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CHAPTER 1

THE RIEMANN INTEGRAL

1 Definition of The Riemann Integral

Definition 1.1

1. A finite ordered set ¢ = {xg, ... ,x,} is called a partition of the
interval [a,b] if a = x9 < ... < x,, = b. The interval [z;,x;41] is
called the jth subinterval of o.

2. If o = {xo, ... ,x,} is a partition of the interval [a,b], we define
the norm of ¢ by:

llo]| = sup zj11 — ;.
0<j<n—1
3. A partition o, = (20, ... ,%,) of the interval [a,b] is called uni-
—a —a
form if (zx = a + k——). In this case ||o|| = .
n n
4. A partition o7 = {xg, ..., 2} is called finer than a partition
o2 =1%0, -+ Ym} i {yo, --- ,ym} C {0, ..., zn} and we denote
o9 < 07.
5. If o9 = {z0, ... ,2,} and 02 = {yo, ... ,ym | are two partitions
of the interval [a,b], we define the partition o7 U oo defined by
ordering the points {yo, .- , Ym, o, - - s Tn}-




Definition 1.2

Let f: [a,b] — R be a bounded function. Define

M;= sup f(x), mj = inf  f(x),
z€[z;,x541] z€[z),w541]
n—1 n—1
U(f,0) =Y Mj(xj41— ), L(fo)=> mj(zjn—z;) (11)
j=0 j=0

The sums U(f,o) and L(f, o) are called respectively the upper and the
lower sums of f on the partition o. (Note that L(f,o) < U(f,0).)

Lemma 1.3

Let 0y = {xq, ... ,z,} be a partition of the interval [a,b], o2 = {a,y, b}
with y €]a,b[ and f: [a,b] — R a bounded function, then
L(f701) SL(f)U) < U(f,O') SU(faol)v (12)

where 0 = 01 U 09.

Proof .

The proof is obvious if y € o1. Suppose now that y €]a;, xz;,1[, we have

—1 n—1
L(f, 01) = Zg:o (sz‘+1 — T3)m; + ($j+1 - ij)mj + Zi:j+1($i+1 — x;)my,

U(f,01) = 3020 (wis1 — @) My + (2541 — 25) M + Z?z_jl-i-l(xi-i-l — x;)M; and

i1
L(fo) = Y (w1 —x)mi + (y — x)) xel]lef y[f(x)
i=0 »
n—1
+ (wp—y) inf f@)+ Y (Wi —z)mi
TE]Y,T 41 i
-1
U(f,0) = Y (@ip1 —z)Mi+ (y — ;) sup [f(ﬂﬂ)
i=0 w€lz;,y
n—1

+ (@p—y) s @)+ Y (@i — )M

T€lY, )41 i=j+1



But m; < infme]a:j,y[f(x)v mj < infze]y,wj+1[f(x)a > upme]mj,y[f(x) and

j S
M;j > sup,e)y o, f(2). This yields that L(f,01) < L(f,0) and U(f,0) <
U(f, 0'1). O

Corollary 1.4

If o4 is finer than oy and f: [a,b] — R is a bounded function, then

L(f,02) < L(f,01) < U(f,01) SU(f,02) (1.3)

Proof .

If f: [a,b] — R is a bounded function and oy, 09 are two partitions of
the interval [a, b], then L(f,01) < U(f,02).

Proof .
L(f,01) < L(f,01Uo2) S U(f,01U02) <U(f,02). o

Definition 1.6

Let f: [a,b] — R be a bounded function, P([a, b]) the set of partitions
of [a, b], then we define respectively the upper and the lower integral of
f on the interval [a, b] by:

U(f) = aeliDI(l[fz,b]) U(f,o), L(f)= aezsa?ﬁ,b])L(f’ o).

U(f) and L(f) are called respectively the upper and the lower Darboux
sums of f on the interval [a, b].

Definition 1.7

Let f: [a,b] — R be a bounded function. The function f is called
Riemann integrable on the interval [a, b] if U(f) = L(f).




b
If f is Riemann integrable on the interval [a, b], we denote [ f(x)dz =

U(f) = L(f) and called the integral of f on the interval [a,%].
The set of Riemann integrable functions on the interval [a, b] is denoted

by ([a,b]).

Remark 1 :
Let f:la,b] — R be a bounded function. If there exists a partition o of
[a,b] such that U(f,o) = L(f,0), then f is Riemann integrable on [a,b] and

/f )z = U(f,0).
This is because L(f,0) < U(f) and L(f) < U(f,0).
Example 1 :

1. Any step function on an interval [a, ] is Riemann integrable. Indeed let
o= (x0 =a,...,x, =b) be a partition of [a,b] associated to f. If
f(z) =c¢;j on |z, x4, then M; =m; =¢; and U(f,0) = L(f,0) and f
is is Riemann integrable.

2. Let f be the caracteristic function of Q N [0,1]. For any partition o of
[0,1], L(f,0) =0 and U(f,c) = 1. Then f is not Riemann integrable.

Theorem 1.8

[Riemann’s Criterion]
Let f: [a,b] — R be a bounded function. The following statements
are equivalent

1. f is Riemann-integrable.

2. Ve > 0; there exists a partition o such that U(f,0) — L(f,0) <€

and there exists a partition ¢’ such that 0 < U(f,0’) —
< U(f,oUd) — U(f) < U(f,0') — U(f) < 5. Also
o) S L(f)—L(f,0) < 5. Then U(f,0Uc")—L(f,cUc’) <e.
(f,o) and L(f,0) < U(f) < U(f,0), then 0 <
(f,0) <eg, for all e > 0. Hence U(f) = L(f). ad

~ C
=
|I/\
bq



Proposition 1.9

A function f is Riemann integrable if and only if

YV & > 0, there are two step functions on [a,b] f. and g. such that
b

fs < f < g- and / (ge — fs)(f) dr < e.

a

Proof .

1. If f is Riemann integrable, then V € > 0, there exists a partition o of
[a,b] such that U(f,0) — L(f,0) < e. We take f. = m; and g. = M; on
i, xiva | and fe(z;) = ge(z:) = f(z;) forall 0 <i <n—1.

2. Conversely: Let e > 0 and o a partition of [a, b] associated to both f.
and g.. fe < f<ge..

b
0 < U(f.0) = L(£,0) < Ulgero) = L(fus0) = [ (g~ f) dw<e. So
is Riemann integrable. ¢

a

Theorem 1.10

Let f: [a,b] — R be a bounded function. We denote .7 ([a, b]) the set
of step functions on [a,b]. We have the following:

b
L(f) =sup{ | g(z)dz: g < [, g€ L([a,b])}, (1.4)

L(f) =inf{ [ g(z)dz: f<g, g€ S ([a,b])}. (1.5)

Proof .

b
For any partition o = {ag, ... ,a,} of [a,b], L(f,0) = / fo(x)dzand U(f,0) =

b
F,(x)dx, where f, and F, are the step functions defined by f,(x) =

infiea,_;,a) f(t) and Fo(2) = SuPsera, , ap) f(1), for @ € [ag—1ax), k=0, ... ,n.
If g < f and g € #([a,b]), then there exists a partition o = {ag, ... ,an}
of [a,b] such that g is constants on any interval (ay_1,ax). In this case



sup{ [ g(x)dz: g < f, g€ S ([a,b])} < L(f).

a

Moreover for any partition o, there exists ¢ < f, g € .#([a,b]) such that
b

L(f.0) = [ g(a)d. Then
a

b
L(f) < sup{ / g(@)dz: g<f, ge (ab)).

O

The same method for the upper sum.

Theorem 1.11

[Darboux’s Criterion]
Let f: [a,b] — R be a bounded function. The following statements
are equivalent

1. f is Riemann-integrable,

2. For all € > 0; there exists § > 0 such that for all partition of the
interval [a, b] such that if ||o|| < § then U(f,0) — L(f,0) < e.

Recall the notion of oscillation of a function on an interval.

Definition 1.12

[Oscillation of a function]
The Oscillation of a function f: I — R at a point a € I is defined by

walf) = lim sup{If(y) — ()]s v,z €l —r,a+ 701},

If f is bounded, the oscillation of f on the interval [a,b] denoted by

O(f,[a,b]) is defined by sup f(z)— inf f(z).
z€[a,b] z€la,b]

Note that w,(f) > 0 and f is continuous at a if and only if w,(f) = 0.
Moreover, if f is bounded then w,(f) < O(f,[a,b]).

Proof .
The condition is obviously sufficient.



NC: Let f be a Riemann integrable function (we assume that f is not con-

stant), so V € > 0 there is a partition ¢ = (zg = a, ... ,x, = b) such that
U(f,0) = L(f,0) < e. Weset M = O(f,a,b]) the oscillation of f on the
. £ . .

interval [a,b], a; = Ve ay = Og;gf%l(xj_,_l — ;) and @ = min(ay, az). That
iso’ =(yo=a, ...,ym = b) a partition of [a,b] such that |¢’| < a. There are

at most n intervals Jy;_1, y;[ which contain x;. The others are contained in the
intervals |z _1, z;[. We denote

Mj = sup  f(z), M;= sup f(a),
€]y ,y;+1[ w€lzj,mjq1]
m; = inf  f(z) etm;= inf f(x).
z€ly;,yj+1( z€|xj,xj41]
U(f,0') = L(f, o)) = S e ) (M — )

1yi,95+1[Cl2s,@iqa]

+ Z (yj+1 — ;) (M} —mj)

T €)Y Y5411
It follows that
n—1
U(f,0) = L(f,0") < > (wip1 — 2:)(Mi —my) +naM
i=0

= U(f,0) — L(f,0) + naM < 2e.

Proposition 1.13

b
Let f be a Riemann integrable function and I = / f(z)dx. Then

V & > 0 there exists o > 0 such that for all partitiog o of [a,b] with
loll < a, [U(f,0) — I| < = and |L(f, ) — I| < =.

Theorem 1.14

Any monotone function on an interval [a, b] is Riemann integrable.

Proof .



Suppose that f is increasing. Let ¢ = (zg = a, ... ,x, = b) be a partition of
[a,b] and a = [|o]| = supg<j<p—1(Tj+1 — 2;).

U(f,0) = L(f,0) < a[(My—mg) + ...+ (Mp—1 — mp_1)].

M] = Sup$6]wj,$j+1[f(:r) S f(w]-‘,-l) and m] = infme]mjamj+1[f(x) Z f(x])
Then

n—1

U(f,0) = L(f,0) < ) (f(zj11) = f(z5)) < a(f(b) = f(a))-

§=0
For € > 0, we take a partition o = (g = a,...,x, = b) of [a,b] such that
(f(b) = fla)) sup (wj41—x;) <e.
0<j<n—1
We get: U(f,0) — L(f,0) <e. Then f is Riemann integrable. a

Any continuous function on an interval [a, b] is Riemann-integrable.

Proof .

Let f be a continuous function on an interval [a,b], then f is uniformly contin-
uous. Hence Ve >0, 3a > 0such that |f(z) — f(2')| < 3= forall [z—2'| < o
Let o = (¥9 = @, ... , T, = b) be a partition of [a, b] such that supy< <, 1 (¥j4+1—

r;) < a. As f is continuous on [a,b], there exists

such that M; = f(2}) and m; = f(:v;/); |2} — :L’;/| < |zj41 — ;] < «, then
M; —m; < ﬁ. ‘We deduce that

and x; in [z;,z;41]

0<U(f,0)—L(f,0) < A (Tj+1 — ;) (M; —my) <

Definition 1.16

Let 0 = {zo, ... ,x,} be a partition of the interval [a,b]. We say that

a={ap, ... ,ap_1}tisamark of 0 if VO < j <n—1, a; € [z, 2j41].
We define




n—1

U(f,0,0) =Y flay) (@1 — )

=0

called the Riemann sum of f on the partition o with respect to the

mark «.
Remark 2 :
1. Let f be a Riemann integrable function on the interval [a,b]. If ¢ =
{zg, ... ,xn} a partition of [a,b] and 7 = (A1, ..., \,) a mark on o, then
n—1
the sum R(f,o0,7) = Z(xjH — ;) f(A;) verifies
§=0

U(f,0) < R(f,0,7) < L(f,0).

Then V € > 0 Ja > 0 such that for all partition ¢ such that ||o|| < o and
for all 7= (A1, ..., Ay) a mark on o, we have: |R(f,o,7) —I| <e.

2. The same result is obtained if we replace f();) by any constant y;, with
m; < py < Mj.

3. If f is Riemann integrable on the interval [a, b], the sequence (S, )., defined
by:

Sn:b—af:f(a+kb—a)

n n
k=1

b
converges to / f(z)dz.

2 Properties of the Riemann Integral

2.1 Basic Properties

Properties 2.1

b b b
1. Linearity: / a(f—i—ﬁg)(w)dm:a/ f(:v)dx—i—ﬁ/ g(x)dx.

b
2. If f >0, then / f(z)dxz > 0.




b
3. If f <g, then/ flx d:c</ g(x)dx.

f dx‘</|f )|dz.

5. If m < f(z) < M, for all x € [a,b], then

b
m(b—a) < / f@)dx < M(b—a).

2.2 The Chasles Indentity

Proposition 2.2

If f is Riemann integrable on [a,b], it is also interval on any interval

[e,d] C [a,b].

Proof .
Lett € > 0. there exist g € .#([a,b]) g < f and h € .#([a,b]) f < h such that

b
0< / (h — g)(z)dz < . From the Chasles identity, we have
b c d b b
[ =@z = [ = g)@ydo+ [ h-g@dat [ = p)a)ia > [ t=g)@rie.
>0 >0

d
Then 0 < / (h — g)(x)dz < € and hence f is integrable on [c, d]. ad

Theorem 2.3

A bounded function on an interval [a,b] is Riemann-integrable if and
only if it is Riemann-integrable on [a, c| and on [c,b], for all ¢ € [a, b].
Moreover if f is Riemann-integrable on [a, b], then

/abf(m) da:z/:f(a:) dm—l—/cbf(x) dz. (2.6)




(This identity is called the Chasles identity)

Proof .
Assume that f is Riemann-integrable on [a,b], so V & > 0, there exists a par-
tition o of [a,b] such that U(f,0) — L(f,0) < e. Let ¢/ = o U {c}; then
U(f,o')— L(f,0") <U(f,0) — L(f,0) < e. Consider ¢/ = 01 U 0y, with 07 a
partition of [a, ] formed from the points of ¢’ in [a, ¢] and o9 a partition of [c, b]
formed from the points of o’ in [¢,b]. It follows that U(f,01) — L(f,01) < ¢
and U(f,02) — L(f,02) < e. So f is separately Riemann-integrable over [a, c|
and [c, b].

If f is separately Riemann-integrable over [a, ¢] and [c, b], so V € > 0, there is
a partition oy of [a, ¢] and a partition o3 of [¢, b] such that U(f,01)—L(f,01) <e
and U(f,02) — L(f,02) < e. The set ¢ = 01 U og is a partition of [a,b] and
U(f,o) — L(f,0) < 2¢, which proves that f is Riemann-integrable on [a, b].

Consider for a Riemann-integrable function f on [a,b] the numbers: I =

/f ) dz, I) = /f ) dz and I = /f ) dz.

Ve > 0, there exists o >0 such that for any partitions o of [a, b], o1 of [a, ] and
oy of [c, b], with (||o]| < «, ||o1]] < a and ||oz2|| < a we have: |U(f,0) —I| <
g, [U(f,o1) — | < ¢ and |U(f,02) — I] < e. We consider the partition
o = o1 U, |0l < o [U(f,0") — 1| < & similarly [U(f,0") — I — I| <
|U(f7 Sl) — Il| + |U(f, 52) — I2| <2.Sol=1I+ I>.

t

Remark 3 : .
a
By convention if b < a, we set / f(z) de = —/ f(z) dzx
b a

Exercise 1 :
Compute the following integrals:

1. F(x):/ |z — t|sintdt for x € R.
0

2. F(x) = /07r |z — t|sintdt for = € R.
Solution
1. Tx <0, F(x) z/ow(t—x)sintdt:ﬂ'—Qx.
If0 < x <, then F(x) = /Ow(:z:t) SintdtJr/w(tfx) sintdt = m—2sinx.

If ¢ > 7, then F(x) = / (x —t)sintdt = 2z — .

[}



2. If x <0, then F(z) = / (t —z)sintdt = 7 — 2z.
0
If0 < 2 <, then F(x) = / (x—t) sintdt—l—/ (t—z)sintdt = m—2sinx.
0 T

If x > m, then F(z) = / (x —t)sintdt = 2z — 7.
0

Proposition 2.4: (Chasles Indentity for Lower and Uper sums)

Let f: [a,b] — R be a bounded function and let ¢ € [a,b]. Then

Liay)(f) = Lia,q(f) + Liey(f), and Ul p)(f) = Upa,q(f) + U[c,b]((zf’;')

Proof .

The identities are trivially true for ¢ = a or b. Let ¢ €]a,b[ and g € #([a, b]),
g < f. Consider g; and go the restrictions respectively of g on [a, ¢] and [c, b]
respectively. g; and go are step functions. Using the Chasles identity for the
step function g, we get:

b c b
/ g(x)dx = / g1(x)dx +/ ga(x)dx < Lig o (f) 4 L (f)-

Then L[a,b](f) < L[a,c](f) + L[c,b](f)

Inversely let g1 € ([a,¢]), g < f and g2 € ([¢,b]), g2 < f. Define the
function g on the interval [a,b] by g = g1 on [a,c] and g = g2 on |e¢,b]. The
function g is a step function and g < f on [a,b]. We have:

c b
/ g1 (z)dz + / g2(@)de < Ly ():

We fix g» and take the sup on g1, we get

b
Lua(£) + [ gela)de < Lo (1)
c
and if we take the sup on g, we get

L[a,c](f) =+ L[c7b] (f)dl’ < L[a,b](f)'

We deduce that
L[a,c] (f) + L[c,b] (f)dl‘ = L[a,b](f)'



Proposition 2.5

Let f: [a,b] — R be a bounded function and let m, M € R such that
m < f(x) < M for all x in the open interval ]a, b[. Then we have:

(b—a)m < Ligp)(f) < Upap(f) < (b= a)M.

Proof .

Let g (resp. h ) be the step functions on [a, b] defined by g(a) = f(a) = h(a),
g(b) = f(b) = h(b) and g(x) = m (resp. h(zx) = M) for all x €]a,b]. Then
g € Z([a,b]), g < f and h € #([a,b]), h > f and therefore

b
(- am= [ go)ds < L) < V(1) /h o = (b— )M

Remark 4 :

The lower and upper integrals are not linear: for two bounded functions

f,9: [a,b] — R we can show that Ly, 3 (f) + Liap(9) < Liay(f + g) and
Ula)(f +9) < Uap)(f) + Upap)(g), but these inequalities can be strict. For
example, if f,g :[0,1] — R are defined by f(z) =1if 2 € Q and f(z) =0
otherwise, and g(z) = 1 — f(x), then Ly, 3 (f) = 0 = Lia5)(g) and U p)(f) =
1 =Ulap(9), while Lig y(f +9) =1 = ULy (f +9).

2.3 Examples of Riemann Integrable Functions
Definition 2.6

A function f defined on an interval [a, b] is said to be piecewise continu-

ous if there is a partition o = (zg = a, ... ,z, = b) of [a, b] such that f
is continuous on each open interval |z;, z; 1| and f admits a right limit
of z; for all 0 < ¢ <m — 1 and a left limit of x;4; for all 1 <i < n.

Exercise 1 :
Show that any piecewise continues function on an interval [a,b] is Riemann
integrable.



The space of Riemann-integrable functions on [a, b] is a vector space on
R.

Theorem 2.8

If f is Riemann-integrable on an interval [a, b], then |f| is too.

Proof .

Let [¢,d] C [a, b).

e If f is non negative on [¢, d], then sup|f| = sup f and inf |f| = inf f.
le,d] [e,d] [e.d] [c.d]

o If f is non positive on [c,d], then sup |f| = — inf f and inf |f| = —sup f.
le,d] [e,d] [e,d] le,d]

e If f has no constant sign on [c, d], then sup f > 0 and infj, 4 f < 0.

[e,d]

It follows that sup|f| = max(sup f, — [ing] f). We deduce that in all cases
[e,d] [e,d] G,

sup |f| — inf |f| < sup f — inf f, which gives that U(|f|,0) — L(|f],0) <
[e,d] [e.d] [e,d] [e.d]

U(f,o) — L(f, o), for any partition o of [a,b]. It results that |f| is Riemann-
integrable. O

Proposition 2.9

If two functions f and g are Riemann-integrable on a interval [a, b], then
sup(f,g) and inf(f, g) are Riemann-integrable.

Proof .
sup(f,9) = 35(f + g+ |f —g|) and inf(f,g) = 3(f +9—|f —g]). 0

Theorem 2.10

The product of two Riemann-integrable functions is a Riemann-
integrable function.

Proof .



It suffices to prove the result for two non negative functions. Let f and g be two
non negative Riemann-integrable functions on [a, b]. Let M be an upper bound
of f and g over [a,b]. For any a partition o of [a,b], U(fg,0) — L(fg,0) <
MU(f,o) — L(f,0)) + M(U(g,0) — L(g,0)). Tt follows that f.g is Riemann-
integrable. a

Let f be a non negative Riemann-integrable function on [a, b]. Then for
all > 0, the function f¢(z) is Riemann-integrable.

