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A B S T R A C T   

Melatonin (MT) reacts with oxygenated compounds to form 2-hydroxymelatonin (2-HMT). The potential role of 
2-HMT and silicon (Si) in moderation of chromium (Cr) stress in Brassica napus was evaluated in this study. 
B. napus seedlings have reduced growth and phytochemical attributes when grown in Cr-contaminated pots. 
Application of 2-HMT and Si, alone or as combined treatment, minimized Cr-stress in B. napus seedlings. Sup-
plementation of 2-HMT and Si improved stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 
concentration (Ci) in B. napus seedlings subjected in Cr-toxic soil. Combined application of 2-HMT and Si 
prominently enhanced antioxidantive enzymes activity i.e., SOD (superoxide-dismutase), APX (ascorbate- 
peroxidase) and CAT (catalase) enzyme in B. napus seedlings, compared to seedlings treated with MT-only. 
Moreover, 2-HMT and Si also reduced MDA (malondialdehyde) content, H2O2 (hydrogen peroxide) content 
and EL (electrolyte leakage) in B. napus seedlings of Cr-amended soil. Co-supplementation of 2-HMT and Si 
significantly enhanced ethylene level in B. napus seedlings grown in Cr-contaminated soil, as compared to rest of 
treated seedlings. Increased ethylene level activates antioxidantive defence system. Therefore, it is suggested that 
combined treatment of 2-HMT and Si can be useful to eliminate abiotic stresses in other crops.   

1. Introduction 

Heavy metal contamination is most solemn pollution due to modern 
anthropogenic activities. Many of the heavy metals have polluted the 
environment (Briffa et al. 2020). Chromium exists in two forms: triva-
lent (III) and hexavalent (VI). Hexavalent chromium is more toxic as 
compared to trivalent Cr. Many researchers have revealed, elevated 
hexavalent chromium (Cr6+) in soil has reduced growth and physio-
logical properties of several crops (Balali-Mood et al. 2021). Excessive 
accumulation of Cr disturbs photosynthetic rate in plants along with 
nutrient accumulation. This excessive Cr enters in human body through 
food chain and causes various diseases such as bronchitis, tuberculosis, 

dermatitis and also results in cancer (Lopez-Bucio et al. 2022). 
Melatonin (N-acetyl-5-methoxytryptamine) is a decisive compound 

involved in regulation of morphophysiological, physiochemical and 
molecular process in all plant tissues (Arnao and Hernandez-Ruiz, 
2019). This unique low molecular weight organic compound has ROS 
scavenging properties, thus can remediate harmful heavy metals in 
plants (Zeng et al. 2022). Melatonin (MT) protects plants from delete-
rious impacts of heavy metals, this illustrates MT role as powerful 
antioxidant (Hoque et al. 2021). Chen et al. (2017) reported, exogenous 
supplementation of MT reduced toxic salinity stress in Arabidopsis 
plants. Foliar application of melatonin also induced Cd-sequestration in 
Nicotiana tabacum, thereby reduced Cd-induced reduction in growth and 
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photo-inhibition, in MT treated seedlings (Wang et al. 2019). 2-Hydrox-
ymelatonin is predominant over melatonin in plants. This is proved by 
the fact that ratio of 2-HMT to MT in plants is 368:1 (Byeon et al. 2015). 
Lee et al. (2019) reported that 2-HMT protected tomato, cucumber and 
tobacco against combined stress of drought and cold. Additionally, as 
per our previous research findings 2-HMT mitigated Cd-stress in 
C. sativus by incrementation in activity of polyamine synthetic enzymes 
and scavenging action of antioxidantive enzymes (Shah et al. 2020). Lee 
and Back (2016) also reported that 2-HMT modulate the physiological 
role of transcription factors, and there by alleviated the collective effect 
of cold and drought in rice plants. 

Silicon is a crucial plant nutrient and is most prevalent element after 
oxygen (Tripathi et al. 2020). This beneficial mineral plays vital part in 
growth, photosynthesis, chlorophyll stabilization and upregulation of 
crucial enzymes (Verma et al. 2019). Silicon is crucial for various mo-
lecular processes, which are involved in scrutiny of metabolomics in 
plants. Si as an essential element, produces many distinguish character 
for growth and developments in plants (Souri et al. 2021). Si mitigates 
stress caused by accumulation of toxic metals and various other abiotic 
factors (Bhat et al. 2019). Si triggered some internal as well as external 
processes that mitigate toxic effects of heavy metals. As far as external 
mechanisms are concerned, they include Si role in amelioration of heavy 
metal through absorption and activity of heavy metal (Zhao et al. 2022). 
Internal mechanisms include compartmentalization of silicon with 
metal ion, activation of antioxidantive enzymes and changing cell wall 
architecture and composition (Khan et al. 2022). The effective contri-
bution of Si in alleviation of stresses is due to accretion of polysialic acid. 
With incrementation of these acids, tolerance in plants to abiotic stresses 
is increased (Emamverdian et al. 2018). Bao et al. (2021) reported that 
Si in combination with MT reduced As and Cd translocation in rice 
grown in polluted soil. 

