

PRESENTED BY
Dr. FAISAL ALMOBARAK, MD

NVG is a refractory glaucoma which occurs secondary to retinal ischemia with subsequent release of angiogenic factors.

Seos et al 2002, Moisseiev et al 1996

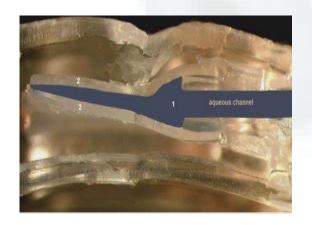
- * The most common causes of NVG are DR & RVO. Evans et al 1993
- Early detection of NV & application of PRP or intravitreal anti-VEGF is the most effective management. Sivak-Callcott et al 2001, Iliev et al 2006
- Cyclodestructive procedures & tube-shunt implants are reserved for refractory more conventional treatments.

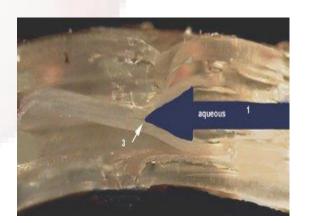
CYCLODESTRUCTION

Cryotherapy

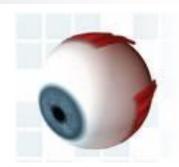
High risk vision threatening complications

<u>DCPC</u>


Transcleral application of infrared light which gets absorped by the pigmented epithelial cells of the CB resulting in destruction & coagulative necrosis of the epithelium & stroma.


- Corneal edema
- Hypotony
- Phthisis bulbi

* The AGVI theoritically restricts flow until a pressure of greater than 8 to 12 mmhg is exerted upon it.



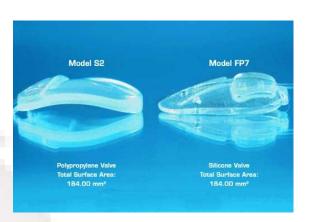
❖ It has a comparable success rates to other glaucoma drainage devices for refractory glaucoma with less hypotony observed in the early postoperative period .



Purpose: To prospectively compare the outcome of DCPC & AGVI in NVG.

Design: Randomized prospective study.

All patients underwent a beseline ophthalmologic complete examination: VA, IOP by Goldman applanation tonometry, SLE & fundus examination.


Inclusion criteria were:

- NVG secondary to PDR or RVO
- Ineffective IOP lowering by maximally tolerated medications
- Painful & poorly sighted eyes with uncontrolled IOP
- ❖ Patients were randomly assigned to receive either DCPC or AGVI by the same surgeons by using a list of random numbers (N.Y DCPC treatment & I.S.Y AGVI)

AGVI:

- Model S2 used
- Fornix-based conjunctival flap
- Tube was irrigated with saline solution to open the valve mechanism

DCPC treatment parameters:

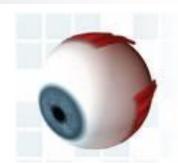
- Duration of 2 seconds
- Power 1500 mW, stepwise increase
 (100 mW increments) up to an audible tissue disruption followed by stepwise reduction to just below this level
- The normal treatment consisted of 16-20 applications over 270 degree

Surgical success:

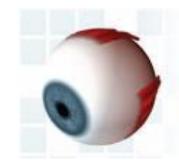
• IOP less than 21 mmhg & greater than 5 mmhg without additional glaucoma surgery & without loss of LP

Treatment failure:

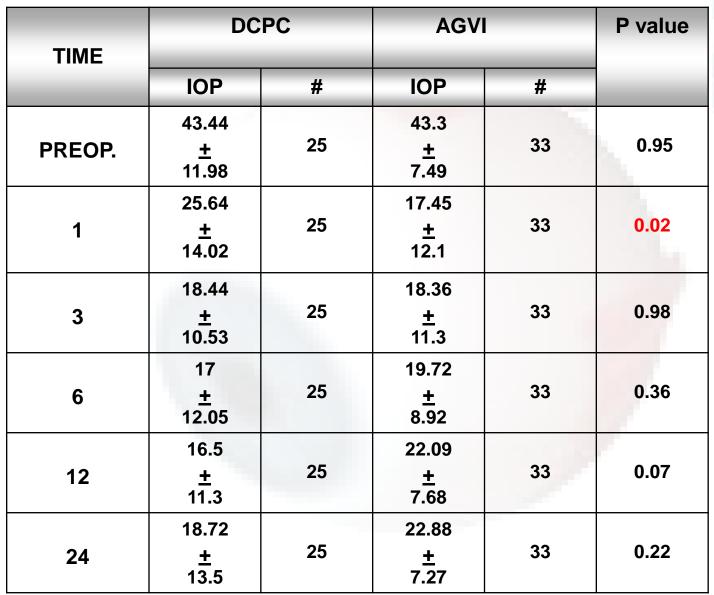
- Repeated DCPC
- Needling procedures
- Patients were examined at 1, 3, 6, 12 & 24 months after the
- 33 patients underwent DCPC & 33 underwent AGVI
- 8 patients in DCPC group were lost during the follow-up & excluded from the study