Proof .
Let & > 0, there is a partition o = (z¢g = a, 1, ... ,Z, = b) such that:
n—1
Z($i+1 —x;)(M; —m;) <,
i=0
with
M;= sup f(x) etm;= _inf f(x).
z€lTi,wiqa] TE€]Ti,Tita]

Note that ¥V ¢ € [0,1]; 1 —t* < (1 — t)sup(1, ), which gives that

M —m& < (M; —mi)M® sup(a, 1).
Ifa>1: Mf‘_l < M1 with M = sup f(x). In this case, we have:

z€la,b]
n—1
Z(.’L’i+1 —2)) (M —m) < aeM*™!,
i=0

which gives the result in this case.
If « < 1andif M; <e we have: M —m{ < ¢* and if M; > ¢ we have:
M1 < =1 which yields

n—1 n—1 n—1
D@ —x) (M —m§) <Y (wipr — @)™+ (wipr — x) (My —my)e™ !
1=0 1=0 1=0
n—1
= (b—a)e™ +&7! Z($i+1 —x))(M; —my;) <e“(b—a+1).
=0

In general, we have the following theorem:



Let f: [a,b] — [c,d] be a Riemann integrable function and ¢: [¢,d] —
R a continuous function. Then ¢ o f is Riemann integrable.

Proof .

Let € > 0, we will construct a partition o = (xg = a,x1, ... ,2, = b) of [a,b]
such that: U(po f,0) — L(po f,0) <e.

The function ¢ is uniformly continuous on [¢,d] and bounded, then there is

M > 0 such that |p(z)| < M, Vz € [¢,d] and if &' = , there is

2M + (b—a)
0 < a < &’ such that for |z —y| < a, |p(z) — @(y)| < &, for all z,y € [e,d].
Since f is Riemann-integrable on [a,b], there exist a partition ¢ = (zg =
a,xi, ... ,xy, =b) of [a,b] such that:

U(f,0) — L(f,0) < a®. (2.8)
Let M; = sup{f(z); = € [x;,z;11]}, m; = inf{f(x); © € [x),x;11]}, M; =
sup{po f(z); @ € [j, j41]}, my = inf{po f(2); v € [x;, 2]}
We denote J; = {0 < j <n—1; Mj—m; <aetJo ={0<j<n-1; Mj—m; >
a.
If j € Ji, then by the uniform continuity of o f, we have |po f(z)—pof(y)| < &'
for all z,y € [z, ;41], which yields M; — m; <¢€’, then

D (M — i) (w01 —a5) < €' (b—a). (2.9)
jeJ1
By (1.1),
@ > Y (My —my)(zj —25) > a Yy (5401 — 7).
JEJ2 JjE€J2
Then Z (zj41 — 7;) < a < & and since M; — m; < 2M, we have:
JEJ2
Z(M] — ﬁzj)(xjﬂ — .Tj) <2M Z ($j+1 — xj) < 2M¢'. (210)
jEJ2 JEJ2

It results by (1.2) and (1.5) that

Ulpo f,0) = L(¢o fo) = Y (M; — ;) (w1 —x;) <&'((b—a)+2M) =¢.

O
Remark 5 :



1. The integral of a non negative Riemann-integrable function is a non neg-
ative real number.

2. If f is Riemann-integrable on [a, b], then

b
wdxg/Wﬂwwxsw—@sw|ﬂ@L

z€la,b]

Corollary 2.13

If f is Riemann-integrable on [a, b], then the function F'(x / f(®)

is continuous on [a, b].

Proof .

F(z)-F(y) = / f(t) dt. Since f is bounded on [a, b], there exist M > 0 such
y

that [F(z) — F(y)| < M|z —y. O

Corollary 2.14

Let f be a Riemann-integrable function on [a,b]. If m = inf (44 f(2)
and M = sup,¢(, f(2), there exist A € [m, M] such that

b
s [ @) do=

\. J

Proof . .
1
We have: m(b—a) < / f(z)dx < M(b—a), then 5o

. /abf(x) dx € [m, M].

Corollary 2.15

[First Mean Value Formula]

Let f and g be two Riemann-integrable functions on an interval [a, b].
Assume that f is continuous and g has a constant sign on [a,b]. Then
there exists ¢ € [a, b] such that




Procb)f . .
If/ g(x) dx =0, then / f(x)g(x) dx = 0.

1 b
—————, then / g1(z) dz = 1 and
fa g(x) dx a

it m = ir[lfb]f(x) and M = sup f(z), there is A € [m,M] such that
z€la, z€[a,b]

/a  f)gn )z = A

b
It g(z) dz # 0, we set g1 =
a

2.4 The Fundamental Theorem of Calculus

The following theorem can be called the ”fundamental theorem of integral
calculus”, although we usually reserve this terminology for the particular case
where f is assumed to be continuous.

Theorem 2.16

Let f: [a,b] — R be a bounded function. Let ¢ €]a,b[ and suppose
that f has a limit on the left at ¢ denoted by f(c—), (respectively a limit
on the right of ¢ denoted by f(c+)). Then the functions & —— L4 41 (f)
and & +—— Ul, 4)(f) are left (resp right) differentiable at ¢, with left
derivative f(c—) (resp with right derivative f(c+)).

Proof .
Let £ > 0, there exists 6 > 0 such that for all x €]c — §, ¢[ we have f(c—) —e <
f(x) < f(c—) + € and therefore we have

(c—a)(f(c=) =€) < L, (f) S Up,g(f) < (c—z)(flc—) +e).
Now, according to the Chasles identity, for all z € [a, ¢[ we have:
L[a,c] (f) - L[a,z] (f) = L[w,c] (f) and U[a,c] (f) - U[a,a:] (f) = U[a:,c] (f)
We deduce that

() — &) < HadD) = Liaal ) _ oy 4oy

cC—Xx




and
U[a,c](f) - U[a,a:](f)
C—X

(fle=)—e) < < (flem) +e).

Using the same method for the right derivative. O

Theorem 2.17

Let f: [a,b] — R be a bounded function. We suppose that at any
point x €]a, b[, f has a limit on the left, denoted f(x—), and a limit on
right, denoted f(z+). So:

1. f is Riemann integrable on [a, b].

x

2. The function F': [a,b] — R defined by F(x) = f(t)dt is con-

tinuous on [a,b], F(a) = 0, and for all x E]a,b([l, F is left and
right differentiable at x, with left derivative f(z—) and with right
derivative f(z+).

3. If f has a right limit f(a+) at a, then F' is right differentiable
at a with right derivative f(a+), and likewise if f has a left limit
f(b—) at b.

Proof .
For all x € [a,b], let G(x) = Ua)(f) — Lia,z)(f). We have G(a) = 0, G
is continuous on [a,b] and for all = €la,b], G is left differentiable at z with
left derivative zero, and also right differentiable at x with zero right derivative.
Therefore, G is differentiable at every point = €]a, b[, with derivative G'(z) = 0.
It follows that G is constant on [a,b], with value G(a) = 0. So 0 = G(b) =
Uta,p)(f) = La,5(f). This proves that f is integrable on [a, b].

Moreover, the proof also gives that for all € [a,b], we have 0 = G(z) =
Ula,e)(f) = Lia,2)(f), which proves that U, ,1(f) = Lja,)(f) and that f is inte-

T

grable on [a, z]. So the function F': [a,b] — R, defined by F(z) = / f(®)dt =

Ula,z)(f) = Lia,2)(f) is well defined, and it is continuous on [a, b], zer% at a, and
at all = €]a,b] it is differentiable on the left of derivative left Fj(x) = f(z—)
and right differentiable from right derivative F)(z) = f(z+), and we also have
F/(a) = f(a+) (resp. F;(b) = f(b—)) if the limit f(a+) (resp. f(b—)) exists.
O

In the particular case where f is continuous on [a, b] (therefore bounded on
[a, b]), we obtain:



Theorem 2.18

[The Fundamental Theorem of Calculus]
Let f: [a,b] — [c,d] be continuous function, then the function F' de-
fined by

Fz) = /z f(t)dt

is differentiable and F'(z) = f

Proof .
For = € [a,b] and h € R* such that x + h € [a,]].

F(Hh,)l_F(x) = %(/:Mf(t) dt—/:f(t)dt)
(c)

x+h
- o] rwa=re

where ¢ € [z,2 + h] or ¢ € [z + h,z]. Since f is continuous, }llin%) fle) = f(x).
—
Then F'(z) = f(x).

Corollary 2.19

Let f: [a,b] — R be a differentiable function and f’ is Riemann inte-
grable, then

0

b
/ f(@)dz = £(b) - £(a).

Theorem 2.20

[The Cauchy-Schwarz Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b],
then

(_/ab f(@)g(x) diﬂ)Q < /ab f2(z) da /abQQ(m) dz.

Proof .



Let A\ be a real number.

b b b b
P()\) :/ (f(z)+Ag(x))? do = )\2/ *(z) dm+2)\/ f(x)g(z) dm+/ f(z)? dz

b
If / g*(x) dz > 0, P()\) is a non negative polynomial. It follows that its

a
discriminant is non positive, which gives the desired inequality.

b b
If/ g*(x) dx =0, P(\) > 0, then / (fg)(x) dz = 0 and the inequality holds.

Corollary 2.21

[Minkowsky Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b],

hen
t(/:<f<>+g %s/fQ ) dz) (/ 2(z) da)?.

M\»—l

L

PI;)OOf .
/(f( )+ g(a))? d:c—/ P )dw+/ dm+2/ F(@)g(x) do. By the

Cauchy-Schwarz inequality we have

(/ab(f(>+g /f ) dz)? + (/a 2(z) da)?.

Remark 6 :

-

If f is a non negative Riemann-integrable function and / f(x) dz =0, then
/ f(x)g(x) de = 0 for all Riemann-integrable function g. In particular

b
/ f%x) de =0, Va > 0.

[Holder Inequality for Integrals]

Let f and g be two non negative Riemann-integrale functions on an
interval [a, b]. Then for all conjugate positive numbers p, g, (% + % =1)




we have:

/abf() ) do < ( /fp dx)’l’(/ab q(x)d:r)%.

Proof .
If / fP(x) dr =0 or / 9(x) dx = 0, the result is trivial.

g
b
If/ fP(x) dx # 0 and / g(x) dx # 0, we set fi(z) =
@ / fP(t) dt) 1/p

(z)
and g1(z) = bg— we get (x) de = g1(z) de = 1. From
([ gct) dey / /

1 1
the convexity of the function ¢ — ¢ on ]0,+oo[, for p > 1, we get ff gy <
1 1
—f1 + —g1. We deduce the desired result.

p q

/a ’ fladote) do < ( / " frla) i) / " g1(a) da)’.
O

Theorem 2.23

[Second Mean Value Formula]

Let f be a decreasing non negative continuous function on the interval
[a,b] and let g be a Riemann-integrable function on [a,b]. Then there
exists ¢ € [a, b] such that

b C
/ f(x)g(x) do = f(a)/ g(z) dx.

Proof . .
Consider the function G(z) = / g(t) dt. G is continuous on [a,b]. Let m =

inf,epq,5 G(v) and M = SUPxe[Zb] G(z). To prove the theorem it suffices to

prove that mf(a /f z) dx < Mf(a). Let 0, = (xg =@, ... ,x,) be



the uniform partition of [a,b] i.e. ;41 —x; = — T =a +j%%. We set
), = G@ip1) = Glzi)
T
n—1 b
i S~ ) 79) ) = | #ate) de.
n—1 n—1
D@m= @) fl@)(g(w) = A)| < fla) D (@ier — 2i)(M; —my)
i=0 i=0
= fla)(U(g,0n) — L(g,00n) _:éo 0,
with M; = sup g(t) and m; = _inf  g(¢). It results that
tel@i,miqa| t€lzi,wita|
n—1
3 @) Glein) )= [ s
n—1 n—1
D f@)(Glai) — Gxy) = Zf 2)Glwi) = Y f(2)G ()
i=0 =0
n—1
= > (f@im1) = f(2))G(2:) + f(2n1)G(D).
i=0
Since f is decreasing and non negative, we deduce
n—1 n—1
mf(@na)+ > (f@in) = f@)] < Y f(@)(Glain) — Gla)
=0 i=0

IN
=
—~
8
3
—
~
+
5
=
&
=
~—
~
—~
&8
=

Then

Corollary 2.24

Let f be a monotone continuous function on an interval [a, b] and let g




be a Riemann-integrable function, then there exist ¢ € [a, b] such that

/ab f(x)g(x) dx = f(a) /acg(x) dx + f(b) /Cbg(x) da.

Proof .
We can assume that f is increasing. We use the previous theorem to the
functions h(z) = f(b) — f(z) and g. ad

Theorem 2.25

Let f be a Riemann-integrable function on the interval [a, b].

1. If  lim f(x) = s exists, then the function F(z) = / f() dt

z—t,(x>t)
is differentiable at the right of ¢ and F’(t+) = s.

2. If lim f(z) = s exists, then the function F is differentiable
z—t,(z<t)

at the left of ¢ and F'(t—) = s.

Proof .

1. For € > 0, there exists a > 0 such that |f(z) —s| < ¢, for all z €]t, ¢+ af.
If u € [t,t + «], then |/ (f(x) —s) dz| < e(u—1t) and |F(u) — F(t) —

)—s|§s.

t
s(u—1t)] <e(u—t). Hence %

2. With the same arguments we get the result.

Theorem 2.26

Let f: [a,b] — R be a continuous function and u: I —> [a, b] a differ-

entiable function. Then the function F(z) = / f(¢t) dt is differen-
tiable on I and F'(z) = v/(z) f(u(x)), for all x el

Proof .



Let G be an antiderivative of f such that G(a) =. Then G ou = F and

Fl(x) = (Gou)(z) = G'(u(x)).v(z) = f(u(z))v(z)-
O

Theorem 2.27

[Integral by Substitution]
If g is continuously differentiable (C') on [a, b], and if f is continuous

on g([a,b]. Then
9(b)
/ ) dox = / fogl(t
g(a

Proof . o)

Lot () = [ (o) do. Gt / f o g(a)g/(@) dz, G'(6) = 4 (1)f o g(0),
F(a) = G(a) i((; and F'(t) = ¢/( . Then F’ = G’ on the interval [a, b]
and F' = G on the interval [a b] ad
Example 2

a

1. If the function f is even, then /

—a

f(t) dt = Z/Oa f(t) dt and if f is odd,

then [ Ft) dt =

—a

a+T
2. If the function f is T—periodic, with T" > 0 on R. Then / f) dt =

/ f(t) dt, for all a € R.

/ t) dt = / £(t) dt+ / F(t) dt+ / o £(t) dt. Then /T(HT F(t) dt

/ f(¢) dt, (substitution t =T + x).
0

Theorem 2.28

[Integration by Parts]
Let f and g be two continuously differentiable functions (C') on an




interval I, then

Moreover if [a,b] C I, then

b b
/ f(@)g'(z) dw = f(b)g(b) — f(a)g(a) - / f'(@)g(x) da.

Example 3 :

1 2 11 b 2 1
-1 _Ll? 1 x _71-
/0 T tan :cd:c—?tan x}o—§/0 1+m2dx—z—§.

Theorem 2.29

Let f and g be two functions of class C™ on an interval I, then

n—1

/ F(@)g™ (@)dz = 3(—1)P FP (2)g™ 1) (2)+(~1)" / 9(2) ™ ()d.

p=0

Proof .

n—1 n—1

P @) P @) = 3 )y )

p=0 p=0



Theorem 2.30

[Taylor Formula with integral Reminder]
Let f be function of class C"*! defined on an interval I in R. For a and
z in I, we have:

)= )+ 3 T 0 4 [ EZ ey

Proof .
We apply the theorem (2.4) to the function f and the function g(t) =
O

(x —t)n !
(n—1)! "~

2.5 The Lebesgue Theorem

Definition 2.31

A subset E C R is said to be a null set (or a set of zero measure

or a negligible set or zero set) if for any e > 0 there is a countable
+oo

number of open intervals (Ja,,b,[)n such that Z(b” — ap[< € and

n=1

E C U2 )an, by).

[Lebesgue’s Theorem on Riemann Integrable Functions]

A bounded function f: [a,b] — R is Riemann integrable if and only if
the set of discontinuity points of f is a null set.

Proof .
Let D = {z € [a,b] : f is discontinuous at x}. We have
+o0 1
D ={z € a,b]; wa(f) >0} = | J{z € [a,0]; wa(f) > ~).
n=1

Let D, = {z € [a,b]; w,(f) > 1}. Note that D is a null set if and only if each
D,, is a null set.



Now assume that f be Riemann integrable on [a,b]. Let & € N and ¢ >
0 arbitrary. Since f is Riemann integrable, there exists a partition o =
(xo,21,...,2y,) of [a,b] such that

U(f,0) = L(f,0) = > (Mg —my) (@ — z-1) <,
k=1
Let Jp = {j :]zj—1,2;[NDy # 0}.
If J, = 0, then Dy C {xo,z1, -, T}, hence Dy is finite and then it is a
null set. Otherwise, for each j € Ji, there exists ¢t € DyN]z;_1,z;[ and hence
% < w(f) < M; —m;. Thus we have

Z %(% —zj1) < Z (M; —my)(xj —zj_1) <e

JE€JIk JEJk
and hence Z (¢j—xj—1) < ke. Then Dy \o C U |zj_1,2;[, where Z (xj—
JE€Jk JE€EJk JEJk

zj_1) < ke. Since € is arbitrary, Dy \ o is a null set. Thus Dy C (D \o)Uo
is a null set.

Conversely if D is a null set, to show f is Riemann integrable, we take an
arbitrary € > 0. Since D is a null set, there is a countable family of open

“+o0
intervals (I; =|a;,b,[); such that Z(bj —a;) <eand D C Uj:oflj. For all
j=1

x € [a,b] \ D, w,(f) =0 and hence by definition there exists an open interval
J; containing x such that sup{|f(y) — f(2)|; ¥,z € J» N[a,b]} < e.

The set F = {I;; j € N}U{J,; « € [a,b]\D} is an open cover of the compact set
[a,b]. So F has a finite subcover 7' = {I; j =1, ... , myU{J,;; j=1,...,p}.
Let 0 = {to,t1,...,tn} With a =ty < t; < --- < t, = b be the partition of [a, b]
determined by those endpoints of (I;)i1<j<m and (Jz;)1<j<p Which are inside

[CL,b]. Also let Mj = sup f(t), m; = inf f(t) and 5]' = tj — tj—l,
te(t;—1, t;] Elti—1, t;

j=12,...,nand |f(x)] < M.

Then for each j € {1,2,...,n} theinterval |¢;_1,¢;[ is contained in some Iy, 1 <

k < m or some J;,, 1 <k <pandlet J = {j; Jt;—1,t;) C Ij for some k =
1 <m}.

Note that if j ¢ J then |t;_1,t;[C J,, for some k =1,2,...,p and

My, — my, < sup{|f(t) — f(s)|; t,s € Jp, N]a,b]} <e. Then



n

> (M; —my)3,;

U(fva) _L(f’0>

j=1
= D> (M —my)s;+ Y (M —my)(t; —t;-1)
ied ieT
< > 2M(ty—tia)+ Y ety —tioa)
ied T
< Z2M(bj —aj)+ (b—a)
JEA
< ZQM(bj —a;) + (b—a)e
jeN

< 2Me+ (b—a)e=(2M +b—a)e.

can be made arbitrary small. Hence f is Riemann integrable on [a, b].

3 Improper Integrals

3.1 Presentation of the Improper Integral

Definition 3.1

1. Let f be a piecewise continuous function on the interval [a,d],
where a € R, b € RU {400}

We say that the integral of f on the interval [a, b[ is convergent if
the function F(x) = / f(t)dt defined on [a,b[ has a finite limit
when z tends to b (xa< b). This limit is called the improper

b
integral of f on [a, b and will be denoted by: / f(z)dz.

2. Let f a piecewise continuous function on the interval ]a, b], where
a € RU{-oc0}, beR.

We say that the integral of f on the interval ]a, b] is convergent if
b

the function G(z) = / f(t)dt defined on ]a,b] has a finite limit

x
when z tends to a (z > a). This limit is called the improper

b
integral of f on ]a,b] and will be denoted by: / f(z)dz.




3. Let f be a piecewise continuous function on the interval |a, b,
where a € RU{—o0}, b € RU {+o0}.

We say that the integral of f on the interval ]a, b[ is convergent if
the integral of f is convergent on |a,c| and on [c, b] for any ¢ in
la, bl

4. Let f be a piecewise continuous function on an interval I. The
function is called integrable on I (or the integral is absolutely
convergent) if the integral of |f| on the interval I is convergent.

Example 4 :
L /+°° dx
0 1+z
oo da

2. Let a € R and a € RY.. The integral / — is convergent if and only
x

o di t/+°° dx T [ dx )
1S divergent, —_— = =, — = 2.
& o 1422 27 Jy Vx

a a
d
if @ > 1 and the integral / —:j is convergent if and only if o < 1.
0 :I/‘
3. For 8 € R and a €]1, +o0[, we set

T gt
Fy(x) :/a t(Int)8’

for x > a. In taking the change of variable u = Int, we get:
Fi(z) =In(Inz) — In(Ina) and for 8 # 1;

Inz
du 1 1 1
F, = — = — . Thus the int 1
() /1 " 1 —5[(1113?)5_1 (lna)ﬂ—l] us the integra

na

o dy . .
——— is convergent if and only if g > 1.
o z(nz)?

Definition 3.2

Let f be a locally Riemann integrable function on an interval I. The

intgeral of f on [ is called absolutely convergent if the integral of |f| on
I is convergent.