Ethylene in plants contributes to physiological activities e.g photo-
synthesis and respiration (Chandwani and Amaresan 2022). Ethylene 
biosynthesis, occurred in almost all cells of plant. It is not limited to 
specific tissue or organ (Chen et al., 2022). Certain type of internal or 
external stimuli are involved in ethylene biosynthetic pathway, and 
require extensive research to understand mechanism laying behind this 
process (Muller 2021). Ethylene biosynthesis is mediated in abiotic 
stresses, and regulated through feedback mechanism involving several 
signaling agents such as NO (nitric oxide), hydrogen sulphide (H2S), and 
others (Husain et al., 2020). Ethylene activates the plant’s antioxidative 
defence mechanism, that reduced oxidative stress, enhanced photosyn-
thetic efficiency, and recovered plant growth (Sharma et al., 2019). 
Chilling, salt, drought, heat, floods, heavy metals, and photo-oxidative 
stress all stimulate ethylene production (Khan et al., 2020). In grape-
vine, exogenous MT induced salt tolerance through promoting ethylene 
synthesis (Xu et al., 2019). Plants generate ethylene against heat stress, 
which emphasis its role in combating abiotic stresses (Poor et al., 2021). 
Ethylene is also identified as a key positive modulator of salt-stress 
resistance (Riyazuddin et al., 2020). 

Brassica napus (Czern) L. is from Brassicaceae family, its common 
name is "Indian-mustard" (Rai et al., 2022). It is a common amphidiploid 
species resulting from a hybrid of Brassica rapa with Brassica nigra 
(Aslan, 2022), commonly grown in India, Canada, Australia, China, and 
Russia (Nanjundan et al. 2022). Efforts were made to increase their 
commercial and agriculture related qualities such as oil extract, seed 
size, fractured pods, and disease resistance (Srivastava et al. 2022). 

On basis of above facts, this novel research was conducted to 
examine potential of 2-HMT and Si in alleviation of Cr stress in B. napus 
seedlings. Furthermore, the study was intended to explore effect of 2- 
HMT and Si on growth and physiochemical features of B. napus seed-
lings grown in Cr-stressed conditions. 

2. Material and Methods 

This experiment was carried out in the wire house of Department of 

Botany, University of Education, Lahore, Pakistan. Healthy garden soil 
was obtained for experiment designed in pots. The collected garden soil 
contained nitrogen (N) 1.79 g kg− 1, zinc (Zn) 27.43 g kg− 1, organic 
content 3.98 g kg− 1, nickel (Ni) 0.16 mg kg− 1, chromium (Cr) 0.001 mg 
kg− 1, potassium (K) 2.27 g kg− 1and pH 7.5. Certified and pathogen free 
seeds were acquired from Punjab Seed Centre, Lahore, Punjab, Pakistan. 
Seeds of B. napus were sterilized with sodium hypochlorite, followed by 
rinsing with distilled H2O. For Cr toxification, potassium dichromate 
(K2Cr2O7) was used during experimentation. Sodium silicate (Na2SiO3) 
was used for application of Si (1.7 mM) in soil. The pots in which there 
was no toxification of Cr as well as no growth regulator (either 2-HMT or 
Si) was applied, was termed as uncontaminated control (C). In case 
when only Cr was added in potted soil and there was no addition of any 
growth regulator, the treatment was named as contaminated control 
(Cr-stress). 2-Hydroxymelatonin was obtained from sigma Aldrich. As 
per our previous study, concentration used for 2-HMT was 100 µM 
(Shah et al. 2020). Also, in a pilot experiment, highest germination rate 
(95%) was observed in B. napus seedlings treated with 100 µM 2-HMT. 
So, in the current research, 100 µM 2-HMT was used in potted soil 
through seed priming approach. Similarly, Si treatment was also applied 
using seed priming approach. 

2.1. Determination of Growth 

Plants of B. napus were harvested after 30 days. Growth characters 
(root and shoot length and their respective weights) were recorded. 

2.2. Estimation of Chlorophyll Content 

Arnon method (1949) was used to determine chl a, chl b and total chl 
content from acetone extracts. 

2.3. Determination of Stomatal Conductance (Gs), Net Photosynthetic 
Rate (Pn) and Transpiration Rate (Tr) 

Gs, Pn and Tr of B. napus leaves was determined using LCi-SD (ADC 
Bioscientific Ltd. Hoddesdon, UK) portable photosynthesis system. 

2.4. Determination of Antioxidantive Enzymes Activities 

For preparation of enzyme extract, 250 gm plant leaves were sub-
jected to homogenous mixture of potassium phosphate buffer (3 ml of 
100 µM) containing EDTA (1mM) and polyvinyl polypyrrolidone. The 
obtained homogenous mixture was subjected to centrifugation at 12,000 
rpm for ten minutes at 4◦C. The extract was collected and used for 
further proceedings. 

