn(x)dx =
∫ 1

0

lim fn(x)dx

is valid.
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1.37 Evaluate the limit of the sequence

fn(x) =
{

nx, 0 ≤ x ≤ 1/n

n(1 − x)/(n − 1), 1/n < x ≤ 1,

and determine the type of convergence.

1.38 Determine the limit and the type of convergence for the sequence
fn(x) = nx(1 − x2)n on [0, 1].

1.39 Prove that the convergence

x

n + x
→ 0

is uniform on [0, a] for any a > 0, but not on [0,∞).

1.40 Given

fn(x) =
{

1/n, |x| < n

0, |x| > n,

prove that fn
u→ 0. Evaluate lim

∫∞
−∞ fn(x)dx and explain why it is

not 0.

1.41 If the sequence (fn) converges uniformly to f on [a, b], prove that
|fn − f | , and hence |fn − f |2 , converges uniformly to 0 on [a, b].

1.42 Determine the domain of convergence of the series
∑

fn, where

(a) fn(x) =
1

n2 + x2
.

(b) fn(x) =
xn

1 + xn
.

1.43 If the series
∑

an is absolutely convergent, prove that
∑

ansin nx is
uniformly convergent on R.

1.44 Prove that

lim
n→∞

∫ (n+1)π

nπ

|sin x|
x

dx = 0.

Use this to conclude that the improper integral
∫ ∞

0

sin x

x
dx

exists. Show that the integral
∫∞
0

(|sinx| /x)dx = ∞. Hint: Use the
alternating series test and the divergence of the harmonic series
∑

1/n.
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1.45 The series
∞∑

n=0
anxn = a0 + a1x + a2x

2 + · · ·

is called a power series about the point 0. It is known (see [1]) that
this series converges in (−R,R) and diverges outside [−R,R], where

R =
[

lim
n→∞

n
√

|an|
]−1

= lim
n→∞

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣ ≥ 0.

If R > 0, use the Weierstrass M-test to prove that the power series
converges uniformly on [−R+ε,R−ε], where ε is any positive number
less than R.

1.46 Use the result of Exercise 1.45 to show that the function

f(x) =
∞∑

n=0
anxn

is continuous on (−R,R); then show that f is also differentiable on
(−R,R) with

f ′(x) =
∞∑

n=1
nanxn−1.

1.47 From Exercise 1.46 conclude that the power series f(x) =
∑∞

n=0 anxn

is differentiable any number of times on (−R,R), and that an =
f (n)(0)/n! for all n ∈ N.

1.48 Use the result of Exercise 1.47 to obtain the following power series
(Taylor series) representations of the exponential and trigonometric
functions on R.

ex =
∞∑

n=0

xn

n!
,

cos x =
∞∑

n=0
(−1)n x2n

(2n)!
,

sin x =
∞∑

n=0
(−1)n x2n+1

(2n + 1)!
.

1.49 Use the result of Exercise 1.48 to prove Euler’s formula eix = cos x+
i sin x for all x ∈ R, where i =

√
−1.
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1.5 Convergence in L2

Having discussed pointwise and uniform convergence for a sequence of func-
tions, we now consider a third type: convergence in L2.

Definition 1.22

A sequence of functions (fn) in L2(a, b) is said to converge in L2 if there is a
function f ∈ L2(a, b) such that

lim
n→∞

‖fn − f‖ = 0, (1.19)

that is, if for every ε > 0 there is an integer N such that

n ≥ N ⇒ ‖fn − f‖ < ε.

Equation (1.19) is equivalent to writing

fn
L2

→ f,

and f is called the limit in L2 of the sequence (fn).

Example 1.23

(i) In Example 1.14(ii) we saw that, pointwise,

xn →
{

0, 0 ≤ x < 1
1, x = 1.

.

Because L2([0, 1]) = L2([0, 1)), we have

‖xn − 0‖ =
[∫ 1

0

x2ndx

]1/2

=
[

1
2n + 1

]1/2

→ 0.

Therefore xn L2

→ 0.

(ii) The sequence of functions (fn) defined in Example 1.15 by

fn(x) =

⎧
⎨

⎩

0, x = 0
n, 0 < x ≤ 1/n

0, 1/n < x ≤ 1
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also converges pointwise to 0 on [0, 1]. But in this case,

‖fn − 0‖2 =
∫ 1

0

f2
n(x)dx

=
∫ 1/n

0

n2dx

= n for all n ∈ N.