Proposition 3.3

Let f be a locally Riemann integrable function on the interval [a, b].

b b
1. If the integral / f(z)dz is absolutely convergent, then / f(z)dx

is convergent.

2. If there exists a non negative piecewise continuous function g on
b

[a,b], such that / g(x)dz converges and |f(x)| < g(z), then

a

/ f(z)dz is absolutely convergent.

Rerr})ark 7 ,
If / f(z)dz is convergent, then / f(z)dz is not in general absolutely con-

a
vergent.

sinx
Consider the function on the interval [1, +o00].

x
Sginx cos s cosx

By integration by parts, / dxr =cosl — - / ———dx; this shows
1 X S 1 .T

sinx
that the integral of the function

is convergent on [1,+oo[. (we can also

x
use the second mean value formula theorem 2.4). Moreover

n

nw | o 1 a(k+1)7 | o
/ |Sln$|dx _ Z/ |Slnl‘|dm
™ €T km €

(k+1)m
/ | sin x|dx

3??‘
,_\,_.

M

k—l—l

Tl
e

2
(k+1)m

b
Il
Jan

1 1
As the sequence (vy,),, defined by v, =1+ 3 + ...+ — is divergent, then the
n

integral of f is not absolutely convergent.
Another proof: we remark that |sinz| > sinz = # As the integral

+oo +oo .

cos(2x sin x

/ 2( )d:c is convergent, the integral / udac is divergent.
1 €L 1 z




3.2 Convergence Tests of Improper Integrals

Theorem 3.4

[The Cauchy Test]
Let f be a piecewise continuous function on [a,b[, b € RU {4o0}.

b
/ f(z)dz converges if and only if

Ve > 0,3 ¢ tel que Vz,y €]c, b;

Y
/w f(t)dt‘ <e.

(We can suppose only f locally Riemann integrable function).

Let f: [a,b[— R a bounded function and a,b € R. If f is piecewise
continuous on [a, b[, then the integral of f on [a, b[ is convergent.

Example 5 :
int
The integral of the function f(t) = % is convergent on |0, 1].

1
Also the function g(t) = sin ;on 10, 1].

Theorem 3.6

Let f be a non negative locally Riemann integrable function on [a, b].

x
The integral / f(t)dt converges if and only if there exists M > 0 such
a

that Vz € [a,b[; /z f@)dt < M.

a

Let f and g be two non negative locally Riemann integrable functions
on [a,b[. Assume that f(t) < g(¢); Vt € [a,b]. Then




b b
If / g(x)dx converges; the integral / f(z)dz converges.

a

b b
If [ f(z)dz diverges, the integral / g(x)dx diverges.
a a

Corollary 3.8

Let f be a non negative locally Riemann integrable function on the
interval [a,b[ and let & = {(x)n € [a,b]; lim,— 1o x, = b}. For any

x

x € [a,b], we define F(z) = / f(t)dt. Then following properties are
equivalent ¢

1. The integral of f on [a,b[ is convergent.
2. {F(z); = € [a,b[} is bounded.
3. For any sequence (z,), € &, the sequence (F(x,), is convergent.

4. There exists a sequence (z,,), € & such that the sequence (F(zy),
is convergent.

Example 6 :
2 +Oo
1. f(t) =e ¥t €[0,+00[, we have f(t) < e ! and / e *dr = 1, thus
0

+oo
_12 .
/ e~ ¥ dx is convergent.
0

™

z d 1 1
2. / o diverges because —— > — V z €]0, z].
o sin z sinz =z 2

Proposition 3.9

Let I be an interval and f: I — RT a non negative locally Riemann
integrable function. The integral of f on I converges if and only if there
exists an increasing sequence of intervals ([a,, by])n which covers I and

bn
a real M > 0 such that / f(z)dz < M, for any n € N. In this case
An




/I f(z)dz = sup / i" f(z)da.

neNJaq

Theorem 3.10

Let f: [a,b]— R and g: [a,b]—> R* be two locally Riemann integrable
functions. Assume that there exists £ € R\ {0} such that f ~ g (when

b b
t tends to b~). Then / f(z)dz converges if and only if / g(z)dx
converges. “ “

Proof .
If f = £g (when t tends to b~), then there exists a function h such that
f(t) = £Lh(t)g(t) and lim h(t) = 1. Thus f(t)—£g(t) = (h(t)—1)¢g(¢t) and, thus

there exists ¢ such that Vt Ele,bl, |f (&) —Lg(t)] < g(t), let |f( )< (A+14)g(t).

If the integral / g(z)dz converges, then the integral / f(x)dx converges
absolutely. ¢
b

If the integral / f(z)dz converges, as £ # 0, there exists ¢ such that V¢ €

14
le,b[;1f(t) — Lg(t)] < | | g(t). Ifx<y€]c b[, we have: t) — Lg(t)dt| <
L
||/ dtthus||/ t)dt < — 0.
z,y—b
Remark 8 :
If g change of sign the previous result is not true. It suffices to take the
) |sint| = sint sint )
function f(t) = —— and g(t) = —, for t € [1,4+00[. The integral of
() = S+ S and (1) = 1, +oc] :

the function g is convergent on [1,4o00[, it suffices to use the Cauchy test and
the second Mean Value Formula. The integral of the function f is divergent.

Let f: [1,4+00[— RT be a piecewise continuous function.

1. If there exists & > 1 such that lim z®f(z) = 0, then the integral

T—>+00
of f is convergent on [1, +oo.




2. If there exists & < 1 such that lim °f(x) = +oo, then the

r—r+o0
integral of f is not convergent on [1, +oo.

Theorem 3.12

Let a,b € R and f:]a,b] — R+ be a locally Riemann integrable
function.

1. If there exists @ < 1 such that lim (z — a)®f(z) = 0, then the

z—ra™t
integral of f is convergent on ]a, b].

2. If there exists @ > 1 such that lim (x —a)®f(z) = +o0, then
T——+00

the integral of f is not convergent on ]a, b].

7
.
| \.

Theorem 3.13

[Abel’s Theorem]
Let a € R and b € RU{+00}, and f and g be two continuous functions
on the interval [a,b[. Assume that:

y
i) there exists M > 0 such that / f(t)dt’ < M for any z,y in [a, b].

ii) g is monotonic on [a, b and %irrgg(t) =0.
=

Then / f(x)g(z)dz converges.

Proof .
We can assume that g is decreasing. By second mean value formula, theorem

2.4, for any = < y in [a, b],
/ ft dt’

Mg(z) — 0.

;v—)b_

U
=
Il

IN

0

Example 7



1. Let f be a non negative continuous function, decreasing and hIJIrl flx) =
Tr—r+00

+oo
0, then the integral / e f(2)dx converges for X # 0.
0

2. Let f: [a,+o0o[— [0, +00] be a decreasing continuous function. Define
n a+k+1
for all m € N; x,, = Z fla+k) and y, =z, — / f(x)dx. Then
k=0 @
i) the sequence (yy )y is convergent,

+o00o
the integral f(z)dx converges if and only if the sequence (z,),
converges. *
Indeed:
a+n—+1
fla+n+1) = / fla+n+1)dx
a+n
a+n+1 a+n—+1
< [ tedes [ fatnido = fan)
a+n a+n
n a+k+1
Yn = Z(f(a + k) — / f(z)dz), thus the sequence (y,), is non
k=0 atk

n
negative and increasing. Moreover y,, < Z(f(a+k)—f(a+k+1)) < f(a),
k=0
thus the sequence (yy ). is convergent.
a+n+1)
The sequence (x,, )y, is increasing and / fl@)dx <z, and x,41 <

a

a+n+1
fla)+ / f(x)dx, thus the sequence (z,,),, converges if and only if

+oo
the integral / f(x)dx converges.
a

n
As application the sequence z, = ( ) — Inn is convergent. Its limit

k=1

| =

is called the Euler constant.



CHAPTER 11

INFINITE SERIES

1 Tests of Convergence of Infinite Series

Definition 1.1

1. Let (uy)n be a sequence of real numbers (eventually complex num-
n

bers). Consider the sequence (S,,),, defined by: S, = Z U
k=1
If the sequence (S, ), is convergent, we say that the series ) -, up,
is convergent. -
+oo
The limit of the sequence (S, ), if it exists is denoted by Z T

n=1

2. The series Z uy, is called divergent if the sequence (Sy)y is di-
n>1
vergent.

Remark 9 :

1. If the series ;un converges, then nin}_oo Up = 0. (up, = Sp — Sp—1.)
n_

2. The condition lim 1w, = 0 is not, however, sufficient to ensure the
n—--4oo

convergence of the series > -, u,. For instance, the series

45



Z vVn+1—+/n is divergent because S,, = v/n+ 1 — 1, for every n € N

n>1

and lim wu, =0.
n——+00

Theorem 1.2

[Cauchy Criterion]

Let (un)n be a sequence of real numbers. The series Z Uy, CONVErges
n>1
if and only if,

q
Ve>0,IN.€N; |Y un|<e, VYVg2p>N.. (1.1)

n=p

Definition 1.3

A series Z up, is called absolutely convergent if the series Z |wy,| is

n>1 n>1
convergent.

Remark 10 :

Every absolutely convergent series is convergent but the converse is false, it
n
1yl —1 p+1
suffices to take the series } -, ( 1T)L . Indeed, if S,, = E %, then

p=1

(_1)n+1 .

Sont1 — Son = ﬁ 0. To prove that the series Zn21 m is

p——+oo
convergent, it suffices to prove that the sequence (Ssy,),, is convergent.

1 1 1
We have: S2n+2_S2n = %—H—m < 0 and SQn+1—SQn_1 - 7 2n+1 2
0, then the sequences (S2,,), and (S2,+1)n are adjacent, which shows that the
sequence (S, ), is convergent.

2n
1 n 1 _qyntl o,
We remark also that Z Z > on = 2 then the series anl ED" s not
k=n-+1

absolutely convergent.

There are several standard tests for convergence of a series of non negative
terms. These tests are based primarily on the fact that an increasing sequence
is convergent if, and only, if, it is bounded above. It follows that a series
> n>1 Un With non negative terms is convergent if, and only, if, the sequence
(Sn)n defined by: S, = >"7_; uy is bounded.



1.1 Comparison Test

Theorem 1.4

[Comparison Test)
Let (un)n and (vy,), be two sequences with non negative real numbers.
Assume that there exists an integer k& € N such that u,, < v,, for every

n > k. Then if the series Z v, is convergent, the series Z U, 18 also

n>1 n>1
convergent.
Proof
n n
Let S, = Zuj and T,, = Zvj. We have S,, < T,,. The series Zvn is
j=k j=k n>1

convergent if and only if the sequence (7T3,),, is bounded above, which gives the

result.
The result can also be deduced by the Cauchy Criterion (1). O

Corollary 1.5

Let (un)n and (vy,), be two sequences with non negative numbers. As-
sume that there exists ¢ > 0 and b > 0 such that au, < v, < bu,

for every n > k, then the series Z u, and Z v, converge or diverge
n>1 n>1
together.

Corollary 1.6

Let (un)n and (vy,), be two sequences with non negative numbers. As-

sume that lim — =/.
w%+a)vn

1. If £ > 0, the series Z Uy, and Z v, converge or diverge together..
n>1 n>1

2. If £ = 0, the convergence of the series Z v, involves the conver-
n>1

gence of the series E Up,.
n>1




3. If £ = 400, the convergence of the series Z Uy, involves the con-
n>1
vergence of the series Z Up-
n>1

Let (un)n and (vy,), be two sequences of positive numbers. If there exists
m € N such that, “Z—::l < “2tLwhenever n > m, then the convergence

of the series E Up involves the convergence of the series E U,
n>1 n>1

Proof . u v v

Let N € N be large enough such that Vn > N, —ntl < L Thus —L < —
" Uy, vn Un+1 Un

for n > N. The sequence (—n) n>N is decreasing and 2% < — =M e R}
Up, UN

Vn > N. Then u,, < Mv,, for all n > N, which yields the result. O

1.2 Integral Test

Theorem 1.8

[Integral Test|
Let f be a decreasing continuous function on [1, +o0o[. We define u,, =
f(n), for all n € N. Then:

+oo
/ f(z)dz is convergent <= Z Uy, 1S convergent.
1
n>1

Proof . N "

Let S, = » uy and v, = / f(t)dt. We have: f(n+1) < / f@)dt <
k=0 n

f(n), thus

n n+1 n
Sostben< [ pwar<y s
1 k=1

k=1
If the sequence (S,), is convergent, then it is bounded above. Hence the
sequence (v, ), is also bounded above, and since it is increasing it is convergent.



Conversely if the sequence (v,,), is convergent, the sequence (S,,), is bounded
above and then it is convergent. O

Corollary 1.9

[Convergence of Riemann series]
The series ), -, nia is convergent if and only if, a > 1.

Proposition 1.10

[Application: Comparison with Riemann series]

Let (uy)n be a sequence with non negative real numbers. Assume that
there exist 0 < a < b such that 0 < a < n%u, < b < 4oo for every
n large enough, then the series ) -, u, is convergent if and only if,
a> 1.

\ J

This proposition results from Theorem (1.1)

Exercise 2 :

Show that the Bertrand series Z is convergent if and only if & > 1

=y n® In’ n
ora=1and g >1. -
Solution n
Ifa <0, lim ——— = 400, then the series is divergent.

n—+oo n®(Inn)B

If 0 < a < 1, we take @ < v < 1 and consider the sequence v, = —.
n
1

n(lnn)?

. n? .
lim ey i 400, then the series Z

is divergent.
n—+oo N (ln TL) = &
n_

1 n?
Ifa > 1, wetake 1 < 7 < « and consider the sequence v,, = —, lim ————— =
nY’ nSYoo n®(Inn)s

0, then the series Z is convergent.

e (Inn)s
1 1
If @« = 1, we consider the sequence u, = —5— and f(z) = —5 for
nln”n zln :171
x > 2. The function f is decreasing for x large. Then the series Z _—
n(lnn)s
n>2
. . L. [T dx
is convergent if and only if e
o zln”x

The integral

/°° da tzl_nx/‘” dt
o zln’x o tP



is convergent if and only if 5 > 1. O

1.3 Root Test or the Cauchy Test

Theorem 1.11

[Root Test or the Cauchy Test] L
Let (un)n be a sequence of real numbers and £ = limy,— 4 o0 V/|tn].

1. If £ < 1, the series Z Uy, is absolutely convergent.
n>1

2. If £ > 1, the general term of the series does not tends to 0 and the
series ) -, U, is divergent.

3. If £ =1, we can not conclude about the convergence of the series.

Proof .

1. Let a be such that ¢ < a < 1, there exists N € N such that {/|u,| < «,
for every n > N. Then u, < a”. Since the series ) ., a" is convergent,
the series ) ., uy is convergent. -

2. Let 1 < B < ¢, there exists an increasing sequence of integers (ng)g
such that klil;[_l ltn, |/ = ¢ > B. Hence there exists kg € N such
— 400

[tn, | = B"*, for all k > ko. It follows that lim |u,,| = +oo and the
k—4o00

series E U, is divergent.
n>1

1 1
3. We know that the series Z — is divergent and Z — is convergent, but
n>1 n n>1 n

. . _1 . _2
in the two cases lim n™» = lim n » = 1.
n—-+00 n——+00

1.4 The Ratio Test or the D’Alembert’s Test

Proposition 1.12

u
Let (uy)n be a sequence of real numbers. Assume that lim | —-

n—-+oo U,
£. Then




1. If £ < 1, the series Z Uy, is absolutely convergent.
n>1

2. If £ > 1 the series Z Uy, is divergent.
n>1

3. If £ =1, we can not conclude about the convergence of the series.

We prove that is this case lim  {/|u,| = £.
n—>—400

Proof .

1. Let a be a real number such that ¢ < a < 1, there exists N € N such

aN

that for every n > N, < a, then u, < « . Since the series

|tn|
E ™ is convergent, the series E U, is absolutely convergent.
n>1 n>0

2. Let 1 < 8 < £, there exists N € N such that for every n > N, [t 1] > 0,

|t ]
then w, > ﬁ"l |

> >0 Un is DOt convergent.

Since the series ) -, A" is divergent, the series

1
3. We know that Zn>1% diverges and E — converges, but in the two
= n
n>1

. Un+1
cases lim —*L —1.

n—+00 Uy

Assume lim ‘un+1| =/and 0 < ¢ < +o0.

n—-4+0oo Uy
For 0 < a < £ < B < +o00, there exists N € N such that Vn > N, a < ‘TZ*lll <
S. It follows that

"| N < altn| < |tng1] < Blun| < BN Huy| = g7 i Vn > N.

BN-1 BN-1
We deduce that

a= lim oM"Y |uy |< hm \/|un|< hm BN Juy]

n——+o00

Thus a < lim, 400 v/ |un| < B for every 0 < a < £ < 8 < 400, this which
yields that lim, oo V/|tun| = £.



If £ = +o00 and 0 < a. The above proof yields that o < limj, 1o ¥/ |tn|, then
limy, s oo V/|un| = +00.
If £ =0 and 0 < 8. The above proof yields that lim,,_, . V/|un| < B, then

lim;, 400 V/|tn| = 0.

a
Examples 8 :

1. Let z € C, the series ) -, 2—7 is absolutely convergent on C, because for

Un+1 z .
every z € C; |—H| = L 0. We denote e® the sum of this
Up, n+1 n—+oo
oo
L _
series. €* = E =.
n!
n=0

2. For |z| < 1, the series 3, ., Z- is absolutely convergent.

1.5 The Abel’s Criterion

Theorem 1.13

[Abel’s Criterion]
Let (un), be a sequence of real numbers and let (vy,), be a sequence of
non negative real numbers such that:

1. the sequence (vy,), is decreasing and converges to 0.

2. the sequence (Sn = Z uk) is bounded.
k=1 "

n

Then the series E Un Uy 1S convergent.
n>1

Proof .
We use the Cauchy criterion (1) for the existence of the limit of sequences. Let
qg>p=1,

q q q q—1
Z URVp = Z (Sk — Sk—1)vk = Z Skvg — Z SkUk+1
k=p

k=p+1 k=p+1 k=p+1

= +

2

= (Vk = Vk41) + Sgvg — SpUpt1
k=p+1

+



q
Since |Si| < M, then | Z upvk| < 2Muogyy — 0.

kpt1 k—+o00
Remark 11 :
The result holds also if we suppose that the sequence (S,), is bounded and
—+oo
the sequence (by,),, converges to 0 and the series Z(bn — bp4+1) is convergent.
n=0
Examples 9 :
(-1 [vn] )
1. Let b, = ,for n>1 and a, = €™ for 0 < 6 < 27.
q 1 “+o0 —+00 9
| Zan| < m and we can prove that Z |6y, — bp—1] < Z m
n=p n=2 n=2
—1)lvnlgind
It results that the series Z () V"e converges for all 0 < 6 < 27.
n

n>1
|
2. Let s, = Zz—lnn, n>1. Weset uy =51 =1 and for all n > 2;
k=1
1 n—1 1 1 1 1 1 1
Up = Sp—8p_1 = —+In = —+In(l—--) = —+(————+0(—2)),
n n n n n n n

_ -1 1 LAl :
then u, = 55 +o(;z), thus (s,), converges. We set v = ngrfoo S, 7 18

called the ”Euler constant.

2 Alternating Series

Definition 2.1

An alternating series is any series, Z a, such that ana,41 <0 for all
n>0
n € N.

Theorem 2.2: (Alternating series Test)

Consider an alternating series Z(—l)"an. If the sequence (an)n is
n>0
decreasing and lim a,, = 0, then the series Z(—l)”an is convergent.
n—0 o




Moreover for all m > n € N,

Proof .

The convergence of the series results from the Abel theorem (1.5).

Consider the sequences (Sy,), defined by S, = Z(—l)kak, So,, and So,41.
k=0

We have Sz,i1 — Son = —a2ng1 < 0, Song1) — Son = G2ny2 — G2p41 < 0
and Sy(n41)+1 — S2nt1 = G2n42 — d2n43 > 0. Hence the sequence (Saon)n is
decreasing, the sequence (S25,41)n is increasing and 0 < Sypp1 < Sopy1 <
Son < Sy, for all p < n < g. We deduce that Sy, — Saq+1 > 0. Then for all
n <m, |Sy — Sn| = Sm — Sp if nis even and |S,,, — Sp,| = Sp — Sy if 0 is odd.
Also |Sy, — S| < |apy1, for all m > n.

(]



2.1 Exercises

Consider a sequence (uy,)n>1 of real numbers such that the series Z U,

n>1

is convergent. Prove that the series g Uy, is convergent.

n>1

Let (un)n>1 be a decreasing sequence such that the series Z Uy, 1s con-

vergent.

(a) Prove that lim nu, = 0.
n——+o0o

(b)
()

n>1

+oo +oo
g nr" and E n2r".
n=1 n=1

Show that

n
k=0

(¢) Deduce that Z
n=0

(

-1
n +

Find the following sums:

+o00 1
D

2 9
n?—1
n=2

+oo 1

1)

+0o0 9

>
n!’

n=1

IXoond 41

n!
n=0

nz n(n+1)(n+2)’

Prove that the series Z

n>0

)

(—1)*
k+1

n

1

1
|

=In2.

dt
+1

<

+oo

n=1

Compute for 0 < r < 1 the following sums:

is convergent.

—_

3
+
N).