The activity of SOD was quantified as per method determined by 
Nishikimi and Rao (1972). SOD activity. SOD is regarded to inhibit 
chemical induced nitroblue tetrazolium (NBT) reduction. 1 unit of 
enzyme was regarded as amount of enzyme used to inhibit 50% reduc-
tion of NBT. 

For measurement of APX activity, Nakano and Ascada (1981) 
method was employed. For this, ascorbate oxidation was measured in 
the presence of hydrogen peroxide at 250 nm. The activity of APX was 
measured in terms of oxidized ascorbate. 

Catalase activity was recorded with the help of reaction mixture 
made by mixing phosphate buffer (50 mM/L) and hydrogen peroxide 
(150 mM/L) for 2 minutes, for measurement of hydrogen peroxide 
decomposition (Chance and Maehly, 1955). 

2.5. Determination of Malondialdehyde content 

Du et al. (1992) protocol was followed to determine malondialde-
hyde content. MDA content was estimated using modified thiobarbituric 
acid method. In liquid nitrogen and ethanol (80%), 0.4 g leaf samples 
were homogenised, then centrifuged in microcentrifugation tubes at 
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6000 rpm (5 min). Subsequently, 0.7 mL supernatant assorted with TBA 
(thiobarbituric acid 0.65%), TCA (trichloroacetic acid 20%) and BHT 
(butylated hydroxytoluene 0.01%). Another set of 0.7 mL was nixed 
with TCA (20%, 0.7 mL) and BHT (0.01%). Following incubation of 
micro-centrifuges tubes at 95◦C and cooling, these tubes are then 
centrifuged at 6000 rpm for 5 minutes. UV-Vis spectrophotometer was 
used for measurement of absorbance at 440nm, 532 nm and 600 nm to 
estimate MDA content with 157 mM cm− 1 extinction coefficient. 

2.6. Determination of Hydrogen peroxide Content 

At the 50% blooming stage, the amount of H2O2 produced was 
estimated using spectrophotometer and expressed as μmol g− 1 fresh 
weight (FW). The H2O2 concentration (molar extinction coefficient 0.28 
μM cm− 1) was determined using Jana and Choudhuri’s (1981) tech-
nique, and density of yellow color in supernatant was determined at 410 
nm. 

2.7. Determination of Electrolyte leakage (EL) 

Ten fresh leaf discs were taken, sluiced in deionized water. Samples 
were inserted in tubes having 5 mL of deionized water, after that these 
tubes were incubated at 10 ◦C for 24 hrs. EC1 (initial electrical con-
ductivity) of samples was checked using GRYF 158 conductometer 
(GRYF HB, Ltd., Czech Republic). Following that, samples were incu-
bated at 95◦C for 20 min, then cooled to 25 ◦C and EC2 (final EC) was 
assessed. EL was calculated from EL (%) = (EC1/EC2)×100 (Yang et al. 
1996). 

2.8. Determination of Ascorbate Content 

Plant sample was minced in liquid nitrogen, 0.5-1 g powder was 
normalized with 600 μL of 6% ice cold TCA. Centrifuge samples for 15 
min (16000 x g) at 4 ◦C (Gautier et al. 2010). To quantify ascorbate, 200 
μL of water (distilled) was added to 200 μL of extract. Then, 10 % TCA 
(200 μL), 44% phosphoric acid (200 μL), 4% 2, 2’-dipyridyl (200 μL) and 
3% FeCl3 (100 μL) were added to solution. Diluted K-Na phosphate 
buffer (pH 7.4) was taken as control. After incubating all samples for 60 
minutes, their absorbance was measured on a spectrophotometer at 524 
nm. Concentration of ascorbate was calculated using a molar absorption 
coefficient, ε = 8.7 mM− 1 cm− 1 (Alen’kina & Nikitina, 2020). 

2.9. Determination of Protein content 

Protein contents were estimated using bovine serum albumin as a 
baseline. Leaf samples were grinded in liquid nitrogen and stored at 
-20◦C for protein and enzyme activity evaluation. 0.5 g of material and 4 
mL of buffer were used for extraction. 0.1 M Sodium-phosphate buffer 
(pH 6.4), 0.1 mM phenyl-methyl-sulfonyl fluoride), and 0.2% TWEEN 
were used. Prepared samples were then centrifuged at 10,000 rpm and 
8◦C for 10 min, after homogenization. After vortexing, 1 mL of super-
natant was separated with 5% poly-vinyl-pyrrolidone. Centrifuged again 
for 10 min at 10,000 rpm. The absorbance at 550 nm was employed to 
analyse soluble proteins in the supernatant (Hodzic et al. 2021). 