Thus ‖fn − 0‖ =
√

n � 0, which means the sequence fn does not converge to
0 in L2.

This last example shows that pointwise convergence does not imply conver-
gence in L2. Conversely, convergence in L2 cannot imply pointwise convergence,
because the limit in this case is a class of functions (which are equal in L2 but
not pointwise). It is legitimate to ask, however, whether a sequence that con-
verges pointwise to some limit f can converge to a different limit in L2. For
example, can the sequence (fn) in Example 1.23(ii) converge in L2 to some
function other than 0? The answer is no. In other words, if a sequence con-
verges both pointwise and in L2, then its limit is the same in both cases. More
precisely, we should say that the two limits are not distinguishable in L2 as
they belong to the same equivalence class.

On the other hand, uniform convergence fn
u→ f over I implies pointwise

convergence, as we have already observed, and we now show that it also implies

fn
L2

→ f provided the sequence (fn) and f lie in L2(I) and I is bounded: Because
fn − f

u→ 0, it is a simple matter to show that |fn − f |2 u→ 0 (Exercise 1.41).
By Theorem 1.17(ii), we therefore have

lim
n→∞

‖fn − f‖2 = lim
n→∞

∫
I
|fn(x) − f(x)|2 dx

=
∫

I
lim

n→∞
|fn(x) − f(x)|2 dx = 0.

The condition that f belong to L2(I) is actually not needed, as we shall discover
in Theorem 1.26.

Example 1.24

We saw in Example 1.21 that

Sn(x) =
n∑

k=1

1
k2

sin kx
u→ S(x) =

∞∑

k=1

1
k2

sin kx, x ∈ R,

hence the function S(x) is continuous on [−π, π]. Moreover, both Sn and S lie
in L2(−π, π) because each is uniformly bounded above by the convergent series
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∑
1/k2. Therefore Sn converges to S in L2(−π, π). Equivalently, we say that

the series
∑

sin kx/k2 converges to
∑∞

k=1 sin kx/k2 in L2(−π, π) and write

lim
n∑

k=1

1
k2

sin kx =
∞∑

k=1

1
k2

sin kx in L2(−π, π).

The series
∑

sin kx/k, on the other hand, cannot be tested for convergence
in L2 with the tools available, and we have to develop the theory a little further.
First we define a Cauchy sequence in L2 along the lines of the corresponding
notion in R. This allows us to test a sequence for convergence without having
to guess its limit beforehand.

Definition 1.25

A sequence in L2 is called a Cauchy sequence if, for every ε > 0, there is an
integer N such that

m,n ≥ N ⇒ ‖fn − fm‖ < ε.

Clearly, every convergent sequence (fn) in L2 is a Cauchy sequence; for if

fn
L2

→ f, then, by the triangle inequality,

‖fn − fm‖ ≤ ‖fn − f‖ + ‖fm − f‖ ,

and we can make the right-hand side of this inequality arbitrarily small by
taking m and n large enough. The converse of this statement (i.e., that every
Cauchy sequence in L2 converges to some function in L2) is also true and
expresses the completeness property of L2.

Theorem 1.26 (Completeness of L2)

For every Cauchy sequence (fn) in L2 there is a function f ∈ L2 such that

fn
L2

→ f .

There is another theorem which states that, for every function f ∈ L2(a, b),

there is a sequence of continuous functions (fn) on [a, b] such that fn
L2

→ f. In
other words, the set of functions C([a, b]) is dense in L2(a, b) in much the same
way that the rationals Q are dense in R, keeping in mind of course the different
topologies of R and L2, the first being defined by the absolute value |·| and the
second by the norm ‖·‖ . For example, the L2(−1, 1) function

f(x) =
{

0, −1 ≤ x < 0
1, 0 ≤ x ≤ 1,
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which is discontinuous at x = 0, can be approached in the L2 norm by the
sequence of continuous functions

fn =

⎧
⎨

⎩

0, −1 ≤ x ≤ −1/n

nx + 1, −1/n < x < 0
1, 0 ≤ x ≤ 1.

This is clear from

lim
n→∞

‖fn − f‖ = lim
n→∞

[∫ 1

−1

|fn(x) − f(x)|2 dx

]1/2

= lim
n→∞

[∫ 0

−1/n

(nx + 1)2dx

]1/2

= lim
n→∞

1/
√

3n = 0.