Study the convergence of the following series:

n>1

—+oo
Prove that Z n(ty — Up41) converges and Z n(ty — Upt1) Z Uy,
n=1



n>0 2n

2n)!

n>1

10) Z nsin(%)7

n>1

11) Ze<1+i>n,

12) Z cosh® n — sinh® n,

n>1

= (n2 +1)37
1 n
15) Y ()"
n>1

n>1
1 1
19 sin— —In [ 1+ —
) nilblnn n( +n>,
(=n"
20) ,
S

1
21) Z nlnn(ln(lnn))m

n>3

22)

(]

1\" 1
COS — - —,
n>1 \/ﬁ \/é

23) n%:lln\/lﬁ —In (sin\/lﬁ> ,

Let a,b and ¢ three real numbers. Consider the sequence (uy,),, defined

by:

u, =alnn+bln(n+1) +cln(n — 1), n > 2.

(a) Express in term of a,b and ¢ the necessary condition of the conver-

gent of the series Z Uy, -

n>2



(b) If this condition is satisfied, prove that the series Z Uy, is absolutely
n>2
convergent.

(¢) Chooses a = —2, b = ¢ = 1, prove that the series Z Uy, 1S convergent
n>2
and compute its sum.

Consider f(n) =

n!
———— and S, =1 , >1).
T an n f(n), for (n > 1)
(a) Prove that the series Z Uy, is convergent, where u, = S, — Sp_1.
n>2
(b) Deduce the convergence of the sequence (S, ).
(¢) Set £ = lim S,. Determine in term of ¢ an equivalent of n! when

n—-+oo
n — +00.

Define the sequence of real numbers (uy, ), by:
ug arbitrary and u,41 =1—e7 %, Vn > 0.

(a) Study the convergent of the sequence (uy, ).

. Upgl — U
(b) Assume ug > 0, compute lim W and study the conver-
n—-+oo un
. 2
gence of the series » u;.
n>0

-n" 1
Verify that the series Z ( \F) +— is alternate and divergent. Conclude.
n n

n>1

2-2-10| (a) Consider the function f(x) = |sin(27z)|, for z > 1.
+oo
Prove that / f(t)dt diverges and the series Z f(n) converges.
1

n>1
(b) Consider the function

n?r+1-n® for zen—25nl (n>2)
g(x) =< —nx+1+n3 for z€nn+t ] (n>2)
0 for « does not in any of these intervals

“+o0

Prove that / g(t)dt converges and the series Z g(n) diverges.
0 n>1

Conclude.

—+o0
2-2-11| Let f be a function of class C* such that the integral / f)dt is
0

+oo
convergent and the integral / f'(t)dt is absolutely convergent.
0



(a) Prove that the series Z f(n) converges. (Hint: We can use Taylor
n>0
formula with integral remainder).

sin W\f)

(b) Study the convergence of the following series Z
n

n=1

2-2-12| (a) Prove that for any 6 € }0, g {:

sin(2m + 1)0 = (sin®"** 0) P, (cot? ),

where P, the polynomial defined by: P,, Z 02251111 m=k,
k=0
(One will be able to use the Moivre Formula).

(b) Deduce the roots of the polynomial P,, and the following relation

i cot? km _ m(2m — 1)
— 2m+1 3 '

1
(¢) Prove that: Vte}O,g[, cot2t<t < cot?t + 1.

0) Apply this result for £ = —“T deduce that S+ & = ™
(d) Apply this result ort—2m T educe t at;ﬁ_f'
2-2-13 | Let Z uy, and Z v, be two convergent series with non negative terms.

n>0 n>0

(a) Prove that the series Z u? and Z Unvy, are convergent.

n>0 n>0
Let Z wy, be a series with non negative terms and such that lim (nw,) =
n—-> 400
n>0
L.
(b) Prove that if the series Z wy, is convergent, then ¢ = 0.

n>0
2-2-14| Let up be a number real of |0,1] and define the sequence (uy), by:
2
Upt1 = Up — Usy.

(a) Prove that the sequence (u,,)n is a decreasing sequence.
(b) Prove that Vn € N, w,, €]0,1[.

(c) Deduce that the sequence (uy, )y, is convergent and compute its limit.



d) Prove that the series u? converges and give its sum.
n g g

n>0
(e) Prove that the series Z IH(M) and Z uy, are divergent.
n>0 tn n>0
1 1
(f) Define for n € N, v, = — — .
Un Un—1

i. Prove that lim; . v, = 1.
ii. Deduce that u,, ~ %

u
iii. Study the convergence of the series Z sin(u?) and Z \/—TL
n

n>1 n>1

2-2-15 | Let (uy)n be a sequence of real numbers. Assume that |u,| < 1, for any
n € N.

(a) Prove that the series Z In(1 + u,,) is absolutely convergent if and
n>0

only if the series Z U, is absolutely convergent.
n>0

(b) What can we say about the convergence?

(c) Assume that the series Z Uy, is absolutely convergent.

n>0
. 2 n
(a) Prove that the series ;)un, Z% . are absolutely convergent.
n- n-=

(b) What can we say about the convergence?
Uy,
1+u,

2-2-16 | Let (uy,)n be a sequence of non negative numbers. Define v,, =

Prove that the series Z Uy, and Z vy, converge or diverge together.
n>0 n>0

2-2-17 | Let (un)n, (Un)n and (wy )y, be three reals sequences such that the series
Z U, and Z wy, converge, and u, < v, < w, for any n.
n>0 n>0
Prove that the series Z v, 1S convergent.

n>0

v (n+1)7
2-2-18 | Consider the sequence (uy)n, with u,, = / sin(z?)dzx.

s

(a) Prove that the series Z uy, is an alternate series.
n>1



(FD7 | gin ¢

x 2Vt

Deduce that the series Z Uy, is convergent.
n>1

Prove that it is conditionally convergent.

dt.

(b) Prove that Vn € N,  |u,| = /
n

2-2-19 | Study the convergence and the absolutely convergence of the following
="

series g Up, Where u, = —4/———.
na 4+ cosn

n>2
2-2-20 | Let (un)n>0 be a sequence defined by : ug >0,V n € N, upt1 = up —&—ufl.

(a) Prove that lim w, = +oc.
n—-+4o00

(b) Set v, = 27" Inwuy,.
Prove that the sequence (vy), is convergent. (Study the series

Z Un+1 — 'Un)

n>0
(c) Deduce that there exists a > 0 such that u, ~ o?".

1
2-2-21| Let f(r) = ——————5— defined on [0, +o0[.

1 + coshz sin® x

—+o0
(a) Prove that / f(x)dx is convergent if and only if the series Z Un
0

n>0
(n4+1)7
is convergent, with u, = / f(z)dz.
nm
(n+1)7 1
(b) Prove that for any n € N, 0 < w,, < / —————dx.
n 1+ &-sin"x

2

(¢) Deduce that Vn € N, u,, < %e 2 and that the integral/ f(x)dx
0

is convergent.

2-2-22 | Let (ay), be a sequence of non negative numbers such that the series

Z an is convergent. Define the sequences (R,), and (b,), by: R, =
n>0

“+o0
E ar and b, = ain, with a €]0, 1] fixed.
RO,
k=n+1 n

leoz _ Rl—a
(a) Prove that for any n € N*, b, < ”_iin (We will be able to

n -«
n—1 dt
use the integral / —
tOé
Ry

).



Deduce that the series Z b, is convergent.

n>1
(b) Set for any n € N*| ¢, = ai’ d, = n_ ond e, = hl(Rn—l ).
Ry, Ry R,
Prove that the series Z ¢, and Z d,, are divergent. (Prove that
n>1 n>1
dy

)

the series Z en diverges and 0 < e, < ¢, and ¢, =

e 1—-d,

(¢) If (un) is a given non negative sequence such that the series Z Up

n>0

converges, is there exists a sequence (vn)n such that the series g Uy Upy
n>0
converges and lim v, = +00?
n—-+4oo

3 Series Product

Definition 3.1

Let (uy)n and (vy,), be two sequences of real numbers. For n € N, we
set

= Zukvn_k. (32)
k=1

The series ch is called the series product of the two given series

n>1
g U, and g Up,-
n>1 n>1

In this definition we are not interested in whether the product of the series
exists, because it depends on some conditions. Indeed we have the following
example:

Consider ch the series product of the series >°, -, \/% with itself. The
n>1

series En>1 \/7 is convergent but the series Z cp, is divergent. Indeed:
n>1

_ (_1)n—k _ (_1\n 1
C"_,;\/Hh/n—kﬂ_( b ,;\/k+1\/n—k+1'



Then |c,| > 1 and the series Z ¢y, s divergent.
n>1
The following theorem affirms the existence of the series product under some

conditions.

Theorem 3.2

Let (un)n and (v, ), be two sequences of real numbers.

1. Assume that the series Z U, and Z vy, are absolutely conver-

n>1 n>1
gent. Then the series Z ¢, is absolutely convergent and we have
n>1

400 +00 +oo
ch = (Z un)(z Up)- (3.3)

2. Assume that the series Zun is absolutely convergent and the
n>1
series Z vy, is convergent. Then the series Z ¢n is convergent
n>1 n>1
and we have:

+oo +o0o +o00
D en =0 un)O_ vn). (3.4)
n=1 n=1 n=1

Proof .
It suffices to proves 2). We set

k=1 k=1 k=1
+oo +oo +oo
A= E Up,, o= E |lun,| and B = E VUn,
n=1 n=1 n=1
Then
n n n



Since nEIJIrlooB'A" = A.B, then to show that ngn}roo C, = A.B, it suffices to

show that the sequence (A,,), converges to 0, where A,, = Zn: a;(Bn—j — B).
+00 = .

Let e > 0: 3N € N such that [B, — B| < £ andj;\]|aj| <o Ymz N

Thus for every n > 2N,

£
2

N n
e
1An| <Y lajl[Buy = Bl+ Y lajl|Ba—j =Bl < 5 +5 ==
j=1

j=N+1

It results that lim |A,|=0. O
n—-—+oo



3.1 Exercises

2-3-1



CHAPTER I11

LINTEGRALS DEPENDING ON PARAMETERS

We recall in this chapter, that a piecewise continuous function f is called inte-

grable on I if the integral [ |f(x)|dx is convergent.
I

1 Convergence Theorem

Theorem 1.1

[Monotone Convergence Theorem]

Let ( fn:l — R) be a sequence of integrable piecewise continuous
n

functions on I. Assume that

i) the sequence (fy,), is increasing, (i.e. fr < fnt1)

ii) the sequence (f,), is pointwise convergent to a integrable piecewise

continuous function f on I.

Then f is integrable on I if and only if the sequence ( o i (x)dm) is
n

bounded above. Moreover with these assumptions

/If(x)dx:sup/lfn(x)dﬂc: lim /Ifn(ac)da:

neN n—-+o0o

Remark 12 :

Let ( Sl — ]R) be a sequence of integrable piecewise continuous functions
n

on I. We assume that
i) the sequence (fy,)n is decreasing, (i.e. fn > fnt1)

65



ii) the sequence (fy)r is pointwise convergent to a integrable piecewise con-
tinuous function f on I. Then f is integrable on I if and only if the sequence

( / 7 fn(m)dx) is lower bounded. Moreover with these assumptions

/1 fla)dz = inf /1 fula)dz = T /1 Ful@)da.

Theorem 1.2

[Dominated Convergence Theorem]
Let ( fn: I — R) be a sequence of integrable piecewise continuous

functions on I. We assume that

i) the sequence (f,), is increasing, (i.e. fn < fnt1),

ii) the sequence (f,)n is pointwise convergent to a integrable piecewise
continuous function f on I,

iii) there exists an integrable function ¢: I — R such that |f,| < ¢,
for any n € N. (This assumption is called the domination assumption).
Then for any n € N, f, is integrable on I and f is integrable on I.
Moreover

lim /lfn(m)dx:/If(ac)dm

n——+oo

1.1 Continuity

Theorem 1.3

Let Q be a subset of R™ and f: 2 x I — C a continuous function
on  x I and fulfills the domination assumption, (i.e. there exists an
integrable function ¢: I — RT such that |f(z,t)] < o(t), for all z €

Q.) Then the function z — F(z) = /f(x,t)dt is continuous on ).
I

Theorem 1.4

Let © a subset of R™ and f: 2 x I — C a continuous function on

O x I and fulfills the local domination assumption, (i.e. for any compact
K C Q, there exists an integrable function ¢: I — RT such that
|f(z,t)] < @(t), for all x € K.) Then the function z — F(z) =




/ f(z,t)dt is continuous on €.
I

1.2 Differentiability

Theorem 1.5

Let J be an interval and f: J x I — R a continuous function on J x I.
We assume that
i) For any = € J, the function t — f(z,t) is integrable on I

i) == exists, continuous on J x I and fulfills the domination assumption,

Ox
(i.e. there exists an integrable function ¢: I — R™ such that ’?’ <
7
@(t), for all z € J.)

Then the function 2 — F(x) = /f(a:, t)dt is of class C* on J.
I

2 Generalized Integral Depending on Parame-
ter

2.1 Convergence Theorem of Generalized Integral

Let f(t,z) be a function defined on Ja, b[x]a, S[; with —oco < a < b < 400 and
—00 < a< ff < 4o0o. We intend to study the continuity and the differentiabil-
ity of the function

Flz) = / F(t,2)dt.

To study this problem it suffices to study the case a € R. In which follows
we consider the case a € R. To study the function F', we consider a sequence
(un)n of [a,b] which converges to b and we study the sequence

Fo(z) = / " 2t

and we apply for each function F,, the previous results and deduce the regularity
of the function F' = lim F,,.

n——+oo



Definition 2.1

Let X be a subset of R and f a function defined on [a, b[x X such that
b
the integral / f(t,x)dt converges for any = € X.

b
We say that the integral / f(t, z)dt converges unoformly on X if, Ve >
a

0, Jc independent of x such that |fsb f(t, z)dt| < e&; for any ¢ < s < b.

b
We remark that if the integral / f(t,x)dt converges unoformly on X,
a
then for any sequence (uy), of [a,b] convergent to b, the sequence F,(z) =

Un

f(t,x)dt converges unoformly on X.

Theorem 2.2

| g

[The Cauchy Criterion]
Let X be a subset of R and f a function defined on [a, b[x X such that
b

the integral / f(t,x)dt converges for any = € X.

The integral / f(t,x)dt converges uniformly on X if and only if Ve >

0, 3c independent of x such that | [ f(t,x)dt| < e, forany c < u < v <
b.

Theorem 2.3

Let X be a subset of R and f a function defined on [a,b[xX. We
assume that there exists an integrable function defined on on [a, b[ such
that |f (¢, z)] < ¢(¢), for any € X. Then

b

i) The integral / f(t,z)dt converges absolutely for any = € X.
a

b
ii) The integral / f(t,x)dt converges unoformly on X.

Example 10 :



+o0
1. Consider the integral / e et dt, for x € R. As le~telte| < et
0 o
which is integrable, thus / e~ e dt converges unoformly on R.
0

—+o0
zsint
2. Vonsider the integral e~ %dt This integrable converges uno-

formly on any interval [a, +ool; for any a > 0.

Theorem 2.4

[Abel Rule for the Uniform Convergence]
Let X be subset of R and f, g two functions defined one [a, +oo[x X
such that

u
i) There exists a real M independent of « such that | / ft,z)dt| < M,
a

for any u € [a, +o00.

ii) The function t — g(¢, z) is decreasing for any = € X and there exists

a non negative decreasing function ¢ on [a, +oo[ such that |f(¢,x)| <
+oo

p(t) and tLler p(t) = 0. Then the integral / f(t,x)dt converges
uniformly on X. ¢

—+oo
Therefore the integral / e %dt converges uniformly on |0, +-oo[. It
0

suffices to take f(t) =sint and g(t,z) = £— <

u-l»—t

2.2 Continuity

Theorem 2.5

Let f be a continuous function on [a,b[Xx]c, 8] such that the integral

/ f(t,x)dt converges uniformly on any compact [¢,£] Cla, 8[. Then

_ / " (b, o)t

the function

is continuous on |a, BI.




2.3 Differentiability

Theorem 2.6

0
Let f be a continuous function on [a, b[x]e, 8] such that o1 exists and

Ox
b
is continuous on [a, b] x]a, B[, for any = €], 8], the integral / ft,z)dt
a

converges and the integral / 8—(t,az)dt converges uniformly on any
x

compact [¢, €] Cla, B]. Then the funetion

) = /abf(t, 2)dt

is differentiable on ]a, B[ and

Fi(z) = gf (t,x)dt

Example 11 :

1
1. Let F,(z) = / t*In" tdt, for x €] — 1,0]. F, is well defined. Moreover
0

the functions f,, (¢, z) = t* In" t and %(t x) = fnt1(t,x) are continuous
on ]0,1]x] — 1,0] and for z € [a,0], with —1 < a < 0, one has t*|In" ¢| <

1
t*|In" ¢|. Thus the integral / t* In" tdt converges uniformly on [a, 0] and
0

—1)"n!
F,, is continuous and of class C* on | — 1,0]. F,(z) = &
(x+ 1)ntt

2. Consider the function G defined for x > 0 by:

+oo e—mt2
Glz) = / <
0

1+ ¢2

The function g(t,z) = t2 is continuous on [0, +00[x [0, +o0[. g(t,z) <

T
I thus G is continuous on [0, 4o00].
g g z=t2 . Foo 8g
8—(t, x) = —t“e 1+ which is continuous on [0, +o00[x [0, +oo[ and 3 —=(t,x)dt
T 0 x

converges uniformly on any interval [a,+o0[, for any a > 0, because
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0

(t,x)] < e~ which is integrable, for x > a. Therefore the function
G is differentiable on ]0, +oo[ and

’ e dg
G'(z) = /0 %(t,x)dt.



2.4 Exercises

Let E be the vector space of continuous functions on [0, 1], and let K be
the function of two variables defined by:

f@-1y siy<a
K(x’y)_{x(y—l) siz <y

To any function f of E we associate the function

f(z) = / Kz, 9)f (4)dy.

(a) Prove that for any f € E, f is of class C2, f(l) = f(O) = 0 and

~r

=17
(b) Prove that for any f,g of E :

/ ) fx)de = / ' F@)g(a)de.

3-2-2| (a) Study the convergence of the following integral with respect to the
parameter = € R.

+oo y—(a+1)

——dt.
1 Vitz —1

Let I be the set of = for which the integral is convergent.

(b) For z € I, define
+oo t—(z+l)
F(z) = / dt.
1 2 —1

Prove that F' is of class C*° on I.

We claim to compute the following integral

201 — cos(t
F(x):/o %(x).e_tdt; x>0

(a) Verify the existence of this integral.

1
(b) Prove that F"(z) = i a2

(c) Deduce the expression of F'.

—tx

T gint too e
For & > 0 define the functions F(z) = / = :cdt and G(x) = / ——dt.
0 0

1+ ¢2




1
(a) Prove that F' and G fulfills the same differential equation " +y = =
(b) Prove that F = G.
. . o0 sint
(c) Deduce the value of the Dirichlet integral Tdt.
0
Let f be a continuous function and bounded on R;. We define for x > 0
“+oo —+oo
the function F(x) = / f(t)e "'dt and G(z) = / tf(t)e *dt.
0 0

(a) Verify that F' and G are well defined for z > 0.
(b) Determine the limit of F' at +oc.
(c) Prove that F is differentiable and compute F’(x).

1 oo
Let ¢ (t) = o and f a continuous function on R such that / [f(®)|dt <
m — 00
+00.
Define

(a) Prove that ¢ is continuous on R.
(b) Prove that ¢ is of class C* on R.
(c) Prove that

+o0 400 400
| ewir= [ pwa [ vwa

— 00 — 00 —00

+oo

mnmﬂmz[ fﬁggﬁ

a) Prove that ¢ is of class C*° and fulfills a differential equation of
second order.

b) Compute ¢(0) and deduce the expression of Q.

™

3
(a) Let I,, = / sin” zdx.
0
a) Compute Iy, and Iap41q, for any p € N.
b) Prove that for any n € N, I,,1,,,1 < I? < I,I,,_; and deduce the

Wallis formula:
[T
I, ~+oo %



(b) a) Prove that f: z — /2 sin” tdt is C*° on | — 1, +o0].
0

b) Give a simple equivalent of f at +oo.
¢) Give an asymptotic rxpansion of three terms of f at —1.

3 2-8| Let F(x / .
1+ t2 :v2 +1t2)

(a) Prove that F is of class C'! on ]0, +o0[.

(b) Find a relation between F(z) and F(1).

(¢) Determine the limit of F(x) when x — +o0.

dt
(d) Remark that F'(x / and determine lim F(z).
(1+t2)(22+12) @—0

dt
1+t2 (22 +12)

(e) a) Prove that F(z) = 2/

b) Prove that F(z) ~g 2
) ! / ——

¢) Deduce a simple equivalent of F' in a neighborhood of 0 and +cc.

1y
Define f(x) z/ Mdt.
0 Int

(a) Determine the domain of definition of f.

(b) Prove that f is differentiable on | — 1, +o00[ and determine f’(z) for
any x > —1.
(¢) Give lim f(z) and deduce the value of f(x) for any x > —1.

&—+oo
Let f be a continuous function on [0, +-o0o[ and
D={(ut) eER*} 0<u<uwz 0<t<u}
Define the function

dudt.

A ==

(a) Prove that g is well defined.
(b) Compute

(We will be able make the change of variables u = t cos? @+ sin® ¢.)