Results

VARIABLES	DCPC	AGVI	P VALUE
# EYES	33	33	>0.05
MEAN AGE	60 <u>+</u> 11.7	57.2 <u>+</u> 10.3	>0.05
SEX		4.0	0.07
M	17	18	>0.05
\mathbf{F}	16	15	>0.05
PREOP IOP	43.4 <u>+</u> 11.9	43.3 <u>+</u> 7.4	>0.05
POSTOP IOP (24 m)	18.72 <u>+</u> 13.5	22.88 <u>+</u> 7.3	>0.05
PREOP. # OF MED.	2.6 <u>+</u> 0.4	3.3 <u>+</u> 0.4	>0.2
POSTOP. # OF MED. (24m)	1.8 <u>+</u> 1	2 <u>+</u> 1.4	>0.6
SUCCESS RATE AT 12 m	71%	61.3%	>0.05
SUCCESS RATE AT 24 m	63.6%	59.3%	>0.05
KAPLAN-MEIER SURVIVAL			
ANALYSIS PROBABILITY OF	61.18%	59.26%	>0.05
SUCCESS AT 24 m			Log-rank test

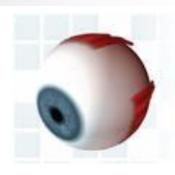

POSTOPERATIVE COMPLICATIONS IN DCPC GROUP

COMPLICATION	NUMBER (%) (N = 25)	
ANTERIOR SEGMENT INFLAMMATION	5 (20%)	
NEUROTROPHIC KERATITIS	2 (8%)	
HYPOTONY	3 (12%)	



POSTOPERATIVE COMPLICATIONS IN AGVI GROUP

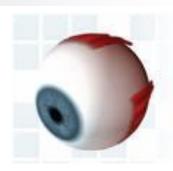
COMPLICATION	NUMBER (%) (N = 33)
ENCAPSULATED BLEB	3 (9%)
PHTHISIS BULBI	2 (6%)
НҮРНЕМА	7 (21%)
TUBE OCCLUSION	3 (9%)
HYPOTONY	1 (3%)
CHOROIDAL EFFUSION	1 (3%)

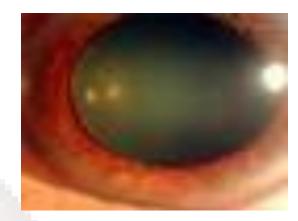


Discussion

- ❖ Both DCPC and AGV implantation achieved a marked IOP lowering effect [from a mean preoperative IOP of 43.44 ± 13.5mmHg to 18.72 mmHg at last visit in DCPC group (58.1% IOP reduction) and preoperative IOP of 43.3 ± 7.49 mmHg to a 22.88 ± 7.27 mm Hg at last visit in AGV group (48.8 % IOP reduction)] .
- * IOP was lower in the AGV group compared with DCPC eyes within the first month postoperatively (p = 0.02). But, the IOP rose in both groups and was equivalent at 3 months & then slightly higher in the AGVI after one year.

- * The success rates at 24 months were 63.6% and 59.3% for the DCPC and AGV groups, respectively (p > 0.05)
- Recently, Lima et al compared long-term results of endoscopic DCPC and AGVI and found that there was no difference in the success rates.
- *Oguri et al analyzed the outcome of DCPC in 21 eyes with NVG & found that the probability of successful IOP control per eye, estimated by the Kaplan-Meier analysis, at 3 years after treatment was 55%.


- Nabili & Kirkness achieved about 50 % IOP reduction with DCPC
- These results of IOP control were comparable with this study & confirms the efficacy of DCPC in NVG
- Eyes that underwent AGV implantation had more complications than those treated with DCPC
- *The main complications in the DCPC group were anterior chamber inflammation, neurotrophic keratitis, and hypotony; whereas, in the AGV group main complications were hyphema, tube occlusion, encapsulated bleb, phthisis bulbi, hypotony, and choroidal effusion


- ❖ In Schwartz's study, tube shunt implantation has more complications not observed in DCPC procedures, such as diplopia, tube blockage, tube exposure, and cystic bleb formation, similar to the results of this study
- In a recent study by Mistlberger et al, after DCPC the most frequently observed complication was anterior chamber inflammation, paralleling the findings of this study

- ❖ In 15 of patients [6 eyes (24%) in the DCPC group and 9 eyes (27%) in AGV group] VA decreased
- Non of the patients lost VA as direct consequence of DCPC or AGVI. The loss of VA was due to maturation of cataract, and/or progression of advanced glaucoma despite statisfactory IOP regulation, as also reported by others.

- ❖ In conclusion, DCPC may be a safe & efficient modality in treating refractory glaucoma compared with AGVI.
- * DCPC & AGVI lower the IOP in NVG in a similar manner. The study demonstrates the efficacy & safety of contact DCPC to reduce IOP in patients with advance glaucoma.

#