Needless to say, there are many other sequences in C([−1, 1]) which converge
to f in L2(−1, 1), just as there are many sequences in Q which converge to the
irrational number

√
2.

As we shall have occasion to refer to this result in the following chapter, we
give here its precise statement.

Theorem 1.27 (Density of C in L2)

For any f ∈ L2(a, b) and any ε > 0, there is a continuous function g on [a, b]
such that ‖f − g‖ < ε.

The proofs of Theorems 1.26 and 1.27 may be found in [14]. The space
L2 is one of the most important examples of a Hilbert space, which is an inner
product space that is complete under the norm defined by the inner product. It
is named after David Hilbert (1862–1943), the German mathematician whose
work and inspiration did much to develop the ideas of Hilbert space (see [7],
vol. I). Many of the ideas that we work with are articulated within the context
of L2.

Example 1.28

Using Theorem 1.26, we can now look into the question of convergence of the
sequence Sn(x) =

∑n
k=1 sin kx/k in L2(−π, π). Noting that

‖Sn(x) − Sm(x)‖2 =

∥
∥
∥
∥
∥

n∑

k=m+1

1
k

sin kx

∥
∥
∥
∥
∥

2

, m < n,
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we can use the orthogonality of {sin kx : k ∈ N} in L2(−π, π) (Example 1.11)
to obtain

∥
∥
∥
∥
∥

n∑

k=m+1

1
k

sin kx

∥
∥
∥
∥
∥

2

=
n∑

k=m+1

1
k2

‖sin kx‖2 = π
n∑

k=m+1

1
k2

.

Suppose ε > 0. Since
∑

1/k2 is convergent, we can choose N so that

n > m ≥ N ⇒
n∑

k=m+1

1
k2

<
ε2

π

⇒ ‖Sn(x) − Sm(x)‖ < ε.

Thus
∑n

k=1 sin kx/k is a Cauchy sequence and hence converges in L2(−π, π),
although we cannot as yet tell to what limit.

Similarly, the series
∑

cos kx/k converges in L2(−π, π), although this series
diverges pointwise at certain values of x, such as all integral multiples of 2π.

This section was devoted to convergence in L2 because of its importance to
the theory of Fourier series, but we could just as easily have been discussing
convergence in the weighted space L2

ρ. Definitions 1.22 and 1.25 and Theorems
1.26 and 1.27 would remain unchanged, with the norm ‖·‖ replaced by ‖·‖ρ and
convergence in L2 by convergence in L2

ρ.

EXERCISES

1.50 Determine the limit in L2 of each of the following sequences where
it exists.

(a) fn(x) = n
√

x, 0 ≤ x ≤ 1.

(b) fn(x) =
{

nx, 0 ≤ x < 1/n

1, 1/n ≤ x ≤ 1.

(c) fn(x) = nx(1 − x)n, 0 ≤ x ≤ 1.

1.51 Test the following series for convergence in L2.

(a)
∑ 1

k2/3
sin kx, −π ≤ x ≤ π.

(b)
∑ 1

k
eikx, −π ≤ x ≤ π.

(c)
∑ 1√

k + 1
cos kx, −π ≤ x ≤ π.
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1.52 If (fn) is a sequence in L2(a, b) which converges to f in L2, show

that 〈fn, g〉 L2

→ 〈f, g〉 for any g ∈ L2(a, b).

1.53 Prove that |‖f‖ − ‖g‖| ≤ ‖f − g‖ , and hence conclude that if fn
L2

→
f then ‖fn‖ → ‖f‖ .

1.54 If the numerical series
∑

|an| is convergent, prove that
∑

|an|2 is
also convergent, and that the series

∑
ansinnx and

∑
an cos nx are

both continuous on [−π, π].

1.55 Prove that if the weight functions ρ and σ are related by ρ ≥ σ on
(a, b), then a sequence which converges in L2

ρ(a, b) also converges in
L2

σ(a, b).