(¢) Prove that g(z) = TI'/ f(t)dt and deduce the expression of f in
0

term of g.

3-2-11 | Define the function F by:

7T/2 1
F(z) = / —dt.
0 V1 —a2sin®t
(a) Prove that the domain of definition of F'is | — 1, 1].

(b) Prove that F is of class C? on | — 1,1[, and give the expression in
integral form of F’ and I .

(c) a) Use the change of variables u = zsint to prove that

b) Deduce lim,_,;- F(x).






CHAPTER IV

|78EQUENCES AND SERIES OF FUNCTIONS

1 Sequences of Functions

Definition 1.1

Let (fn)n be a sequence of functions defined on a subset A of R.

1. The sequence (f, )y is called pointwise convergent on A if for every
x € A, the sequence (fy())y is convergent.

2. The sequence (f,)n is called uniformly convergent to f on A if

lim sup || fu(2) — f(2)]| = 0.

n——+oo zEA

Remark 13 :

1. The sequence (fy, ), converges to f on A if and only if

Vax € A, Ve >0, 3N € N such that |f,(z) — f(z)| <e, VYn> N.

2. The sequence (fy,), converges uniformly to f on A if and only if

Ve >0, 3N € N such that |f,(z) — f(z)] <e, Vn> N and Vx € A.

7



Examples 12 :

1. Let (fn)n the sequence of functions defined on I = [0,1] by: fn(x) = 2™,
for all x € I and n € N. The sequence (f,), converges to the function f

defined by:
0 if 0<z<1
f(‘”)_{l if  z=1
sup |fn(z) — f(z)] = sup z™ = 1, then the sequence (f,), is not
z€[0,1] z€[0,1]

uniformly convergent on [0, 1] and also on [0, 1[. Moreover, the sequence
(fn)n converges uniformly on any interval [0,a], Ya € [0,1]. Indeed,

lim ( sup x") = lim a" =0.
n——+oo z€[0,a] n——+0o

2. Let (fn)n be the sequence of functions defined on R by: f,(z) = sin(nz) .

The sequence (f,,), converges uniformly to 0 on R. (|f,(z)| < 2).

3. Let (fn)n be the sequence of functions defined on RT = [0, +o0[ by:
fulz) = x o The sequence ( f,), converges to 0 on RT and not uni-

formly since sup fn(xr) = 1. Moreover the sequence (f,), converges
z€RT
uniformly on any closed interval [a,b] C RT.

4. Let fn(z) = ze™"* for x € RT. We have sup,eg+ fr(x) = =. Then the
sequence (fy)n converges uniformly to 0 on RT.

/1
5. Let fn(z) = T na?

Sup,cp fn(2) = 5. Then the sequence (fy), is not uniformly convergent
on R. Moreover for all a > 0, the sequence (f,,), converges uniformly on
[a, +ool. Indeed for n large enough sup,ciy 4oof fn(7) = fn(a).

for 2 € R. The sequence (f,), converges to 0, but

1.1 Cauchy Criterion for the Convergence

Theorem 1.2

(Cauchy Criterion for the uniform convergence)
Let (fn)n be a sequence of functions defined on an open subset 2 of R.
The sequence (fy,), converges uniformly on a A C Q if and only if

lim _sup |f,(@) = fy(x)| = 0.

P,q—+00 ;¢

This is still equivalent to:




Ve >0,3N, sup |foip(x) — fu(z)] <e, Vn>N,VpeN
T€A

Remark 14 :
If the sequence (f,, ), converges uniformly to f on A C 2, then for any sequence
(zn)n € A, the sequence (up, = |fn(2,) — f(xn)|)n converges to 0. This is
because u,, < sup |fn(z) — f(z)].

T€EA

1.2 Continuity and Uniform Convergence

Theorem 1.3

Let (fn)n be a sequence of functions defined on an open subset  C R

which converges uniformly to f on a subset I C Q. Let a € I and

assume that lim f,(z) = ¢, exists for any n, then the sequence (¢,),
r—a

converges and lim f(z) = lim ¢,. Otherwise
T—ra n—-+oo

Jim (lim fo(2) = lim (lim fo()). (1.1)

n——+o0o el

Proof .
To prove that the sequence (£,), is convergent, we prove that it is a Cauchy
sequence.
For ¢ > 0, there exists 3N such that |f,(z) — fm(z)] < &, Vn,m > N and
Va € I. The inequality is still true if = tends to a. Then Ve > 0, |£,, — £,,| < ¢,
Vn,m > N. The sequence (£,), is a Cauchy sequence in R. Let £ = lim ¢,.

n—-+oo
For ng > N, we have:

|f(.’E) _£| < |f($) - fn0($)| + |fn0($) _€n0| + |€n0 _£|

Since the sequence (fy, ), converges uniformly to f, |f(z) — fn,(z)| < &, Va € T.
(We take m = ng and we tends n to +00). Since lim,_,, fn,(z) = €p,, there
exists n > 0 such that Yz € I, with 0 < |z — a| < n we have: |f,,(z) — ln,| <
€ = |y, — ¢ < e. We have: Vx € I such that [z —a|] <, |f(z) — ¢ <
€ + € + ¢ = 3¢, which proves the result.

O

Example 13 :
nogint
Let (f,)n be the sequence of functions defined on RT by: f,(z) = / %e"’”dt.
0



™ sint

fn(@)—fm(x) = / e **dt, (m > n). The function ¢

ing on [n,m], by the second mean formula, ! |f,,(z) — fim(z)] < € o< 2/n,
then sup |fn(x)— fm(x)| < 2/n, which proves that the sequence (f,,),, converge
reR+
uniformly on RT.
sint
Moreover hm fulz / —dt because

0. Then

sint
fulz / dt’ <zn ——

z—0t

z—0t

+oo i +o0
t t
lim SIE et gy — / sint
¢ . 1

Theorem 1.5

Let (fn)n be a sequence of functions defined on an open subset I C R.
Assume that:

1. The sequence ( fy, ), converges uniformly to f on any closed interval
[a,b] C I,

2. For any n € N, the function f,, is continuous at ¢ € I.

Then f is continuous at c.

Proof .

We consider a sequence (z,), € € which converges to ¢. By Theorem 1.2
lim f(z) = lim f,(c) = f(c). O
T—c n—-+oo

Examples 14 :
1. Let (fn)n be the sequences of functions defined on R* by: f,(z) =

" sint . . n
dt. The function f, are continuous on R™.
0 t+x

( )
( )
C )

i 7T T

be a Riemann integrable function on [a,b]. Then there exists ¢ € [a, b] such that

C )

/ " Fa)o(a) de = f(a) / “g(a) du.




()= Fal0)] < (/0 Byt < (k) —In ), then Ly £ ()

fn(0)] = 0. It results that f,, is continuous at 0.
For 2o > 0, |fu(x) = fu(z0)| < Mp(zo)|z — x|, Vo > %2, with M, (zo) =

/ dt
o (t+xzo)(t+%)
In use the second mean formula, we get: |f,(z) — fim(2)] < n_iyﬂ for all

2
n < m and z > 0. Then sup |f,(z) — fm(z)] < — and the sequence
z€RT n

(fn)n converges uniformly on R*. Tt results that the function f defined

T sint _
by f(z) = dt is continuous on R*.
0 t +x

1 (™ sint
2. Forz > 0, we set f,(z) = — / n dt. The functions f,, are continuous
T Jo

t+x
on R%. The sequence (fy), convergences uniformly on [i:; +oo|, Vh >
1 °° sint
0. It results that the function g defined by g(z) = — ST gt s
T Jo t+x

continuous on RY .

Theorem 1.6

Let (fn)n be a sequence of continuous functions on an open set Q C R

and converges uniformly on compact subsets of I to a function f. Then
f is continuous on 1.

1.3 Integrability and Uniform Convergence

Let (fn)n be a sequence of Riemann integrable functions on an interval [a, b].
Assume that the sequence (fy, ), converges to the function f. Various problems
arise, however

1. the function f is it Riemann integrable?

2. if f is Riemann integrable on [a, b], can we have

lim / b Falt)dt = / b F(t)dt?

n—-+4oo

The answer to the question a) is negative, it suffices to take the function f
defined on [a,b] by:



_J1 ifzeQnla,b
f(z) {O if not

This function is not Riemann integrable and it is a limit of Riemann integrable
functions. (Q is countable).
The answer to the question b) is also negative. We can take f,(z) = na( 2)

defined on [0, 1]. The sequence (fy)n converges to 0 and lim / fu(z)de =

n—-+o0o
1

2
We still have the following theorem:

Theorem 1.7

Let (fn)n be a sequence of Riemann-integrable functions on an interval
[a, b]. If the sequence (f, ), converges uniformly to a function f on [a, b],
then f is Riemann-integrable on [a,b] and we have:

b b
Jim [ pwae= [ ro

Moreover the sequence (F),), defined by: F,(x) = / n(t)dt con-

verges uniformly to the function F' defined by: F(z / f(®)dt on
[a, b].

Proof .
As the sequence (f,), is uniformly convergent to f on [a,b], the function f is
bounded. Indeed, for € > 0, there is N. € Nsuch that sup |f,(z)— f(2)] <e,

z€[a,b
V¥n > N.. Then sup |f(z)| < sup |fn.(z)|+¢e < +o0.
z€[a,b] z€[a,b]
Let 0 = {z1, ... ,z,} be a partition of [a,b] and let n > N.. As Vz € [a,b]
fulz) —e < f(z) < fu(z) + &, we have:
MP—e < My < M+ecand mjy—e < my < m+e, with My = sup  f(x),
TE [Tk, Th41]
M= sup folx),mp= inf f(zx)and my= inf f,(x).
T€[Tr,Thi1] €Tk, Th41] €Tk, Tpt1]

It results that:

U(fn,0)—clb—a)<U(f,0) <U(fn,0)+c(b—a)

L(fn,0) —e(b—a) < L(f,0) < L(fn,0) + (b —a).



Then

L(fn) —e(b—a) < L(f) < U(f) < U(fn) + (b — a). (1.2)

Since the functions f,, are Riemann integrable, we have U(f,,) = L(f,) for all
n €N, and 0 < U(f) — L(f) < 2¢(b— a), for all € > 0. It results that f is

b b
Riemann integrable on [a,b] and for all n € N: |/ fdt — / fa(t)dt] <

e(b — a). Moreover we also have

Vo € [aab]v |Fn(x) - F(SC)| < (b_ a‘) tSpr] |fn(t) - f(t)|

O
Corollary 1.8

Let ( fn:la,b] — ]R)n be a sequence of piecewise continuous functions
on [a,b] and uniformly convergent to f on [a,b], then f is Riemann-
integrable on [a, b] and we have:

/a " fydt = Tim / " ().

n—-+oo

1.4 Differentiability

Theorem 1.9

Let (f)n be a sequence of continuously differentiable functions (of class
C') on an interval [a,b] C R. Assume that:

1. the sequence (f,), is pointwise convergent to f on [a, b].
2. the sequence (f},)n is uniformly convergent on [a, b].

Then f continuously differentiable on [a,b] and: Vz € [a,b], f'(z) =
lim,,—+ o0 f1(x) and (fy)n converges uniformly to f on [a,b]. In partic-
ular f is of class C! on [a, b].

Proof .



We have / fLt)dt = fo(z) — fu(a). Let g be the limit of the sequence

(fr)n- We have / g(t)dt = f(x) — f(a). Moreover g is continuous, then f is
differentiable andaf’(x) = g(x),Vz € [a, b]. O

Exercise 3 :
Let (fn)n be a sequence of differentiable functions on an interval [a, b]. Assume
that the sequence (f), is uniformly convergent on [a,b] and there exists zy €
[a, b] such that the sequence (f,(xo))n is convergent. Prove that the sequence
(fn)n is uniformly convergent on [a, b] to a differentiable function f and f’(x)

lim f! ().

n—-+o0o
(Hint: use the mean value theorem to the function f,, — f,,, for n and m large
enough.)



1.5 Exercises

Define the sequence of functions (f,,), on R by: f,(z) = n2z(1 — x)".

(a) Determine the domain of pointwise convergence of the sequence
(fa)n-
1
(b) Compute / fn(2)dz and deduce that the sequence (f,,) is not uni-
0

formly convergent on the interval [0, 2[.
(¢) Compute the limit of f, (1), when n — 400, and deduce an other
time the previous result.

Study the pointwise and the uniform convergence of the following se-
quences of functions (f,), defined by:

nx

(a) fulz) = Tz R,
2n2x if zel0, 5]
(b) fn(z) = 0 if ze [la 1] on [Ov 1]7
2n —2n2z if x€ [%7 1)
2y
© fule) = {750 7 o

r=0

1 if z=0

sin(z) —nz
@ he) = {5 1 b,
(e) folz)=n%(l—nx—|1—nz|) on Ry, o € R,

nz(l—nx) if 0<z<?i
O o) = {150 e
_fnz—21 if ze[0, 1]
® fw={" "0 § Lo
sinne o
ny/x
0 ifx=0

on each of the following intervals, with 0 < a < 1.

(i) fo(z) =

1+4+2zn
[0,1—a], [1—a,14a], [1+a,+oo[
.2
sin“nx
() ful@) = g T TETE

0 if zenZ



4-1-3

(a) Consider the function ¢, : ]0,n[— R defined for n > 2 by:

— T\"
on(r)=¢€ x—(l—g) .
i. Prove that ¢/ has a unique zero on the interval |0, n[.
ii. Study the variations of ¢,, on [0,n].

(b) Study the pointwise and uniform convergence of the sequence of
functions (fy,)n>1 defined on [0, +oo[ by:

(1-2)" if 0<z<n

fu(z) =

0 if r>n

Study the pointwise and the uniform convergence of the following se-

Let (fn)n be the sequence of functions defined by on R\{—2} by: f,(z)

quences of functions (f,), defined by:

(a) fu(x) = (cos™x)sinz for z € [0, T].

(b) gn(z)=(1+ E)”7 ifx > —n and g,(z) =0if 2 < —n.
n

Consider the case of the uniform convergence on | — o0, al, for a € R.

(z+1)" -1

(x+1)n+1°
Study the pointwise and the uniform convergence of the sequence (fy,)n
on R\{—2} and on any closed interval which does not contain neither —2

and 0.

Let uy,(x) = n*ze™ ", z € [0,1].

Let (fn)n be the sequence of functions defined on [0, 4+o0[ by: fn(x)
n

(a) Find the pointwise limit of the sequence of functions (uy,)n
1
(b) Find lim up (z)dz.

n—-4oo 0
(¢) The convergence of the sequence (uy,), on [0, 1] is it uniform?

1+nz’
(a) Determine the pointwise limit f of the sequence (fy,)n.
(b) The convergence of (fy), to f is it uniform on [0,1]? on [1,4oo[?

and on [0, +o00[?



(c) Let F,, be the function defined on [0, 400 by: F,(z) = / fa(t)dt
0

i. Determine the pointwise limit F of the sequence (F, ).
ii. The convergence of (F,), to F on [0,1] is it uniform?

1
Let (fn)n be the sequence of functions defined by: fn(z) = /2% + —;,
n

for x € R.

(a) Prove that the sequence (f,), converges uniformly on R.

(b) Prove that the functions f,, are differentiable on R and the limit of
the sequence (fy,)n is not differentiable.

Define a sequence of functions (fy), on R% by:

fn(z) =n|lnx|™.

(a) Determine the domain D of the pointwise convergence of the se-
quence (fn)n-

(b) Study the uniform convergence of the sequence (fy, ), to f on D and
on the compacts of D.

ne (% + x)

4-1-10 | Define the sequence of functions (f,)n, on Ry by: f,(z) = T
na

(a) Determine the limit f of the sequence (fy,), and deduce that the
sequence (fn)y is not uniformly convergent on R .

(b) Prove that the sequence (f,), converges uniformly on any closed
and bounded interval of ]0, +oo[ to f.

(¢) Prove that the sequence (Ifn — fDn is bounded on [0, 1].

(d) Deduce that lim fn t)dt = /f

n—-4o0o

4-1-11| Define the sequence (f,,), of functions defined on Ry by: f,(x) = e ™",

(a) Determine the domain D of pointwise convergence of the sequence
(fn)n-

(b) Prove that the sequence (f,,), converges uniformly on [1,4o0].

(c) Prove that the sequence (f, )y is not uniformly convergent on [0, 1].

(d) Study the uniform convergence of the sequence (f,,), on the compact
subsets of [0, 1[?

Let g, = fr/L



(e) Determine the domain of pointwise convergence of the sequence
(9n)n-
-1
(f) Study the convergence of the sequence <gn(n2) > .
n n
(g) Study the uniform convergence of the sequence (g, ), on the follow-
ing intervals, [0, +oo[, [0,1] and [1, +o0].

4-1-12| Define the sequence of functions (f,), on R by:

3=

{IJ2 X n
fal) = (~1)1g"" m(EELED)

n-+x

B
L2t

(a) Prove that |f,(z)] =

— 400 n

(b) Determine, eventually according to the values of 3 the domain Dg
of the pointwise convergence of the sequence (fy,)n.-

(c) Study the uniform convergence on Dg, and on the compacts of Dg.

4-1-13 | Let f be a continuous function on R. Assume that there exists a sequence
(Py)n of polynomials which converges uniformly on R to f.

(a) Prove that there exists ng € N such that ¥n > ng, P, — P, is
bounded on R.

(b) Deduce that f is a polynomial function.

4-1-14 | Study the pointwise and uniform convergence of the following sequence
of functions (fy,)n-

2?"Inx  if x €]0,1]

(a) fa(z)=
0 ifz=0
nz"lnz if z €]0,1]
0 ifz=0
s na €0, 1]
() fo(z)={ msinz
0 ifx=0
(d) fo(z) =4"(22"" —22").

2113: ) 1 1 )
(e) fu(z)= Tonona? and compute ngrfoo/o fa(t)dt and/O nll)rfoo fn(t)dt.



1
4-1-15| Let (f,)n be the sequence of functions defined by: f,(z) = z*sin — if
x#0and f,(0)=0

(a) Prove that the sequence (f,), converges uniformly on any interval
[a,b] C R.
(b) The convergence is it uniform on R?

(¢) The sequence (f},)y is it uniformly convergent on R.
n (—l)k_lil:k
4-1-16 | For x € [0,1] and n € N, define f,(z) = Z —— —In(l1+42x)

(a) Prove that the sequence (f,), converges uniformly to 0 on [0,1].
(We can compute f/ (z)).

b) Prove that lim 3 (" s
(b) Prove t atnirrgo;T(n+l) =1In2.

4-1-17 | Let (f)n be the sequence defined on [0, 1] by:

n’x if zel0,1]

filz) =< —na®+22 if zel[i 2]
: P

0 if zel[z,1]

n’

(a) Study the pointwise and the uniform convergence of the sequence

(fn)n-

1 1
(b) Compare lim / fn(x)dx and/ lim f,(x)dx.

2 Series of Functions

Definition 2.1

Let (fn)n be a sequence of functions defined on a subset A of R.

1. The series of functions Z fn is called pointwise convergent on A
n>1

n
if the sequence (Sn = Z fk) is pointwise convergent on A.
n
k=1

2. The series Z fn is called uniformly convergent on A if the se-
n>1




n
quence (Sn = Z fk> converges uniformly on A.
n
k=1

Remark 15 :
1. If the series Z fn is pointwise convergent to a function f on an interval

n>0
I, then lim f,(z) =0, for all z € I.
n——+00

2. A series Z fn is pointwise convergent on J, if and only if, the series

n>0
Z fn(x) tulfills the Cauchy criterion, i.e.
n>0
n+p
Va € I,Ve > 0,3N;| ka(x)| <e, VYn>N,peN.
k=n

Examples 15 :

1. Let (fn)n be a sequence of functions defined by: f,(z) = x™, the series
Z fn(x) is pointwise convergent on the interval |0, 1] to the function
n>0

1 . .
f(z) = T If |x] > 1, |fn(x)] > 1, then the series ;)fn(z) is diver-
gent on R\]0, 1]. -

2. Forz >0 ¢ fu() = S0n
- For &2 0, we set fu(z) = ——.
. T T x3 1
For all fixed z > 0 we have: sin— = — — — + O(—), then
n n 6n3 n3
x x3 1
= - O(=).
In(®) n(xz +n) 6713(;13—1—71)+ (n?’)

Then the series Z fn is pointwise convergent on RT.
n>1

Also, the series Z fn is pointwise convergent on R\ Z_.
n>1

Remark 16 :



1. If the series Z fn is uniformly convergent to f on I, then the series
n>0
Z fn is pointwise convergent to f on I.
n>0

2. A series Z fn is uniformly convergent on I, if and only if, it fulfills the
n>0
Cauchy criterion for the uniform convergence i.e.

n+p
Ve >0,3N € Nsup | ¥ Uk(x)|[ <e, ¥n>N, peN.
xzel P
Example 16 :
The series Z a™ is pointwise convergent on |—1, 1 to the function f(x) = ﬁ,
n>0
but the convergence is not uniform because sup fp(z) = 1.

z€]—1,1]

Definition 2.2

A series Z fn is called normally convergent on [, if the series
n>0

Z sup || fn ()| is convergent.

n>0 zel

Proposition 2.3

If the series Z fn is normally convergent on I, then it is uniformly
n>0
convergent on .

For the proof we use the Cauchy criterion.