2.10. Determination of chromium content 

Plant samples were uprooted, washed with water and subsequently 
oven dried for 2 days. HClO4 and HNO3 were used for digestion of 
samples. Chromium concentration was estimated using atomic absorp-
tion spectrophotometer AA-7000. 

Translocation factor was determined by dividing Cr content in 
B. napus shoot to that of root (Mattina et al. 2003). Chromium tolerance 
index was calculated with the help of following formula; 

CTI =
DWTP
DWNP

× 100 

Where DWTP= dry weight of 2-HMT and Si treated B. napus seed-
lings, DWNP = dry weight of non-treated plants and CTI= Chromium 
tolerance index 

2.11. Determination of Proline Content 

Plant samples (0.2 g) were grinded, mixed with 3 mL of 3% sulfo-
salicylic acid (w/v) and then centrifuged for 20 min at 3000×g. Sub-
sequently, supernatant was mixed with HCl (3 mL) and 2.5% acid 
ninhydrin (1.5 mL), vortexed and then kept in boiling water bath for 1 h. 
After cooling in ice bath, extraction was done with 5 mL toluene, waited 
for layer formation, captivating toluene in upper layer. Estimation of 
absorbance value was done at 520 nm (Yan et al. 2021a). 

2.12. Determination of Ethylene Content 

Leaf samples (0.1 g) were collected, transferred to glass tube (50 ml) 
and sealed with a rubber septum for 24h. After that, gas chromatography 
(GC-2010; Shimadzu, Tokyo, Japan) was used to measure ethylene 
content (Naing et al., 2022; Xu et al., 2021). 

2.13. Statistical Analysis 

One-way ANOVA was applied on the data composed of 5 replicates, 
and proposed to Duncan’s Multiple Range Test (P≤ 0.05). DSAASTAT 
software was used to evaluate mean values and significant differences at 
5% were highlighted using lower-case letters. 

3. Results 

3.1. Effect of 2-hydroxymelatonin and silicon on growth and 
photosynthetic pigmentation 

Table 1 indicates that Cr stress reduced growth parameters like root 
length (RL), shoot length (SL), shoot fresh weight (SFW), root fresh 
weight (RFW), shoot dry weight (SDW) and root dry weight (RDW)) of 
B. napus seedlings in control as well as in Cr-contaminated soil. On the 
other hand, supplementation of 2-HMT and Si enhanced the aforemen-
tioned growth attributes in B. napus seedlings. In normal soil, 2-HMT 
enhanced RL (17.4%), SL (17.03%), SFW (23%), RFW (39.02%), SDW 
(71.79%) and RDW (34.58%) in B. napus seedlings as compared to C- 
treatment. Co-application of 2-HMT and Si also significantly enhanced 
growth characteristics in B. napus prone to Cr-toxified soil, compared 
with seedlings grown in Cr-only treatment. 

3.2. Effect of 2-hydroxymelatonin and silicon on photosynthetic 
pigmentation and proline content 

Chromium toxicity significantly reduced Chl content in B. napus 
seedlings, compared with C-treatment. However, application of 2-HMT 
and Si elevated Chl a, Chl b and total Chl content in B. napus seedling 
grown in all the treated pots. In case of Cr-polluted soil, 2-HMT and Si 
combine treatment enhanced total Chl content by 40.38% as compared 
to Cr-only treated B. napus seedlings. Same trend was observed for 
proline determination in B. napus seedlings. Co-treatment of 2-HMT and 
Si significantly incremented proline content by 71.81%, as compared 
with normal condition (Table 3). 

3.3. Effect of 2-hydroxymelatonin and silicon on net photosynthetic rate 
(Pn), transpiration rate (Tr) and stomatal conductance (Gs) 

Fig. 1 indicates that 2-HMT and Si augmented Gs, Pn and Tr in 
B. napus seedlings encountering C-treatment and Cr-polluted soil. 2- 
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HMT treatment in normal soil significantly increased all forementioned 
parameters in B. napus seedlings. Co-application of 2-HMT and Si 
significantly increased these physiological attributes as compared to 
B. napus seedlings subjected to Cr-only treatment. For seedlings in Cr- 
contaminated soil, co-application of 2-HMT and Si increased Gs, Pn 
and Tr in B. napus by 16.36%, 12.34% and 8.33%, respectively, in 
comparison with 2-HMT treatment. 

3.4. Effect of 2-hydroxymelatonin and silicon on activity of 
antioxidantive enzymes 

Chromium stress enhanced activity of APX by 32.83%, as compared 
to B. napus seedlings given normal conditions. 2-HMT and Si application 
enhanced APX activity in B. napus seedlings in control and Cr- 
contaminated soil. Combined supplementation of 2-HMT and Si signif-
icantly enhanced APX activity, compared to Cr-only treated seedlings. In 
B. napus seedlings of Cr-contaminated pots, 2-HMT and Si combined 
treatment enhanced APX activity by 43.56%, compared with 2-HMT. A 
similar trend was observed in which 2-HMT + Si significantly incre-
mented SOD and CAT enzyme activity as compared to Cr-only treatment 
(Fig. 2). 