1.6 Orthogonal Functions

Let
{ϕ1, ϕ2, ϕ3, . . .}

be an orthogonal set of (nonzero) functions in the complex space L2, which
may be finite or infinite, and suppose that the function f ∈ L2 is a finite linear
combination of elements in the set {ϕi},

f =
n∑

i=1

αiϕi, αi ∈ C. (1.20)

Taking the inner product of f with ϕk,

〈f, ϕk〉 = αk ‖ϕk‖
2 for all k = 1, . . . , n,

we conclude that
αk =

〈f, ϕk〉
‖ϕk‖

2 ,

and the representation (1.20) takes the form

f =
n∑

k=1

〈f, ϕk〉
‖ϕk‖

2 ϕk.

In other words, the coefficients αk in the linear combination (1.20) are deter-
mined by the projections of f on ϕk. In terms of the corresponding orthonormal
set {ψk = ϕk/ ‖ϕk‖},

f =
n∑

k=1

〈f, ψk〉ψk,

and the coefficients coincide with the projections of f on ψk.
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Suppose, on the other hand, that f is an arbitrary function in L2 and that
we want to obtain the best approximation of f in L2, that is, in the norm ‖·‖ ,

by a finite linear combination of the elements of {ϕk}. We should then look for
the coefficients αk which minimize the nonnegative number

∥
∥
∥
∥f −

n∑

k=1

αkϕk

∥
∥
∥
∥ .

We have
∥
∥
∥
∥f −

n∑

k=1

αkϕk

∥
∥
∥
∥

2

=
〈

f −
n∑

k=1

αkϕk, f −
n∑

k=1

αkϕk

〉

= ‖f‖2 − 2
n∑

k=1

Re ᾱk 〈f, ϕk〉 +
n∑

k=1

|αk|2 ‖ϕk‖
2

= ‖f‖2 −
n∑

k=1

|〈f, ϕk〉|
2

‖ϕk‖
2

+
n∑

k=1

‖ϕk‖
2

[
∣
∣α2

k

∣
∣− 2Re ᾱk

〈f, ϕk〉
‖ϕk‖

2 +
|〈f, ϕk〉|

2

‖ϕk‖
4

]

= ‖f‖2 −
n∑

k=1

|〈f, ϕk〉|
2

‖ϕk‖
2 +

n∑

k=1

‖ϕk‖
2

∣
∣
∣
∣
∣
αk − 〈f, ϕk〉

‖ϕk‖
2

∣
∣
∣
∣
∣

2

.

Since the coefficients αk appear only in the last term

n∑

k=1

‖ϕk‖
2

∣
∣
∣
∣
∣
αk − 〈f, ϕk〉

‖ϕk‖
2

∣
∣
∣
∣
∣

2

≥ 0,

we obviously achieve the minimum of ‖f −
∑n

k=1 αkϕk‖
2
, and hence of

‖f −
∑n

k=1 αkϕk‖ , by choosing

αk =
〈f, ϕk〉
‖ϕk‖

2 .

This minimum is given by
∥
∥
∥
∥
∥
f −

n∑

k=1

〈f, ϕk〉
‖ϕk‖

2 ϕk

∥
∥
∥
∥
∥

2

= ‖f‖2 −
n∑

k=1

|〈f, ϕk〉|
2

‖ϕk‖
2 ≥ 0. (1.21)

This yields the relation,

n∑

k=1

|〈f, ϕk〉|
2

‖ϕk‖
2 ≤ ‖f‖2

.
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Since this relation is true for any n, it is also true in the limit as n → ∞. The
resulting inequality

∞∑

k=1

|〈f, ϕk〉|
2

‖ϕk‖
2 ≤ ‖f‖2

, (1.22)

known as Bessel’s inequality, holds for any orthogonal set {ϕk : k ∈ N} and
any f ∈ L2.

In view of (1.21), Bessel’s inequality becomes an equality if, and only if,
∥
∥
∥
∥
∥
f −

∞∑

k=1

〈f, ϕk〉
‖ϕk‖

2 ϕk

∥
∥
∥
∥
∥

= 0,

or, equivalently,

f =
∞∑

k=1

〈f, ϕk〉
‖ϕk‖

2 ϕk in L2,

which means that f is represented in L2 by the sum
∑∞

k=1 αkϕk, where αk =
〈f, ϕk〉 / ‖ϕk‖

2
.

Definition 1.29

An orthogonal set {ϕn : n ∈ N} in L2 is said to be complete if, for any f ∈ L2,

n∑

k=1

〈f, ϕk〉
‖ϕk‖

2 ϕk
L2

→ f .