Corollary 2.4

+oo
If sup |fn(z)| < ay and the series Z ay is convergent, then the series

zel n—0




Z frn is normally converge on I.
n>0

Examples 17 :

inx

1
L. Let fo(z) = 5%, (@ > 1). |fa(z)] < vt then the series converges

normally on R.

e "™ 1 1
9. For z €]0, 400, we have: ze=® < 1, then f,(z) =
or x €]0,4+o00[, we have: ze * < en fp(x) S S
for all € [h,+oo[. It results that the series E fn converges uniformly

n>1
on [h, 00|, VA > 0.

3. Let f,(2) = m defined on R\ Z* . |f.(x)| < n|z1+n\ < nlnilwll' Let
K be any compact of R\ Z* , there exists R > 0 such that K C|] — R, R|.

Let ng € N such that R < ng, we have: |fy(z)] < m, vn > ng,

Vz € K. Then the series Z fn converges uniformly on K.
n>1

2.1 Abel’s Criterion for the Uniform Convergence



Theorem 2.5

Let (fn)n be a sequence of functions defined on a subset X C R and let
(gn)n be a sequence of functions defined on a subset ¥ C R. The series
Z fn(2)gn(y) is uniformly convergent on X x Y under any one of the

n>1
following conditions.

1. The series Z frn is uniformly convergent on X and the sequence
n>1
(gn)n is bounded and monotone on Y.

2. The partial sums of the series Z frn are uniformly bounded on X
n>1
and the sequence (gy,), is monotone and uniformly convergent to
OonY.

3. The series Z fn is uniformly convergent on X and the series
n>1

90| + Z |9n — gn+1| is bounded on Y.

n>1

Proof .

n —+oo
1. We set S, (z) = pr(x) and S(z) = an(x) Assume that the se-
p=1 n=1

quence (Sy, )y is uniformly convergent to S on X and the sequence (g )n
is decreasing and bounded on Y. Then

Ve>0,3INeN, Vn>N supl|S,(z)—S)| <e.
rzeX

Let M > 0 such that |g,(y)| < M for every n € N and every y € Y. If
p>N+1and g > p, then

D fa@galy) = D (Sul@) = S(@) (9n(y) = gnt1(9))

+(Sg(2) = 5()) g4(y) = (Sp-1(x) = S(2)) gp(y)-

Then



sup Ian gn(y)| < esup Z 9 (Y) = Gnt1(y)]

rzeX,yeyY n—p er

+€§1€1$(|9q( Yl +lgp(y)]) < 2eM.

It follows that the series Z fn(x) frn(y) converges uniformly on X x Y.
n>1

. Let M > 0 such that |S,(z)] < M, V2 € X and Vn € N. Assume that
the sequence (g )n is decreasing:

-1

> Fa@)gnm) = Sn(@)(gn(y) = gnt1 (1) + Sq(2)gq () — Sp—1()gp(y)

n=p

2

We have: Ve >0, 3N € Nsuch that V n> N, sup|g,(y)| <e.
yey

Forp>N+1landg>p

sup Ian y)| < sup | M (gp(y)—9q (1)) +Mgq(y)+Mgy(y) | < 2Me.
zeX,yeyYy n=p yey

. Let M > O be such that

|90(y |+Z|9n —gnr1(W)| S M, Vyey.

LethN,

n—1

gn(¥) =Y (9p+1(¥) — 9()) + 90(v)-

p=1

It follows that |g,(y)| < M, VneNand VyeY.

q q—1
Y h@gn(y) = D (Su(@) = S@)(9n(y) — gnt1(y))
+(Sq(x) = S(2))gq(y) = (Sp—1(z) — S(2)) gp(y)-
Thus
sup Ian |<Esup Z\gn — gn1(y)| +2M) < 3eM.

zeX,yeY n=p



Examples 18 :

1. Let (ay), be a sequence of non negative decreasing real numbers and
convergent to 0. The series g ane™ is uniformly convergent on any
n>0

compact subset of R\ 27Z.

2. Consider the series Z © and K a compact of R\ Z*, 3R > 0 such
n>0 n+z
that K C [-R,R]. The sequence g,(z) = ﬁ is decreasing positive

VYn > ng, (ng > R). The series is pointwise convergent on R\ Z* and it
is uniformly convergent on any compact subset K C R\ (Z_ U 27Z). In
particular this series converges uniformly on any interval [0, 27 — §]; V6 >
0.

Proposition 2.6

Let ( fn: I — R)n be a sequence on continuous functions at a point
a € I. Assume that the series ), -, f, is uniformly convergent on I to
a function f. Then f is continuous at a.

Proof .
We apply the theorem (1.2) of the previous section. a

Proposition 2.7

Let I be an open set in R and ( fo:l — R)n a sequence of continuous

functions. Assume that the series Z fn is uniformly convergent on any
n>0
compact of I to a function f. Then f is continuous on I.

Theorem 2.8

Let ( fn:la,b] — ]R)n be a sequence of Riemann integrable functions.

Assume that the series Z frn is uniformly convergent on [a,b] to a
n>0
function f. Then f is Riemann integrable and we have:




+00 b b +00
fn( )d = fn( )d'

Proposition 2.9

Let (fn: [a,b] — R),_ be a sequence of continuously differentiable func-
tions (C! functions). Assume that

1. the series Z fn is pointwite convergent on [a, b] to a function f.
n>0

2. the series Z f/, converge uniformly on [a, b].
n>0

Then f is continuously differentiable on [a,b] and we have:

“+oo
fl@)=) ful@), Vel
n=0

Moreover the series Z fn converges uniformly on [a, b] to f.
n>0

Corollary 2.10

Let I be an interval of R and let ( fn: I — R)n be a sequence of
continuously differentiable functions. Assume

1. the series }°, - fn is pointwise convergent on I to f,

2. the series ), - f;, converges uniformly on any compact of I.

Then f is continuously differentiable and we have:

fl@) =) fi(=), Vael




2.2 Exercises

Study the pointwise, absolute, normally and uniform convergence of the

following series of general term:

1)ZM,:UGR, S)Zﬂ,xe&

2 T
n>1 " n>1 "
1 T
2) Z —tan"! =, z € R, z2"
=i n 9)271+x2n’$€[&
2 n>1
3) Zm" sin(nmz), = € [0,qa],
0<a<l. 10) ) g ®€R
n>1
4) Z %, x eR.
= (1+2?) x
2 ) 11) m, x € R,
5) Z xe " x eR, n>1
= (-1)"
1)z
6) Z 2™V r e Ry, 12) U2 z R,
n>1 n>1
na? x
S 2 eR,, 135 — 2 aso.
);1—&—11330 v + )7;11“(1—1—71962) @

4-2-2| (a) Study the pointwise convergence of the series Z(—l)" In (1 + E)
n
n>1
on RJ’_.
(b) Study the uniform and normal convergence of this series on any
closed bounded interval in R.

Find the domain of definition and the domain of continuity of the func-
+oo (_1)n —nz

tion: f(z) = Z c

= n+1

—+o0 _
—_1)ne—nz
(a) Find the domain of definition D of the function g(z) = Z EDte™

n=0

n?+1
(b) Prove that g is of class C* on D.

2n+1
4-2-5| (a) Prove that the series T;)(—l)" an+ 1 is uniformly convergent on
[—1,1]. -
too 2+l

Let f(z) = Z(—l)"m, for xz € [-1,1].

n=0



(b) Prove that f is differentiable on | — 1, 1[ and compute f.
(c) Deduce the expression of f(x), for —1 < a < 1.

1
(d) Compute / tan~! xdzr and deduce the value the of the following
0

— =
S nz:% @n+1)(2n+2)

Consider the series of functions Z fn defined on Ry by: fu(z) =2" —

n>1
n—

T

(NI

(a) Prove that the series Z fn is pointwise convergent on [0, 1].
n>1

+oo
Denote f(x) = Z fn(z), for z € ]0,1].
n=1
+oo

(b) Prove that the remains R, (z) = Z up(z) = 2" f(z).

p=n+1

(¢) Prove that the series Z fn 18 not uniformly convergent on [0, 1].
n>1
(d) Prove that there exists M € Ry such that:

/O 1 Ry (2)dz

1
(e) Deduce that the series Z gn, Where g, = / fn(x)dz is convergent
n>1 0

M
<
“n+1

1
and its sum is / f(z)dx.
0

1
(f) Compute / f(z)dr and deduce the value of the following sum
0

+oo _1)n
S e

n=1
Define the series of functions Z fn, where f, is defined by: fo(z) =0
n>0
2
and f,(x) = w, for n > 1.
n

(a) Prove that the series Z fn is uniformly convergent on R.
n>0



(b) Study the convergence of the series Z I
n>0

) (71)n71

(a) Prove that f is continuous on R.

(b) Study the uniform convergence of the series Z /), and deduce that
n>1
f is of class C!.

+oo n+1
4-2-9| (a) Find the set of definition D of the function f(z Z

n=1

prove that f is of class C*° on D.

— 1
(b) For z > 1; express f(x) in term of Z =

T sinnx
4-2-10| (a) Prove that the series Z ﬁ is pointwise convergent on
cosw

10, 27]

(b) Prove that the convergence of the series is uniform on any interval
of the form: [, 27 —a] V0 < a <27,

1
4-2-11| Let a € R and f, () = — In(1 + n®2?), forn > 1 and = € R.
nOl

(a) Prove that the series Z fn(x) is pointwise convergent on R if and
n>1
only if a > 1.

(b) Assume that o > 1.
i. The series Z frn(x) is it uniformly convergent on R?

n>1

ii. Prove that the function f(x Z fn(x) is continuous on R.

(¢) Prove that if & > 2; f is differentiable on R*.
(d) Assume 1 < a < 2.
i. Prove that f is differentiable on R*.

—a

. Prove that Vn > 1; f(nz ) > 1n2. Zka.



Deduce that Vn > 1;

f is it differentiable at 07
42-12| Define f,(z) = ﬁ for z € R.
Prove that

(a) The series Z fn and Z(—l)”fn converge and compute their sum.

n>0 n>0

(b) Ya > 0, the series Z fn converges uniformly on [a, +00];

n>0
(¢) The series Z(—l)" fn converges uniformly on R.
n>0
In(1
4-2-13 | Let fn(x) = M, for z > 0. Prove that
n

(a) the domain of the pointwise convergence of the series Z fn(2x) is
n>1

“+o0
J1,400[. Let f =" fn on]l, +oo[.
n=1

(b) the series Z fn is not uniformly convergent on ]1,+oo[ and nor-
n>1
mally convergent on [a,+oo[, for all a > 1.

(¢) f is continuous on |1, +oo[ and lim+ f(z) = 4o0.
x—1

—z\/n
e

4-2-14 | Define the sequence (), by: fn(z) = ——.
aence (1) by £u(6) = £

(a) Determine the domain of convergence of the series Z fn-
n>0

+oo
Denote f = Z fn-
n=0
(b) Prove that f is continuous on R.
(c) Prove that f is differentiable on R*.



4-2-15| Let f: ] — 1,400 defined by:

+oo
- (_1)n
flz) = 2ty
Prove that f is continuous on | — 1, 4+00[ and compute lirf f(x) and
Tr—+00
lin

4-2-16 | Study the pointwise and uniform convergence of the series of functions

+oo —nz

- e
> et Sa) = 2 T

n>0
Prove that f is of class C! on R .

sin nax sin n2x

4-2-17 | Define the series of functions Z fn, where f,(x) =

n>1
Recall that 2sin kz sin k?z = cos k(k — 1)z — cos k(k + 1)z.

n

Prove that the series Z fn(x) converges uniformly on R.
n>1
In(1 + nfz?)

4-2-18 | Let fn(z) = ————=; with @ and B two positive numbers.
n

Under what conditions the series Z fn(x) and Z fl(z) are pointwise
n>1 n>1
convergent on R?

4-2-19 | Define by induction the sequence of functions (f,(x)), on the interval
[0,1] by:

fo(@)=1 and f(z)=1+ /01 fro1(t —t%)dt.

(a) Prove that for each n € N, the function f,, is a polynomial and that
fn(x) + fr(1 — x) is constant.
(b) Prove that for any n € N and any x € [0, 1]
m’l’b
0< fn(x) - fnfl(m) < —

nl’

(¢) Deduce that the sequence (f,), converges uniformly on [0,1] to a
function f of class C! on [0,1] and fulfills f'(z) = f(z — 2?).



4-2-20 | Consider the sequence of functions (fy ), defined on |0, +o00[ by: fn(x) =
1
(nx +1)2°

(a) Prove that the series Z fns Z fl and Z . are uniformly con-
n>0 n>0 n>0

vergent on [a +oo[, with a > 0.

+oo 2
1
(b) Let F(x an . Recall that Z 7= % Compute F(1),
n=1
F(1) and F(2 )
(¢) Prove that F is C? on ]0,4o0[ and give the sign of F' and F" on
10, 4+-o0].
(d) Determine lim F(z)and lim F(z).
Tr—+00 z—0+

Consider the series Z e™™" and Z 2e~™°® and denote f(z Z —n’s

n>0 n>0
2 . . .
and g(z E ze " * in the domains of convergence respective Dy
andD,.

(a) Determine Dy and D,

(b) i. Prove that f is decreasing on Dy.
ii. Give lim f(x).
z—07+

(c) The function f is it continuous on Dy?

(d) i. Compute supxe*”%
x>0
+oo )
ii. The series Z xe” ™ * is it uniformly convergent on Dy?
n>0
efnw
4-2-22| (a) Prove that the series Z(—l)” defines a continuous function
n>0 n+ 1
on its domain of definition D.
e*’ﬂl
b) Prove that the series —1)"——— defines a function g of class
(b) Prov S g

n>0
C*° on its domain of convergence.

4-2-23 | Let (f,)n be the sequence of functions defined on R by: f,(z) = nae """



(a)
(b)
()
(d)

Study the pointwise convergence of the series Z fn-
n>0

Prove that the series Z frn is not normally convergent on R.
n>0

Prove that it is normally convergent on [a, +oo], for all a > 0.

) Let f(x Z fn(x). Prove that f is the derivative of a well known

function. Deduce the expression of f.

(a)

(b)

()

()

(d)

Prove that the series Z fn is pointwise convergent on R.
n>0

For a > 0, prove that the series Z f} converges normally on | —
n>0
00, —a] U [a, +o0].

The series Z /), is it uniformly convergent on R?

n>0

Determine the set where the function F'(x Z fn(x) is differen-
tiable.

Prove that Vz,y € R, W) = @)

Let x € RY, we set: fp(x) = (),

1
Prove that the series E fn(z) is convergent if and only if x < —.
e

n>1

i. Let a,b such that 0 < a <b < 1
e

Prove that the series Z fn is normally convergent on [a, b].
n>1

+oo
ii. Let f(z) be the sum of the series Z fu(@). (f(z) = Z fn(x))
n>1 =
Deduce that f is continuous on ]0, —|.
e
Compare the function f the sum of the series Z fn(z) with an

n>1
integral and prove that:



1 -1 In(z)
v - — < < 7l
7 €)0, e b 1+ 1In(z) — @) = 1+ In(x)
1
The function f is it bounded on 0, —[?
e

" 1
4-2-26 | Consider the series of functions Z fn, With fr(z) = (=1 for

nl x+n
n>0 +

z € R.

(a) Give the domain of definition of f,,.

(b) Give the set D where the series Z fn 18 convergent.
n>0

+o0
(¢) Denote for x € D, f(z)= Z fn(x).
n=0

+oo 1
i. Compute f(1) in term of e = Z
n=0
ii. Prove that for any « € D, the function zf(x) — f(x + 1) is
constant. Give its value.

(d) Study the uniform convergence of the series Z f), and Z f;l/ and
n>0 n>0
deduce that f is two times differentiable on D.

4-2-27 | Define the sequence (fy,), with f,:]0,400[— R defined by: f,(z) =
(=1)"Inn
n$

E.

and set
+o0
—1)"Inn
fla)y=>" %
n=1

(a) i. Prove that the series Z 1 (z) converges normally on any closed
n>1
interval [a, b] C]1, 400l

ii. Deduce that f is of class C* on |1, 4+o0].

(b) i. Prove that the series Z fl(z) converges uniformly on any in-
n>1
terval [a, +oo], with a > 0.
ii. Deduce that f is of class C! on ]0, +o0].

(¢) Prove by the same method that the function f is of class C* on
10, +o0.



—2nx

4-2-28| (a) i. Prove that the series Z 46271 converges uniformly on [0, +00.
n2 —

n>1
+o0 e—2nw
t = —_—.
We set f(z) nz::l 21
+o0 1
ii. Prove that Vr €]0, +oc[; |32 f(x) — 1| < 3e=2* 7;2 nZ—_1

1
iii. Deduce that ~ e,
iii. Deduce tha f(x)+oo3e
too 67(2n+1)x

(b) Let () = > S —

e—(2n+1)r
i. Prove that the series B ——
7;2 2n—1

10, +o0o[ and uniformly convergent on [a, +oo[ for any a > 0.
ii. Let a > 0. Prove that:

is pointwise convergent on

1T —(2n—3)a
Vo € [a,+oo[ |e**g(z) — 1| <e™* Z c

~ -1
iii. Deduce that g(x) o e 3",
+oo
(c) Let u(x) = Z e (Bn=z,
n=1

i. Prove that the series Z e~ (2= i pointwise convergent on

n>1
10, +o0o[ and uniformly convergent on [a, +oo[, Va > 0.
1
ii. P that = .
ii. Prove that Vz €]0, +ool, u(x) 5 snha

(d) Let F(z) =e %f(z) and G(z)=e**g(x).
i. Prove that F' and G are differentiable on ]0, +oo[ and F'(z) =
—g(z) and G’'(x) = —u(x).
oo dt

and
sinh ¢

ii. Let z €]0,4o00[. Compute the integral: /

+o0o 1 t_ 1
/ —n (=) ar.
. 13 et +1
(e) Deduce the values of g(z) and f(z).

4-2-29 | Let f be a continuous function on [0, 1]. Define the sequence of polyno-
mials (By,), called Bernstein polynomials associated to f,

Balw) = 32 Chr(5)k(— ),
k=0



(a) Let pn(z,t) = Zn: Chebab (1 - =3 Ch (e%z) (1 - z)"*.
k=0

. 9o pn
i. Compute W(x,t) and 52 (z,t).

ii. Prove that

n

ZC’ﬁxk(l —z)" k=1,

k=0
Z ECFLF(1 — 2)" % = na
k=0

and
Z E2CFak (1 — )" % = na + n(n — 1)z
k=0

(b) Deduce that all 0 < o < 1,

1 — k 1
k .k n—k k .k n—k 2
| Ek|> Crz"(1—2x) <= kE_OCn:c (1—2x) (‘T_ﬁ) < Tz
r—3|>a =

(¢) Using the uniform continuity of f, prove that the sequence (By,),
converges uniformly to f.

(d) Deduce that any continuous function on a interval [a,b] is uniform
limit of a sequence of polynomials.

3 Approximation Theorems

In this section, we prove the Weierstrass theorem on the density of the space
of polynomials on the space of continuous functions on the interval [a, b].

Definition 3.1

A function f: [a,b] — R is called a step function if there exist a par-
tition 0 = (a;)o<j<n Of [a,b] such that f is constant on any interval
laj—1,a;[, forall 1 < j <n.

A function f: [a,b] — R is called piecewise continuous function, if
there exist a partition o = (a;)o<;<n of [a,b] such that f is continuous
on any interval Ja;_1,a;[, for all 1 < j < n and f has a finite limit at
the right on any point of [a, b[ and a finite limit at the left on any point




[ of ]a, b]. ]

Let f: [a,b] — R be a piecewise continuous function, then there exist

a sequence of step functions on [a, b] which converges uniformly to f. (A
regulated function f is a uniform limit of a sequence of step function.)

Proof .

If f is continuous, it is uniformly continuous on [a,b], then V ¢ > 0, Ja > 0
such that if |z — 2'| < a, |f(z) — f(2')] < e. For all n € N, we consider the
uniform partition o, = (ag, ... ,ay), with a, = a+ kb_Ta forall 0 < k <n and
we consider the step functions f,, defined by: f,(z) = f(ag), if = € [ag, ar+1]
and f(a,) = f(b). If n > =2 we have:

_ — — <e.
1 = Flloe =y uae (_sup  [ale) = f@)]) <&
If f is piecewise continuous and o = (ao, ... ,a,) a partition associated to f,
i.e. f is continuous on |a;,a;j41] for all 0 < j <n —1. Let f; be a continuous
function on [aj,aj+1] such that f; = f on ]aj, a;41[. For every f; there exist a
sequence of step functions ( f, ;)» which converges uniformly to f on |a;,a 1.
Then the sequence (fy), defined by: f.(a;) = f(a;) and f,(z) = fn () for
x €laj, aj4+1], converges uniformly to f on [a,b]. ad

[Weierstrass Theorem]

Let f be a continuous function on an interval [a,b]. There exists a
sequence of polynomials (P,),, which converges uniformly to f on [a, b].
(i.e. R[X] is dense in C([a,b]) for the norm of uniform convergence.)

Proof .

Without loss of generality, we can assume that [a, b] = [0, 1].

Since f is continuous on [0, 1], it is uniformly continuous. Then Ve > 0, Ja >
0; if [z —y[ < o, [f(z) — fly)| <.