3.5. Effect of 2-hydroxymelatonin and silicon on malondialdehyde and 
hydrogen peroxide content 

Chromium stress enhanced MDA content (> 1-fold) in B. napus 
seedlings prevailing in Cr-contaminated soil, compared to C-treatment. 
2-HMT and Si, when applied alone or combinedly, impeded MDA con-
tent of B. napus seedlings in control condition and Cr-polluted soil. This 
interactive application of 2-HMT and Si reduced MDA content by 80.5% 
as compared to 2-HMT treated B. napus seedlings subjected to Cr- 
toxificated soil (Fig. 3). 

3.6. Effect of 2-hydroxymelatonin and silicon on electrolyte leakage 

Electrolyte leakage (EL) is a crucial for determination of membrane 
integrity in plants proned to stressed conditions. During the current 
study, it was noted that highest EL value was observed in B. napus 
seedlings proned to Cr-only treatment. Application of 2-HMT, alone in 
synergistic application with Si, significantly decreased EL in B. napus 
seedlings in comparison to Cr-only treatment. Co-treatment of 2-HMT 
and Si reduced EL by 41.17% as compared to 2-HMT treatment in 
seedlings potted in Cr-contaminated soil (Fig. 3). 

3.7. Effect of 2-hydroxymelatonin and silicon on protein and ascorbic 
acid content 

Chromium stress reduced protein content in B. napus seedlings prone 
to Cr-contaminated pots. 2-HMT and Si enhanced protein content in 
both non-polluted and polluted soil. In Cr-polluted soil, combined 
treatment of 2-HMT and Si enhanced protein level by 20.44% in com-
parison with 2-HMT only treated B. napus seedlings grown in normal 

soil. 
Chromium stress reduced ascorbic acid (ASA) content by 32.58% in 

B. napus in comparison with C-treatment. 2-HMT and Si escalated ASA 
content in control and contaminated potted soil. Combined treatment of 
2-HMT and Si enhanced ASA content by 10.06 % in B. napus seedlings of 
Cr-contaminated pots, in comparison with 2-HMT only treatment. 2- 
HMT, alone or its combined treatment with Si, expressively incre-
mented ASA content in B. napus seedlings in comparison with Cr-only 
treatment (Fig. 4). 

3.8. Effect of 2-hydroxymelatonin and silicon on chromium content 

As far as uptake of Cr is concerned, 2-HMT and Si reduced Cr uptake 
in B. napus seedlings. 2-HMT and Si significantly reduced Cr content in 
B. napus seedlings as compared to Cr-treatment. Apart from this, highest 
values of metal tolerance index were observed when 2-HMT and Si were 
applied synergistically in B. napus seedlings of Cr-amended soil 
(Table 2). 

3.9. Effect of 2-hydroxymelatonin and Si on ethylene level 

Fig 5 reveals the role of 2-HMT and Si in regulation of ethylene level 
in B. napus seedlings. Chromium treatment enhanced ethylene level 
(69.5%) as compared to B. napus seedlings grown in normal soil. 
Although 2-HMT and Si incremented ethylene level in treated seedlings 
as equated to control. However, co-supplementation of 2-HMT and Si 
significantly enhanced ethylene level as compared to C and Cr-only 
treatment. 

3.10. Pearson’s relationship 

The Pearson’s relationship was performed to checked the correlation 
of a different studied parameters of B. napus under varied level of Cr 
given in Fig. 6. The results of Pearson’s relationship of B. napus indicated 
that the concentration of Cr in plant is significantly positively linked 
MDA, H2O2, and EL while negatively relationship with the SOD, pro, 
ASA, Pro, APX, CAT, DPPH and P. rate, transpiration rate, stomatal 
conductance and ethylene in plants. 

3.11. Principal component analysis 

The loading plots of principal component analysis (PCA) to evaluate 
the effects of various levels of Cr treatments on plant physiochemical 
attributes of B. napus are given in Fig. 7. The result show that 94.3 
contribution of the total variance in the dataset. The 2nd group of var-
iables which contribute the 28.5 PC2 is positively linked with H2O2, 
MDA and EL level in plant While, a significant negative correlation of 
PC2 parameters was found with the parameters aligned plant enzymatic 
antioxidants (SOD, CAT, APX), non enzymatic (ASA, DPPH, proline, 
protein) and gas exchange attributes (photosynthetic rate, transpiration 
rate, and stomatal conductance) and ethylene in plants. 

Table 1 
Effect of 2-HMT and Si on growth parameters of B. napus grown in Cr-contaminated soil.  