Thus a complete orthogonal set in L2 becomes a basis for the space, and
because L2 is infinite-dimensional the basis has to be an infinite set. When
Bessel’s inequality becomes an equality, the resulting relation

‖f‖2 =
∞∑

n=1

|〈f, ϕn〉|
2

‖ϕn‖
2 (1.23)

is called Parseval’s relation or the completeness relation. The second term is
justified by the following theorem, which is really a restatement of Definition
1.29.

Theorem 1.30

An orthogonal set {ϕn : n ∈ N} is complete if, and only if, it satisfies Parseval’s
relation (1.23) for any f ∈ L2.
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Remark 1.31

1. Given any orthogonal set {ϕn : n ∈ N} in L2, we have shown that we obtain
the best L2-approximation

n∑

k=1

αkϕk

of the function f ∈ L2 by choosing αk = 〈f, ϕk〉 / ‖ϕk‖
2, and this choice is

independent of n. If {ϕn} is complete then the equality f =
∑∞

n=1 αnϕn holds
in L2.

2. When the orthogonal set {ϕn} is normalized to {ψk = ϕk/ ‖ϕk‖}, Bessel’s
inequality takes the form

∞∑

k=1

|〈f, ψk〉|
2 ≤ ‖f‖2

,

and Parseval’s relation becomes

‖f‖2 =
∞∑

n=1
|〈f, ψn〉|

2
.

3. For any f ∈ L2, because ‖f‖ < ∞, we conclude from Bessel’s inequality that
〈f, ψn〉 → 0 whether the orthonormal set {ψn} is complete or not.

Parseval’s relation may be regarded as a generalization of the theorem of
Pythagoras from R

n to L2, where ‖f‖2 replaces the square of the length of the
vector, and

∑∞
n=1 |〈f, ψn〉|

2 represents the sum of the squares of its projections
on the orthonormal basis. That is one reason why L2 is considered the natural
generalization of the finite-dimensional Euclidean space to infinite dimensions.
It preserves some of the basic geometric structure of R

n, and the completeness
property (Theorem 1.26) guarantees its closure under limiting operations on
Cauchy sequences.

EXERCISES

1.56 If l is any positive number, show that {sin(nπx/l) : n ∈ N} and
{cos(nπx/l) : n ∈ N0} are orthogonal sets in L2(0, l). Determine the
corresponding orthonormal sets.

1.57 Determine the coefficients ci in the linear combination

c1 + c2sin πx + c3sin 2πx

which give the best approximation in L2(0, 2) of the function f(x) =
x, 0 < x < 2.
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1.58 Determine the coefficients ai and bi in the linear combination

a0 + a1cos x + b1sin x + a2cos 2x + b2sin 2x

which give the best approximation in L2(−π, π) of f(x) = |x|, −π ≤
x ≤ π.

1.59 Let p1, p2, and p3 be the three orthogonal polynomials formed from
the set {1, x, x2} by the Gram–Schmidt method, where −1 ≤ x ≤ 1.
Determine the constant coefficients in the second-degree polynomial
a1p1(x) + a2p2(x) + a3p3(x) which give the best approximation in
L2(−1, 1) of ex. Can you think of another polynomial p of degree 2
which approximates ex on (−1, 1) in a different sense?

1.60 Assuming that

1 − x =
8
π2

∞∑

n=1

1
(2n − 1)2

cos
(2n − 1)π

2
x, 0 ≤ x ≤ 2,

use Parseval’s identity to prove that

π4 = 96
∞∑

n=1

1
(2n − 1)4

.

1.61 Define a real sequence (ak) such that
∑

a2
k converges and

∑
ak di-

verges. What type of convergence can the series
∑

an cosnx, −π ≤
x ≤ π have?

1.62 Suppose {fn : n ∈ N} is an orthogonal set in L2(0, l), and let

ϕn(x) =
1
2
[fn(x) + fn(−x)],

ψn(x) =
1
2
[fn(x) − fn(−x)], −l ≤ x ≤ l,

be the even and odd extensions, respectively, of fn from [0, l] to
[−l, l]. Show that the set {ϕn} ∪ {ψn} is orthogonal in L2(−l, l). If
{fn} is orthonormal in L2(0, l), what is the corresponding orthonor-
mal set in L2(−l, l)?