We consider the Bernstein polynomials sequence (By,),, defined by:



=
8
~
|
oy}
3
5
~
Il

‘Z Crli(f(x) — f(%))xk(l . x)”_k‘
k=0

> CHfa) -
k=0
= ) CHf@

|lz—£|<a

+ Y Cilf() ()Iw (1—a)*

lz—£[>a

et+2llflle Y Cha"(l—a)"*

|z—£|>a

e

IN

| P

IN

k

1 n
k., k n—k k., k n—k 2
g Crz®(1—x) < ngZOCnx (1—2)" "(x— ﬁ) :

k., .k n—k 2 k n—k k2 .k n—k
ZCnx (1-z) (x—ﬁ) =z ——ZC ka*(1—z) EZan ¥ (1—x)

k=0 k=0 k=0

n
Since Z CFa*(1 —2)"~% = 1, then by derivative with respect to  and if we
k=0

set h(x Z CFEak( )"~ we have: h(x) = nz. We iterate this process,
we find:
. k 1—
S kb (1 - gy k(e - B T2 D)
k=0
Then
L ek n—k 2
The sequence (By,), converge uniformly to f on [0, 1].

We give another proof of this theorem in the chapter of Fourier series. We give
now another proof.



Theorem 3.4

Weierstrass Theorem

Let f be a continuous function on an interval I, there exist a sequence
(fn)n of polynomials which converges uniformly on any interval compact
of I to f.

Proof .
Assume in the first case that f is continuous on R and equal to 0 on the
complement of the interval [—1, 1]. We set

Pn(l') = CTL(I - xQ)TL7

1
with ¢, a constant such that / P, (z)dx = 1. We define the sequence
—1

+00 Foo
fu(x) = / fW)Pu(z —y)dy = / f(x —y)Pa(y)dy. (3.3)

— 00 —00

The functions f, are polynomials and the sequence (f,), converges
uniformly to f on the interval [—1,1].

Proof .
By the left side of (3.3), f is a polynomial and by the right side of (3.3) we
have for |z| < 3:

1
@)~ fulw) = [ (@) = Flo = ) Palo)y (3.4
—1
Let € > 0, M the maximum of f on R and § > 0 such that |f(z)— f(z—y)| < e
if |y| < ¢. It results from the formula (3.4) that

em@@+/ M P, (y)dy.

6<]y|<1

Iﬂ@—hwﬂs/

ly|<o

We have to prove now that / P, (y)dy tends to 0 when n tends to infinity.
o<yl<1
Let 0 <r <1

L /1 (1—2%)de > / (1= r2)rde = 2r(1 — r?)".

Cn —1 —r



1
Then Cn < m Thus

I S N
/5§|yS1 Faly)dy < 2r(1 —r2)" /—1(1 o)y = r(l—r2)n’

The result is deduced if we take r < § and we tends n to infinity.

Proof of theorem (3) .

If f is zeros on the complement of the interval [—s, s, the function F(z) =
f(2sz) is zeros on the complement of the interval [—3,4]. By the previous
lemma there exist a sequence (fy, ), of polynomials which converges uniformly
to F on the interval [~1,1]. The sequence of polynomials g,(z) = fn(3)
converges uniformly to f on the interval [—s, s].

If now f is continuous on the interval I = (a,b). For all n € N such that

2
n > o there exists a function ¢, continuous on I such that ¢, = 1 on
a

[a+L,b— 1] and zeros on the complement of the interval [a+ 5-,b— 5-]. There

1
exists a polynomial f,, such that |f,(z) — @n(x)f(z)| < —on I. The sequence

(fn)n is a solution to the problem.
O

Corollary 3.6

If f is a continuous function on the interval [a,b] such that

b
/ f(z)z"dz =0, for all n € N, then f = 0.
a

Proof . .
Tt results that for all polynomial P, / f(z)P(x)dz = 0. Since f is a uniform

a
limit of sequence of polynomial (P,),, then

b b
/f2(m)dx: lim /f(x)Pn(m)dx:O.

n—4o0
a

Remark 17 :

The previous result is wrong for the continuous functions on an unbounded

interval. For example, let f be the function defined by: f(x) = e_wi sin(:v%),

+oo
for x € [0,400[. Prove that / 2" f(x)dz =0, for all n € N.
0



Let f: [a,b] — C be a continuous function. There exist a sequence
(Qn)n € R[X] such that (Q,), converges uniformly to f on [a, b].







CHAPTER V

POWER SERIES

1 Power Series

1.1 Abel’s Lemma
Definition 1.1

Let (an)n, be a sequence of real or complex numbers. The series

g an(z — 2o)" is called a power series centered at xg.
n>0

Let Z an(z — xp)"™ be a power series, we look for its domain of convergence.
n>0

The series converges at least for © = xg. In which follows, we consider the

series centered at 0.

Proposition 1.2

(Abel’s lemma)

If the power series Z anx( is convergent for zg # 0, then
n>0

1. the series Zanx" is absolutely convergent on the interval | —
n>0
|$0|, |$0|[,

113



2. for every r < |zg|, the power series E apx" is uniformly conver-

n>0
gent on [—r,7].
Proof .
+o0 —+o00 T
1. Let = €] — |zol, |zol][, Z lanz™| < Z|anx3||—|" Since the series
n=0 n=0 To
Z anxy is convergent, the sequence (a,zy), is bounded. Moreover the
n>0
series Z |£|” is convergent, then the series Z anx" is absolutely con-
0
n>0 n>0
vergent on | — |zo|, |zo][-
“+o0
2. Let r < |zo| and z € [—r, 7], |ana™| < |an|r™ and Z lan|r"™ < 400, thus
n=0
the series Z anzx™ is uniformly convergent on [—r, r].
n>0

If the power series Z anxy is divergent then it is divergent for every z
n>0
such that |z| > |zo|.

1.2 Radius of Convergence of Power Series

Theorem 1.4

For every power series Z anx™, there exists a unique R € [0, +00] such
n>0
that:

1. For every |z| < R, the series Z an,x" is absolutely convergent.
n>0

2. For every |z| > R, the sequence (a,z™),, is not bounded and then




the series Z anx™ is divergent.

n>0
The number R is called the radius of convergence of the power
series and | — R, R[= {z € R; |z| < R} is called the open interval
of convergence of the power series.

Proof .
The uniqueness results from Abel’s lemma. We set
—+o0
R = sup{r > 1; Z |an|r™ < +o0}.
n=0

If |z| < R, the series Z anx” is absolutely convergent.

n>0
If there exists |z| > R such that the series Z |ay|r™ is convergent. Then the
n>0
series Z |an|r™ is convergent for every R < r < |x| which is absurd. O
n>0
Remark 18 :

From the proof of the theorem (1.2), we deduce that if R is the radius of

convergence of the series Z an,x™, then the series is uniformly convergent on
n>0
any interval [—r,r] with 0 < r < R.

Theorem 1.5

(Cauchy 1821, used by Hadamard) (Cauchy-Hadamard Rule) Let
Z a,z" be a power series with R its radius of convergence. Then
n>0
+oo
1. R = sup{r > 0O Z lan|r® < 400} = sup{r >
n=0
0; the sequence (a,r"),is bounded }.
2. If lim |—2|=pe€[0,+00], then R = 5.
n—+00 QAp41
1 —
3. R=—————. (With R = +o0 if lim,—s 400 V/|an| = 0 and
hm,i_oo Y an|
R =0 if lim,, 00 ¥/ |an| = +00.)




Theorem 1.6

Let Z anx™ be a power series with radius of convergence R > 0. Define
n>0

+oo

flz) = Z anz™. Then the power series Z na,z" ! has R as radius
n=0 n>1

of convergence and the function f is differentiable on | — R, R[ and

+o0
fl(x) =g(z) = Z napx™ L.
n=1

\

For the proof, we need the following lemma:

Lemma 1.7

Let z € R and h € R such that 0 < || < r, then for any n € N
n n =1l |h|2 n
[(x+h)" — 2™ —nha" 7| < T—2(|x|+r) (1.1)
and
n—1 1 n n
nla" 7 < —(2(ja] + )" + J2]"). (1.2)
Proof .

From the inequality (3.4)

n n
|(x +h)"—a" — nhxn_1| = ZCﬁhkxn_k — 2" —nha" "t = Z Ckpkgn=F
k=0 k=2

n |h|2 n

< [P CElal R < =y > Chla|
k=2 k=2

< BB o) 4y

p— 7‘2 M

We have: |(z + h)" — 2™ — nha" "t > nr|z|" ™ — |z|* — (Jz| +7)". From
the relation (3.4), we deduce:

nrle[" T < el + (ol + )" + @+ )" = e = e T < o]+ 2(]2] 4 )"

O




Proof of the theorem (1.2) .

We denote R’ the radius of convergence of the power series Z na,z™ 1. Tt is
n>1
obvious that R" < R. Let r > 0 such that || + » < R. From the lemma (1.2);

1
we have: |na,z" "' < =(2|an|(|z] + 7)™ + |an|/z|") and thus Z napz™ "t is
r
n>1
absolutely convergent on | — R, R[. Thus the radius of convergence of the series
defining g is greater than R. Thus R = R'.
From the inequality (3.4) we have:

+oo
|w gy < > lanl(lzl +7)"
n=1

This proves that when h tends to 0; f/(z) = g(z); for any = €] — R, R|. ad

Corollary 1.8

If f(z Z anx™, then f is infinitely continuously differentiable on

(n) (n)(
]-R,R[ifR>0,a,= ! '(O) and f(x Z !/ (This series

is called the Taylor’s series of f at 0 or the Mac Laurent series of F'.)

\. J

Example 19 :
1. For z € R,
T __ = z" —x =2 (_1)n1.n
=D =X
n=0 n=0
too on oo on+1
x
h h
coshz 7;0(271) sinh @n1)
Jf e Jio 2n+1
cosz = » (=" , sinz =) (=1)"
|
n=0 (2’]’L> n=0 (27’L + 1)
2. For |z| < 1
1 400 +0o0 n+1




1 —+00 +oo I2n+1

St e By 2

n=0 n=0

too on+t1

_ 1. 1+=x T
tanh 'o = —In—~ = Sl
D A A )

3. Let a be a real number, o ¢ N and f(z) = (1 + 2)® for x €] — 1,1].

f'(z) = a(l +2) 1, then f satisfies the following differential equation

(14+2)y —ay=0. (1.3)

We look for a power series Z anx™ solution of the differential equation
n>0
(1.3).

IfS = Z anx™ is a solution, we have:

—+o0 —+o0
(1+x) E na,z" ! — a E anx” =
n=0 n=0

then (n 4+ 1)ap+1 + na, — aa, =0 <= ap41 = %an Vn > 0, which
yields that

ala=1)...(a—n)
23... (n+1)

ap = agp.

Then

-1 — 1
1+Z (a (a=ntl) m

By the uniqueness of the solution of the differential equation

(1—-x) Zanx for |z| < 1,

ala—1)...(a—n)
23... (n+1)

For a = =, we have:

where a,, =



1—=z

Cnn
mZQQ

+00 ~p
Z 0277, "
4n ’

n=0

n 2n+1
2n L

= 4 2n+1

Vitr=1+-= Z

CQ xn+1
n+1

nO

+00 x2n+1

. o—1 _ 2n
Sin xr = —_— .
4m 2n+1

n=0

S~ (-DnCy, et

inh 'z = .
Sin X Z 4n 2n + 1

n=0



1.3 Exercises

Find the sums of the following series and compute their radius of conver-

gence:
+o00 " +o00 "
1 S — 11
)7;)271,—1’ );(271)!’
2) +§ n?x" X sin®(nb)
’ 12) > ———=a®",
n=1 n!
“+00 2 n=0
n“+1 .
3) ) ——a" 13) 3" (2n + )™,
n=0 n>0
+oo " -
4) — too 3"
;(n—l—l)(n—ki’)) 14) ZW’
+“>(_1)nx2n+1 n=0 '

5) Z 4712 . 1 ? +oo l‘n
15) S+ 1)

+oo

n=0
6) Z % cosh(na),a >0 . §
n=1 nx
16 —_—
7 fx”sinn@ ) ;3"(71-1-1)
. 2 &, D
8) Z ™ cos nb 17) Z(_l) ol 5
£ non ) n=0
— . .
~+o00 .2 nx
nx™ sin“(nd) 18) S —
9D 7;) 3n(n+ 1)
n=1
+oo o +oo non
n®+1 (=) =z
10 " 19
)nz:%n-‘rlx, )nzl 3n+1

5-1-2| (a) Define the sequences (uy)n>0 and (v, )n>0 by:
ug =1 U = Uy, + 2v
{vs =0 and {v:i = uz —|—117:
Determine the radius of convergence and the sum of the power series
Z U,z
n>0
(b) Determine the radius of convergence of the power series:
(—1)"
2n—1)(2n+1)

E anx™; with ag, =0 and agpi1 =
n>0



+oo

Let f(x) = Z anx™, give a simple expression of the derivative f/(z)
n=1

in term of x and tan~! x.

Deduce f(x).

Say if the following affirmations are true or false.

(a)

(b)

()

The series Z anx™ and Z(fl)"anx" have the same radius of con-

n>0 n>0

vergerce.

The series E anx™ and E |ay,|z™ have the same radius of conver-
n>0 n>0

gence.

The series E anz™ and E (=1)"a,a™ have the same domain of
n>0 n>0

convergence.

If the radius of convergence of the power series Z anx™ is infinite,
n>0
then the series is uniformly convergent on R.

If the radius of convergence of the power series Z anx™ is infinite

n>0
. . : - fx)
and if a,, are positives, then for any integer p, lim *——= = +o0,
r—+oco P

+oo
with f(z) = Z anz™.

n=0

Give the expansion in power series in a neighborhood of 0 of the following
functions

(a) z—

(b)

()

(d)
(e)

Give the expansion in power series of the function f(z) =

In(1+x)

14z
f(z) = (sin"*x)%. (We will be able to show that f fulfills a differ-
ential equation of order 2.)

sin~!\/z
Va(l—z)
In(1 — 22 cos a + x2).
€2 cos x.

x
1—a—a2

Give the expansion in power series of the following functions in a neigh-
borhood of 0 and determine the corresponding radius of convergence:



1 T In(t? — 3t 4 1)
1 2
) 11—z 13) /0 —di,

t
1

2 — ((1+:z:)sin:c)2
(z — 2)(x — 3) W) ()
3) In(1 + z + 22 2z
) .(3 ) 15)/ e~ dt,
4) sin® z, P
. 13 x
5) sinh Z, 16) 6_2:62/ 62t2 dt,
6) (z —1)In(z? — 5z + 6), 0
7) zln(z + Va2 + 1), 17) 16 :
8) T —2 f
-2 —r+1’ 18) €
1 1—2’
9) ——— z
) 1+ — 223’ 19) / COSt_ldt
1—x 0 t? ’
10) 1+2 2)2’ 14
- x
(1422 —2%) 20) 111( >
11) tan~!(z + 1), 2—x
12) tan='(z +v/3), 21) In/1— 2z cosha + 22,

-1
sin” "z
Define f(z) = ——.
V1—2a?

(a) Prove that f has an expansion in power series in a neighborhood of
0 and precise the radius of convergence.

(b) Prove that f fulfills a differential equation.
Deduce the coefficients of the expansion in power series of f.

(c) Give the expansion in power series of (sin™')?(x).

Give the expansion in power series the following functions at the corre-
sponding point xg.

(a) f(z) =cosz, (xg = Z)’

(b) f(z) =(1—2%)7%, (z0 = 0),

Assume that the power series Z aspx™ and Z a2n+12" have radius of
n>0 n>0

convergence R and R’ respectively.

Determine the radius of convergence of the power series g anx™.
n>0



5-1-10 | Let (an)n be a decreasing sequence and lim a, = 0 and the series

n—-+o0o
g a, diverges.
n>0

(a) Prove that the radius of convergence of the power series Z anx™ is

n>0
1.

(b) Study the convergence for |z| = 1.

5-1-11| (a) Let (an)n be a sequence of real numbers such that the series Z an
n>0
is convergent.

We claim to prove that the power series Z anpx™ is uniformly con-
n>0
vergent on [0, 1].

+oo n
Define R,, = E ar and S,, = E apzh.
k=n+1 k=0

i. Prove that for p > n; Sp(z) — Sp(z) = Rzt — Rpa? +

p—1
Z (xk-‘rl _ (Ek)Rk.
k=n+1
ii. Deduce that the series Z anx™ fulfills the Cauchy criterion for

n>0
the uniform convergence on [0, 1].

(b) Let Z bnx™ be a power series of radius of convergence R and let
n>0
f(z) its sum. Let zy € R such that |xg] = R # 0. Assume that the

series E bpxy is convergent.

n>0
—+oo
i. Prove that x»lﬂgo f(z) = Z by ([0, z0] = {txo, t € [0,1]}).
z€[0,z0] n=0
S~ (D"
ii. Deduce the value of the following sum Z —
n=1 n

5-1-12 | For each of the following power series, determine the interval of conver-
gence of this series and prove that its sum is a solution of the suitable
differential equation.

flo)y=>" (in)!, y W=y




o0 n

f(x)zzgjﬁ, zy +y —y=0

n=0

too (_1)n22nx2n

fl@)=>" @)

n=0

5-1-13 | (a) Prove that there exists a solution as power series of the following
differential equation

, yu+4y:O

z(z—1)y +3zy +y=0.
(b) Determine the radius of convergence of the obtained series.

5-1-14 | For any A € R, consider the following differential equation

"

y (z) —2zy'(z) + 2\y(z) =0 (1.4)
(a) Prove that the equation (1.6) has a unique even solution Py as a
power series on R and fulfills Py (0) = 1.

(b) Prove that (1.6) has a unique odd solution @)y as a power series on
R and fulfills @ (0) = 1.

(¢) Determine all the values of A for that the equation (1.6) has a non
vanishing polynomial solution.

(a) Find the solutions as power series of the following differential equa-
tions:
i. ¢y — 22y =0;9(0)=1
iy +ay +y=0
il 4oy +2y —y=0, 2>0

a2 T o2
(b) Give the expansion in power series the function f(z) = e™ / e dt.
0

n

x
51516 | Define u, (z) = (—=1)"—~— forn > 2.
efine u,(x) = (-1) 2 =) or n >
(a) Determine the interval of convergence of the series z:(—l)"L
& n(n—1)

n>2
and study this series to the endpoints of this interval.

(b) Study the series Z u,(x) and the series Z u;;(x)

n>2 n>2

(¢) Deduce the sum of the series Z Up ().
n>2



5-1-17| (a) Consider the sequence (a,) defined by: ap = 1,41 = 2,ap42 —
Tap+1 + 12a, = 0.

“+ o0
i. Compute F(z) = Z anz™.
n=0

ii. Deduce the expression of a,,.
(b) Consider the sequence (a,) defined by: a9 = l,a1 = 2,an42 —
Tan+1 + 12a, = n.
Compute the expression of a,,.

(¢) Consider the sequence (ay), defined by: a9 = 1,41 = 2,a42 —
8ap41 + 16a, = 0.
Find the expression of a,,.

5-1-18 | Let (an)n € R* be a convergent sequence of real numbers and let a =

lim a,.
n—-+oo
anxz"
(a) Find the radius of convergence of the power series E i '
= ™
+oo a
— 4n n
Define f(t) = E n!t ,fort e R.
n=0

. —t
(b) Compute ti}nﬁme f(@).

5-1-19 | Prove that the equation 3zy’ + (2 — 5z)y = = has a solution as a power
series in a neighborhood of 0 and give its radius of convergence.

5-1-20 | Consider the following differential equation

22y +axy — (2> +z+ 1y =0. (1.5)

+o0o
(a) Find a solution of the equation (1.1) ¢(x) = Z apx” with a1 = 1.

n=0

1
(b) Prove that, for n > 1, |a,| < O and deduce the radius of
n—1)!
convergence of the power series Z anx™.
n>0

—x

(¢) Solve the equation (1.1) in putting y = < .

5-1-21 | We claim to prove that the following differential equation



2%y (z) = y(z) - 2® (1.6)

has no solution as sum of a power series.
“+o0
Assume that this equation has a solution y = E anpx™.

n=0
(a) Give the values of ag,a; and ag?

(b) Give the relation between a,; and a, for n > 2.

(¢) Prove that the relations stated in 1) and 2) give the uniqueness of
the power series Z anx™. Compute its coefficients and prove that
n>0
it diverges.



CHAPTER VI

FOURIER SERIES

In this chapter, we consider the locally Riemann integrable functions. The
reader can always take the piecewise continuous functions.

The aim of this chapter is the study the expansion of function (in physics we
said a signal) of one real variable then of the synthase or reconstitution of this
function has from of the its composite elements.

1 Fourier Series Expansion

1.1 Preliminary

1. Let f: R — C be a locally Riemann-integrable function and T'—periodic
with T > 0, then

a+T T
/ f(t)dt:/ f(t)dt Yae€R.
a 0

a+T 0 T a+T
Indeed,/ " f(t)dt:/ f(t)dtJr/O f(t)dtJr/TJr f(t)dt. Taking the

change of variable u =t L7 in the last integral, we get the result. This
means that the integral of a T—periodic function on an interval of length
T does not depends of the chosen interval.

2. For n,m € Z,

1 %ei”tdt{o if n#0

21 Jo 1 if n=0

127



1 27
—/ sin(mt) cos(nt) dt = 0,
™ Jo

27 i
o if n#m
/0 cos(mt) cos(nt) dt = {1 if n=m#0

3|

—/ sin(mt)sin(nt) dt=<¢1 if n=m#0
T Jo 0 if n=m=0

Definition 1.1

We consider the space & of continuous functions 2m-periodic defined
on R with complex values. The map defined on E x E by:

1 s . 1 a+7r

(frg) =5 | f)g(t)dt = —

2w 2

is a inner product. It defines a norm called the Euclidean norm denoted
by || [l2-

Remark 19 :
The system {1, cos(nt),sin(nt), n € N} is an orthogonal system. Also the
system {e™*, n € Z} is orthogonal.