Treatments Traits 

Root length (cm) Shoot length (cm) Root FW (g plant− 1) Shoot FW (g plant− 1) Shoot DW (g plant− 1) Root DW (g plant− 1) 

C 7.89b ± 0.07 21.08bc ± 1.06 0.82bc ± 0.04 6.78bc ± 0.38 0.78c ± 0.03 0.042ab ± 0.003 
Cr 4.23d ± 0.46 12.87d ± 0.98 0.45d ± 0.08 3.76d ± 0.21 0.45d ± 0.02 0.021bc ± 0.002 
Si 8.47ab ± 0.75 21.09bc ± 1.09 1.03ab ± 0.03 6.91b ± 0.57 1.21ab ± 0.06 0.045ab ± 0.001 
2-HMT 9.27a ± 0.56 24.67a ± 1.37 1.14a ± 0.02 8.34a ± 0.67 1.34a ± 0.07 0.061a ± 0.006 
Si + Cr 5.89cd ± 0.24 17.98c ± 1.87 0.68c ± 0.05 4.65c ± 0.48 0.97bc ± 0.08 0.023bc ± 0.004 
2-HMT + Cr 6.72c ± 0.65 20.87bc ± 1.08 0.73bc ± 0.07 6.19bc ± 0.45 1.08b ± 0.09 0.031b ± 0.009 
2-HMT + Si + Cr 7.08bc ± 0.27 21.98b ± 1.54 0.92b ± 0.06 7.29ab ± 0.56 1.19ab ± 0.04 0.041ab ± 0.008 

Values demonstrate means ± SD (n=5). C, control; Cr, chromium; 2-HMT, 2-hydroxymelatonin; Si, silicon. Values are means ± SD of five replicates. Significant 
differences at 5% are represented by lower-case letters. 
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4. Discussions 

Chromium enrichment in soil reduces germination of seeds, which 
reduced overall yield of vital agronomic crops (Singh et al. 2020). 
Higher Cr level reduces growth and physiological attributes in treated 
seedlings which ultimately results in reduction in yield (Hassan et al. 
2022; Qadir et al. 2020). Various studies have revealed, increase in 
concentration of Cr reduces germination rate and finally growth of 
plants (Srivastava et al. 2021; Naveed et al. 2021). This decrease in 

growth is due to fact that higher Cr level results in reduced nutrient 
uptake by plants (Ahmad et al. 2020a, b). Increase in Cr concentration 
lowered uptake of vital mineral nutrients like calcium, magnesium, 
phosphorous and iron (Sharma et al. 2020). A study by Hoque et al. 
(2021) reported that melatonin treatment recovers tomato seedling from 
oxidative stress through incrementation in Mg, N, Mg and Mn. Mela-
tonin is a powerful antioxidant and regulates development of roots, 
stem, leaves, nutrient, water translocation and metabolomics in plants 
(Ayyaz et al. 2022). MT had ameliorating capability against abiotic 

Fig. 1. Effect of 2-HMT and Si on photosynthetic rate, transpiration rate and stomatal conductance on B. napus grown in Cr-contaminated soil. C, control; Cr, 
chromium; 2-HMT, 2-hydroxymelatonin; Si, silicon. Values are means ± SD of five replicates. 
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stresses, owing MT vital phytohormone (Giraldo Acosta et al. 2022). MT 
treatment progresses growth of strawberry under Cd stressed conditions 
(Wu et al. 2021). Ayyaz et al. (2020) reported, MT treatment incre-
mented growth of canola grown under Cr stress. This study also proved 
that 2-HMT improved growth in B. napus seedlings potted in control and 
Cr-polluted soil. 

During the current research, Cr stress reduced growth, photosyn-
thetic and transpiration rate in B. napus seedlings (Fig. 1). This decrease 
in physiological and biochemical properties of B. napus might be owed to 
increased accumulation of MDA and H2O2 content. This finding is 
similar to Sharma et al. (2020), which emphasised that Cr toxicity 
reduced plant growth due to reduction in cell division, cell elongation, 
cell wall biosynthesis and decrease in water content. Our data also 
revealed that Cr-treatment decreased chlorophyll content in B. napus 
seedlings potted in Cr-contaminated soil. This might be due to escalated 
activity of chlorophyllase enzyme, imbalance in nutritional homeosta-
sis, disruption in thylakoid content and disruption of pigment structure 
due to increase in oxidative-stress (Sachdev et al. 2021). ROS resulted in 
damage of macromolecular cellular structures viz. proteins, carbohy-
drates, lipids, nucleic acids (Hasan et al. 2015). Current research also 
revealed that higher Cr toxicity in B. napus seedlings enhanced MDA and 
H2O2 content, which resulted in cytotoxic effects on cellular structures. 

Melatonin plays a phyto-protective role in different plants and assists 
in alleviation of abiotic stress like temperature (high/slow), water log-
ging, drought stress, heavy metal and nutritional deficit conditions by 
regulating antioxidantive and non-antioxidantive enzymes (Pardo--
Hernández et al. 2020). MT supplementation plays significant role in 
chlorophyll structure stabilization and leads to enhanced photosynthetic 
rate in Cucumber seedlings, thereby protected plant from damaging 
effects of Cr stress (Rajora et al. 2022). Another assumption is that MT 
application resulted in incremented efficiency of photosystem-II in 

light/dark (Zhang et al. 2014). Exogenous MT averts deprivation of 
photosynthetic process and increase photosynthetic efficiency in 
B. napus (Ayyaz et al. 2020). As per our previous findings, 2-HMT 
decreased harmful footprints of Cd on Cucumis sativus through changes 
in polyamine content and improvement of antioxidantive enzymes ac-
tivity (Shah et al. 2020). This current research also revealed that 2-HMT 
reduced Cr-stress in B. napus seedlings subjected to Cr-polluted soil 
through enhancement of antioxidantive enzymes. 

Current research stated that Cr stress reduced chlorophyll and 
carotenoid content as equated with control. This reduced Chl content 
resulted in reduction of photosynthetic rate and ultimately crop pro-
ductivity (Ahmad et al. 2022). Melatonin treatment reduced Chl inhi-
bition and alleviated salt stress in a concentration dependant manner 
(Yan et al. 2021b). As of previous work on maize plants (Bashir et al. 
2021), apart from melatonin induced alteration in pigment composition, 
MT treatment also altered antioxidantive enzymes activity. In a work on 
rice seedlings proned to salt stress conditions, this pleotropic phyto-
hormone increased antioxidantive enzymes activity (Yan et al. 2021a). 

In a study on wheat, Cr stress increase MDA content in comparison 
with control condition, result in oxidative burst (Lei et al. 2021). Sun 
et al. (2023), exposed that melatonin reduced oxidative damage in 
wheat seedlings by reducing MDA content. 

Silicon (Si) is beneficial for plant’s growth. Si is abundantly found in 
soil and can be easily absorbed by plants (Kim et al. 2014). It is a vital 
element for plant tolerance against many of abiotic stresses mainly 
heavy-metal stress. Various studies have established that Si supple-
mentation mitigate abiotic stresses especially excessive level of metals 
and induced plant tolerance to metal stress (Huang et al. 2012; Farooq 
et al. 2013; Adrees et al. 2015). 

Si application improved morpho-physiological characters as well as 
nutrient absorption in plants. Especially, in extreme and stressful 

Fig. 2. Effect of 2-HMT and Si on SOD, DPPH, APX and CAT activity on B. napus grown in Cr-contaminated soil. C, control; Cr, chromium; 2-HMT, 2-hydrox-
ymelatonin; Si, silicon. Values are means ± SD of five replicates. 
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conditions e.g drought, excessive metals and salt, Si treatment will be 
more effective in improving plant growth (Meena et al. 2014) 

Exogenous Si application mitigated arsenate stress and improved 
wheat growth through modulating nitrogen metabolism (Sil et al. 2020). 
Si addition reduced Cr level in aboveground parts of rice and reversed its 
negative impacts on protein content through detoxifying excessive Cr 
(Nazmul Huda et al. 2017). Similarly, Si application reversed negative 
impacts of Ni toxicity on morpho-physiological characters of cotton 
plant (Khaliq et al. 2016). According to an other study, Si addition had 
non-significant effect on Cr content in roots but significantly reduced Cr 
content in aboveground parts of plant as compared to those plants not 
given Si treatment (Nazmul Huda et al. 2017). 

Si supplementation activated plants’ antioxidative defense to 
encounter oxidative stress. It comprises both enzymatic and non- 
enzymatic antioxidants. In cucumber, Mn stress caused lipid peroxida-
tion. Si application increased antioxidant level and minimized lipid- 
peroxidation resulted by Mn-toxicity (Shi et al. 2005). Similarly, in So-
lanum nigrum, Si supplementation reduced H2O2 and electrolyte 
leakage induced under Cd toxicity (Liu et al. 2013). Si application 
prominently reduced malondialdehyde, hydrogen peroxide and elec-
trolyte leakage, ultimately the oxidative stress due to Cd (Hussain et al. 
2015), Zn (Anwaar et al. 2015), and Pb stress (Bhatti et al. 2013). 

Ethylene activates the plant’s antioxidative defence mechanism, 
resulting reduction in oxidative stress (Sharma et al., 2019). In heat 
stressed rice plants, ethylene treatment enhanced Pn, Gs, and Ci 
compared to control (Gautam et al., 2022). Ethylene production was 
greater in most of plants given abiotic stress (Chandwani and Amaresan 
2022). Abiotic stressors stimulated plant ethylene biosynthesis. For 
example, Cr(VI) increased the expression of ethylene signalling and 
biosynthetic genes. Furthermore, during Cr(VI) stress, ethylene pro-
duction inhibited ROS generation by decreasing expression of enzymatic 
antioxidantive enzyme-related genes (Wakeel et al., 2019). In the study 
of Husain et al., (2022) under Cr(VI) stress, ethylene reduced oxidative 
stress indicators, resulting in lower ROS levels in both black and mung 
beans. Ethylene reduced oxidative damage and growth inhibition caused 
by CuO nanoparticles in Arabidopsis thaliana leaves (Azhar et al., 2020). 
Under ABA-inhibited conditions, high salt or dehydration stimulates 
expression of ERF (ethylene responsive factor) genes (Debbama et al., 
2019). Our research indicated that co-treatment of 2-HMT and Si 
enhanced ethylene level in B. napus seedlings grown in Cr-contaminated 
pots. Thus, revealed that ethylene has a role in defence against Cr 
induced toxicity in B. napus plants. 

Fig. 3. Effect of 2-HMT and Si on MDA, H2O2 and EL on B. napus grown in Cr-contaminated soil. C, control; Cr, chromium; 2-HMT, 2-hydroxymelatonin; Si, silicon. 
Values are means ± SD of five replicates. 
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Fig. 4. Effect of 2-HMT and Si on protein and ASC content on B. napus grown in Cr-contaminated soil. C, control; Cr, chromium; 2-HMT, 2-hydroxymelatonin; Si, 
silicon. Values are means ± SD of five replicates. 

Table 2 
Effect of 2-HMT and Si on Cr content of B. napus grown in Cr-contaminated soil.  

Treatments Chromium Content 

Root (mg 
kg− 1) 

Shoot (mg 
kg− 1) 

TF MTI 

C ND ND ND - 
Cr 7.81a ±

0.45 
6.54a ± 0.18 0.83a ±

0.05 
57.69b ± 4.89 

Si ND ND ND - 
2-HMT ND ND ND - 
Si þ Cr 5.67ab ±

0.36 
4.05ab ±
0.54 

0.71ab ±
0.03 

124.35ab ±
6.13 

2-HMT þ Cr 4.78b ±
0.24 

3.54b ± 0.32 0.74ab ±
0.02 

138.46ab ±
5.28 

2-HMT þ Si þ
Cr 

3.67bc ±
0.48 

1.79c ± 0.24 0.48b ±
0.07 

152.56a ±
8.94 

Values demonstrate means ± SD (n=5). C, control; Cr, chromium; 2-HMT, 2- 
hydroxymelatonin; Si, silicon. Values are means ± SD of five replicates. Signif-
icant differences at 5% are represented by lower-case letters. 

Table 3 
Effect of 2-HMT and Si on Chl a, Chl b, total Chl and proline content of B. napus 
grown in Cr-contaminated soil.   

Chl a (mg 
g− 1 FW) 

Chl b (mg 
g− 1 FW) 

Total Chl content 
(mg g− 1 FW) 

Proline content 
(µg/ g FW) 

C 1.02b ±
0.03 

0.54b ±
0.04 

1.56b ± 0.07 110d ± 5.76 

Cr 0.76d ±
0.06 

0.38c ±
0.03 

1.04d ± 0.06 45e ± 3.48 

Si 1.23ab ±
0.09 

0.67ab ±
0.07 

1.90ab ± 0.02 156b ± 6.89 

2-HMT 1.78a ±
0.07 

0.69a ±
0.02 

2.47a ± 0.07 179ab ± 7.29 

Si þ Cr 0.83c ±
0.02 

0.39bc ±
0.03 

1.22c ± 0.09 126c ± 4.98 

2-HMT þ
Cr 

0.91bc ±
0.04 

0.41bc ±
0.06 

1.32bc ± 0.05 148bc ± 5.28 

2-HMT þ
Si þ Cr 

0.98bc ±
0.03 

0.48c ±
0.08 

1.46bc ± 0.04 189a ± 6.18 

Values demonstrate means ± SD (n=5). C, control; Cr, chromium; 2-HMT, 2- 
hydroxymelatonin; Si, silicon. Values are means ± SD of five replicates. Signif-
icant differences at 5% are represented by lower-case letters. 
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5. Conclusion 

Chromium stress declined growth and physiological properties of 
B. napus seedlings. As seed priming is cost-effective technique to alle-
viate abiotic stresses in plants, this proved as a better approach in 
mitigation of Cr-stress in B. napus seedlings. A very novel approach was 
used during this study i.e., 2-HMT and Si application was carried out to 
reduce toxic effects of Cr on B. napus seedlings. Chromium stress 
enhanced MDA, H2O2 and EL in B. napus seedlings encountering Cr- 
contaminated pots. Contrarily, Application of 2-HMT and Si reversed 
the toxic effects of Cr through incrementation in activity of anti-
oxidantive enzymes and lowering level of MDA, H2O2 content and EL. 
Additionally, 2-HMT and Si enhanced ethylene level in B. napus seed-
lings treated with Cr-contaminated conditions, thereby reversing the 
toxic effect of Cr-toxicity. This study promises to explore more mela-
tonin metabolites that can be used in improvement of growth in plants 

facing stressed conditions. 
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