1.2 Bessel Inequality

Definition 1.2

1. A trigonometric polynomial of degree < N is a complex linear
combination of {1,cos(kz),sin(kz), 1<k < N}, ie. a trigono-
metric polynomial P of degree < N has the form

N
ag
5 z_: ap, cos(nzx) + by, sin(nx)), (1.1)

with a,,b, € C. In particular a trigonometric polynomial is a
function of class C'°*° and 2m-periodic.




2. A trigonometric series is a series of functions in the form

0’_20 + Z(an cos(nz) + by, sin(nz)),

n>1

with a,, and b, € C.

Remark 20 :
N

% + Z(an cos(nx) + b, sin(nz)) a trigonometric polynomial of
n=1
degree < N, then

Let P(x) =

N N
ao E inz 4n . E —inz/On | . bn E inx
P(.’IJ) = —+ e (——l?)-i- e (? +13) = Cne 5 (12)
1 n=—N

_ ; _ (i
Cn_( 1 )7 C_n_(2+12)
forn>1and Cy = “421 This form is called the exponential form of P, and the
form (1.1) is called trigonometric form of P.

If P is a trigonometric polynomial of degree < N in the form (1.1) or (1.1),

then

1 2w

= P(t)e ™ dt /
C o |, (t)e , Vn € Z,

2m
an = l/ P(t) cos(nt) dt, ¥Yn € NU{0},
T Jo

27
/ P(t)sin(nt) dt, ¥n € N.
0

S
3
I
3|

Let f: [0,2m] — C be a Riemann-integrable function. define

1 2

I = t)e "t dt 7
C o7 /. fe , n€E




N .
> Cne™,  NeNu{o}.

Then:

1. For any trigonometric polynomial P of degree < N,

27 27
/ uw—smmzﬁs/ FO - P@Pd (13)
0 0

2. The series Z |C,,|? is convergent and

neEL
+oo 1 27
Z |Cn 2 < 2—/ |f(t)]* dt (Bessel Inequality).  (1.4)
n=-—o00 T Jo

J

The property (1.3) shows that Sy realized the best approximation in quadratic
mean of f by a trigonometric polynomial of degree < N.

Proof .
1. Let P(x Z d,e”
1 27 27 2
| -Para - —/ Pﬁ——o 7))
27
S — P — )|2dt.
2 J, (t)f(t)dt + / (t)°dt
1 27\' N _ 1 27T .
- P — ' — 71n
o, F(t)P(t)dt ;Nd o, dt = Z dpCh.
Thus
1 27‘(‘ _ N _ 1 27‘(‘
o |, fOPE) dt= Y d,Ch, o |, )| dt = Z |d,,|?.
n=—N

Then



1 27

27 Jo

t)—P(t)[? dt = — " t)|* dt 3 Cnl? 3 dp—Chl|?
0= =50 [ OF d= 3 G+ 3 Ol

=—N n=—N

If the polynomial P is the polynomial Sy, we have:

L £ — Sy dt = — " t)|* dt 3 Cn?
0= v ar =g [ 170F = 3 (Gl

27 o

this yields the result.

1 2m 1 21 N
2. — t)—P)]? dt = — t)* dt — Cy|?, th
5 | 0 =PORa= g [ i) 3 (G thus
N 1 2
Z |C|? < 2—/ |f(t)|* dt and we take the limit when N — +oo0.
T Jo
n=—N

O

Corollary 1.4

If f:[0,27] — C is a Riemann-integrable function, then

27 2m
nll)rfw A f(t)cos(nt) dt =0 and ngl}-lw : f(t)sin(nt) dt = 0.
Proof . )
As the series Z |C,|? converges, then ILm |C|? = 0. If we set a,, = - f(t) cos(nt) dt
" n o0 0
1 EZQTF

and b, = — f(t)sin(nt) dt, for n € N we have: a, = C, + C_,, and
T Jo

b, =i(C,, — C_,), and we have the result.
O

(Riemam-Lebesgue Lemma)
Let f: [a,b] — C be a Riemann-integrable function, then




b b
lim / f(t)cos(At) dt =0 and lim f( ) sin(At) dt = 0.

A—=+oo [, A—+o0

Proof . . .
As / f(t)cos(At) dt = /Ref(t)cos()\t) dt+/ Im f(t) cos(At) dt, it

suffices to prove the theorem for f real .
o If f = X[qa,5) is the characteristic function of an interval [, 5], we have:

/ e cos() e = / " cos() di = Singw s

A A——+o0

o If f is a step function on [a, b], there exists a partition o = {zg = a < 21 <
.. < xp = b} of [a,b] such that f =c¢; on |z;,2;41[. In this case

jt+1
/ f(t) cos(At)dt = ch/ cos(At)d

Thus

) cos(At dt‘ X Z le; )\~>+oo

In the general case: as f is Rlemann—mtegrable on [a, b], for € > 0, there exists

b
a step function f. such that f, < f and / (f(t) = f(t)) dt <e. Then

b b b
/ F(#) cos(M) dt = / (F(t) — f-(8)) cos(At) dt + / Fo(t) cos(AL) dt.

We deduce that

) cos(At) dt‘

) dt‘

/ fe(t) cos(At) dt|.

As f. is a step function, hm | / fe(t)cos(At) dt|] = 0 and the result is
deduced. ad



1.3 Fourier Series

1. Let f be a complex 2r—periodic function, Riemann-integrable on [0, 27].

We set
1 2 ;
n —in dtv Za
=5 [ s ne
1 2m
ap = — f(t) cos(nt) dt, n € Ny,
T Jo
1 2
b, = — f(t)sin(nt) dt, neN
T Jo

The coefficients (Cy,),, will be called the exponential Fourier coefficients
of f and a,, and b,, will be called the trigonometric Fourier coefficients of
f. We recall that:

ag =2Cy, anp=Cpn+C_,, b,=1(C,—C_p,), Vn > 1.

N
SN :50 Zancosnx ) + b, sin(nzx) ZC’@

n=1

lim Sy(z)= 24 Z (an, cos(nz) + by, sin(nx) Z Cpe™

n——+oo
n=1 n=-—00

. inz __ Q0 . .
The series Z Cpe™® = 5 + Z(an cos(nx) + by, sin(nz)) will be called
neZz n>1 ~
the Fourier series of f. We will denote formally f(x) the sum of this
series.

We say that the Fourier series of f converges at xy € R if the sequence
N

(SN)N, Sn(z) = Z Cne™ converges at .
n=—N

2. If f is T—periodic, the function g(z) = f(g:) is 2m-periodic on R. More-
over the function f is locally Riemann integrable on R, we associate to f

the Fourier coefficients defined from the Fourier coefficients of g by:

/f Ye mF gt Wnez,



2 [T o
ay, = T/o f(t) cos Tnt dt, Vn € No,

2 [T 2
bn:T/O f(t)sin%nt dt, n e N.

The exponential Fourier series of f is

o2
§ :Cne—m%t

nez

and the trigonometric Fourier series is

2 2
% + ;(an cos %n:ﬁ + by, sin %nm)

Definition 1.6

Let f: R — C be a 2r—periodic function and Riemann-integrable on

[0, 27]. Develop f in Fourier series, means that find Fourier trigonomet-
ric or exponential series of f, study the convergence of the series f of f
and give its value.

Examples 20 :

1. f(x) =|z|if |z| < 7 and f 2r—periodic. The curve of f on [—27, 27| has
the following form:

Yy

E Y e e ——

2w

1 [ 1 [ 2
= — t| dt = = — t t)dt = —((—1)"—1 > 1.
do=1 [ dt=r ay= [ lcostutdt = S ((-1"-1), 0>

—T —T



As fis even b, = 0. The Fourier series of f converges uniformly on R.

2. Let f(z) = sinz, for « € [0,7] even and 27-periodic. Thus b, = 0 and

2 —4
a, = p | sinx cos(nz) dz. aspy1 = 0 and ag, = m The
Fourier series of f converges uniformly on R.
3. Let a € C\ (iZ), f(x) = e** on | — m, 7| and 2w —periodic.
. . —+o0 s
(—1)"sinh ar s sinh o e
C, =2 > - 1
m(a —in) /(@) T Z( ) a—in
+oo
4. Let f(z) = Z anz" be a power series (z € C) of radius of convergence
n=0
R > 0. For r € [0, R], the map 0 i f(rél?) is 2m—periodic and we
have:
fre®) = (anr™)e™ (1.5)
n=0
and the trigonometric series converges uniformly on R.
1 2w . . +oo 2
Thus ), f(re®) e P0dp = g(anr")/o =P dp,
1 27 . X
The series (1.5) is the Fourier series of f. Moreover a, = o f(re®)e P0dp,
T Jo
M
then |a,| < #, with M (r) = sup|,—, [f(2)].
r
1
If we take the function f(z) = 12—, we know that for |z| < 1, T =
—z
+o0 1 +oo )
Z 2", Thus for any ¢ € R and any r € [0,1], ——— = Z r"e™ and
n=0 1—re n=0

in taking the real part of each member we get:

1—rcosf 7+OO n 0
1472 —2rcosd 727’ cos(nf).
n=0

1.4 The Dirichlet Theorem

The natural question in Fourier analysis is: ”In what condition the Fourier
series of a function f is convergent and the relation between the limit and the
function f.



Definition 1.7

[Dirichlet Kernel]
The Dirichlet kernel of degree N € Ny is the trigonometric polynomial
Dy defined by:

N . 1

. sin(N + 3)z
D _ inz _ 2 .

N (@) Z ¢ sin £

n=—N 2

2
The function Dy is even and o Dy(t)dt = 1.
T Jo

Theorem 1.8

(Dirichlet Theorem)

Let f: R — C be a 2m-periodic function and Riemann-integrable on

[0,27]. Let x € R such that f(z+) = t_>1iH%> f() and f(xz—) =
i, @

lim f(t) exist in C. We assume also that there exists 6, > 0 (de-

t—z, t<z
pends of z) and M, > 0 (depends of x) such that: V¢, 0 < |t| < d,,:
Ul fe=0 KDL Ly, g

flat) + fz—) .

then the Fourier series of f at x converges to 5 , i.e.

fla+) + f@=)

. (1.7)

N
ag
li —
yim g_ an cos(nz) + by, sin(nz)) =

The condition (1.6) is called the Dirichlet condition at z.

Proof .
Let C,, be the Fourier exponential coefficients of f, with n € Z.

N N 1 2m
Sv@) = Y Cud= Y - / Flt)emmtein gt
n=—N n=—N 0
1 27
= t)D - .
5= | FODx(t—2) at
u=t—x 1 27T

= % fu+z)Dy(u) du.



If we denote y =

flx4) + fz—)
2

we have:

1 ™

Sn(z) -y = (f(z = u) + f(z +u) = 2y) Dy (u)du

27 Jo

— sin( 5

u sin 2

The function ¢ defined on |0, 7| by:

is Riemann-integrable on ]0, w]. Moreover V u €]0, . [, we have: o(u)| < M.

fle—uw) + flet+u) = flat) = flz—) w

U
u Sln2

o(u) =

2 sint

™

lim
N—+o0 0

Theorem 1.9

1.

(= < - < 1, vt € [0,%]) and by the Riemman-Lebesgue lemma (1.2),
flat) + fa—)

us

: 1 .
o(u) sin(N + i)u du = 0. Thus NEIEOO Sn(z) = 5

Let =z € R such that f(z+), f(z—), f'(z+)
fl@+1t) - flzt)

! J—
t—0, t>0 t and  f'(z—) -
— ) — —
lim fle—t) - fl ), exist in C. Then the Dirichlet
t—0, t>0 t
condition is realized at x and the Fourier series of f at x

converges to w

. If f is also continuous at x, then the Fourier series of f at =

converges to f(z).

If f is 2w—periodic and of class piecewise continuously differen-
tiable [0, 27], then Vo € R

+00 s
f(x) = % aF Z(an COS(TL.T:) + b, sin(nx)) — Z Cneinx.

n=1 n=—o0o

L/”f(w—U)+f(x+u)—f(:v+)—f(a:—) u . (2N+1)u
2m Jo

Examples 21 :

)du.



1. Let f be the function defined by: f(z) = |z|if z € [—7, 7] and 2r—periodic.
f is continuous at the left of m and at the right of —m, by parity and pe-
riodicity, f is continuous at m and at —x. f is continuously differentiable
on [—m, 7], thus by Dirichlet theorem, the Fourier series of f coincides
with f at any point € R. Thus for |z| <, we have:

T 4 °°0st+1
|x|_§_%z (2k + 1

For x = 0, we have:

I
N\gP}

(2k + 1)2

The Fourier series of f converges uniformly to f on R.

2. Let f be the function defined by: f(z) =z on |-, n[ and 27 —periodic.
(we associate an arbitrary value at 7). f is continuously differentiable on
] — 7, 7| and has a derivative at the left and at the right at any point on
R. By Dirichlet theorem, we have for any z € R\ {(2k + 1)7, k € Z},

+oo
_]_ n+1
) =23 U ).
n=1
In particular for z = 5
T B +o0 (_1);0
4ozt

1.5 The Parseval Theorem

Definition 1.10

(The Cesaro Summation)
Let (U,)n be a sequence of complex numbers. We define the sequence

N
Sy = Z Ux. We say that the series ano U,, is Cesaro summable if
k=0
So+...8
the sequence T = 0N+—+1N converges in C.

Examples 22 :



1. If Un = (—l)n, Sgp =1 and Sgp+1 = O, Tgn = ﬁ and T2n+1 = ﬁ,

thus the series Z U, is Cesaro summable and has % as sum, but the
n>0

series E U,, diverges.
n>0

2. If the series Z U,, converges to ¢, then it is Cesaro summable and has ¢

n>0
as sum.

Definition 1.11

[Fejer Kernel]
N

For N € Ny, we set Fn(z) = Z Dy (z), x € R, with Dy the Dirichlet
n=0

kernel. Fp is a polynomial trigonometric called the Fejer kernel of
degree N.

1 2m
Fy is even function and = / Fn(t)dt = N + 1.
T Jo

\.

Notations

Let f: R — R be a Riemann-integrable function on [0, 27] and 27 —periodic.
Let (an)n and (by,), its trigonometric Fourier coefficients. We define for all
N € Ny

N
Sn(z) = % + Z(an cos(nx) + by, sin(nz)),

n=1

and

then as in the proof of Dirichlet theorem, we have:

27 27
S () = 2i F(@+u)Dy(u) du = 2i F(z — ) D (u) du.
™ Jo ™ Jo
1 27 1 27
An(f,z) = N D) ), flz4u)Fn(u) du = VD s flz—u)Fn(u) du.

The real expression of Fy is



Theorem 1.12

Let f: R — C be a Riemann-integrable function on [0,27] and
2m—periodic.

1. Let € R such that f(z+) and f(x—) exist, then

, _ flat) + flz-)
e

2. The sequence (Ay)y converges uniformly on any compact K on
which f is continuous.

Proof .
1 27

1. We know that AN(f, .’E) = m
n 0

f(z+u)Fy(u) du.

1 27
Let y be a constant, as m/o Fn(u) du =1, we have:

1 2
AN(f’fE)_y = m/o (f(x—i—u)—y)FN(u) du
1 s
N 27T(N+1)/0 (f(@ +u) + f(z — u) = 2y) Fn(u) du.

We take y = w Let € > 0, 35, > 0 such that Yu €]0,0,],
If(z4+u) — flz+)| < g and |f(z —u) — f(z—)] < % There it results

that
O
1 ™
+ m/é If(z+u) + f(z —u) — 2y|Fn(u) du
1

< e+
- 27(N + 1) sin? 8, /2

/0” o4 u) + flo—u) — 2] du.



f is bounded on R, then there exists Ny € Ny such that for any N > Ny

1
27 (N +1)sin? 8, /2

/Wlf(x+u)+f(a:—u)—2y| du <e.
0

2. We take § > 0 which does not depends on z € K. (This is possibly,
because f is uniformly continuous on K.)

O

Corollary 1.13

Let f: R — C be a continuous function and 2w—periodic. If the
sequence (Sy)y converges, then its limit is f.

Proof .

Let g = Nhrf Sn. The sequence (Ay)n converges uniformly to f, then g = f.
—+00

O

Corollary 1.14

Let f: R — C be a continuous function and 2w —periodic, then Ve > 0,
there exists a trigonometric polynomial P. such that

sup |f(z) — P-(z)| < e.
z€ER

. J

Otherwise a continuous function 2r—periodic is limit uniform of trigonometric
polynomials.

1.6 The Parseval Identity
Let f be a 2r—periodic function, Riemann-integrable on [0, 27]. If

1 27

C, = o ), ftye "t dt,  for n € Z.
For N € Ny,we posed
N N
_ inx _SO+"'+SN(x)_ ikx
Sn(@) = n:Z_N Coe'™®,and An(fio) = =57 = :Z_kae :



Y = Co, 11 = NLHCH, Vo1 = NL_HC—M Tp = N+1 LCp and v_, = ﬁ.’:lc—p,

V p > 2. Then

N

N(f,ac) = Z ( — NL—|—|1>Ckeikw'

k=—N

Theorem 1.15

(Parseval Identity)
Let f be a 2wr—periodic function and piecewise continuous on [0, 27],
then:

— 2 12 2 |a0|2 13 2
> ICn] = ), |f@)° dt = 52 |anl® + [bn]?)
—o0 n=1

With the same notations

27 27
i [ An(fo)f do= [ ISP
N —+o00 0 0
Proof .
Let 0 =0 < 21 < ... < s = 27 such that f is continuous on |x;, ziy1[ Vi €
{0, ..., s—1}, thus (Ax(f))n converges uniformly to f on I, = [z;+n, xi+1—7),

for any n > 0, n €]0, (w11 — ;) /2[.
For any = € R, |[An(f,z)] <

us

[f(x + w)|Fy(u) du < M, with

s 2r(N+1) J_
M = sup |f(z)|, where (JAn(f,.)|*)n converges uniformly to |f|* on I,, and
z€[0,27]
then
Tit1 Ti41
lim AN (f,z)* dz = / |f(2)|? dr because for € > 0,
N—+o00 * zi



Tit1 Tite
[ ar - @Bl de = [ AP - 1@ do

[ AP - @) s

ite

* / A2 @) de

Ti41—¢€
Tiy1—¢€
< s [ AP - f@)P] do
Zi+€
e 2 2
Jdm [ AR~ @) e = o
O
Proof of the theoreme (1.6) .
L opa= Y 0o < Z il
2T 0 ’ 't N+ 1
1 27 +oo
2—/ AN (f, ) dz < Z |Cx|? and the Bessel inequality yields that
T Jo k=—o00
Lo 2 ~ o _ 1 2
— A < < — dx.
o ], el s 30 jl <5 [
O

Corollary 1.17

Let f be a piecewise continuous function on R and 27—periodic. We
assume that

. 1 w .
mx = —1nx — Z
(f, ey = o= / fa)e™"dz =0, ¥n € Z

then f is zero at all its points of continuity and || f||2 = 0.

\

Remark 21 :
If f and g are two piecewise continuous functions and 2w —periodic. Let C,
(respectively D,,) be the Fourier coefficients of f (respectively g). As the series



Z |C,|? and Z |D,,|* converge, then the series Z CnD,, converges abso-
neEZ nez neEZ
1 [ —_
lutely. We consider the map h(z) = o / f(t)g(t + z)dt. In using the Fubini
™ —T

1 i : —
formula we prove by h(z)e™"*dx = C, D,
™) _n

It results that the Fourier series of h converges uniformly and at any point x

+oo
of continuity of h, h(z) = Z CpDpe™.
—00

1.7 Welerstrass Theorem

Proposition 1.18

Let f: [a,b] — C be a continuous function. There exists a sequence
of polynomials (@), € C[X] such that (Q,), converges uniformly to
f on [a,b].

Proof .

First case: We assume that a = 0, b = 27 and f(0) = f(27). In this case
f can be extended to a continuous function on R and 27 —periodic. From the
corollary (1.5) Ve > 0, there exists P- a trigonometric polynomial such that

sup |f(z) = P(2)| <e.
z€[0,27]

N
P.(z) = Z anem".
n=—N

. 2" .
Moreover, we know that the series Z — converges uniformly on any compact
n!
n>0
to the function e®. Thus for any —N < n < N, there exists d,, > 0 such that

d
: S\ (in)PxP €
sup |e"* — E | < =%

€0,27] = SN vlaml
dn (in)PaP a
We set R, (z) = Z — and Hy = Z an R, (x). Hy is a polynomial.
p!
p=0 —N

sup |f(z) — Hy(z)| < sup |[f(z) = Pe(x)[+ sup [Pe(x) - Hy(z)|
z€[0,27] z€[0,27] z€[0,27]



N

sup |P.(z) — Hy(z)| < Z sup |, €™ — a, R, (z)| < €.
z€[0,27] n—_ N %€[0,27]

Thus sup |f(z) — Hn(z)| < 2e and the corollary is proved in this case.
z€[0,27]
General Case: A from of f one constructed a function which verifies the

conditions of the first case. )

Define the continuous function g on [a, b] by: g(z) = f(x)—w(x—
a), g(a) = f(a) = g(b) and let h be the function defined on [0,27] by: h(x) =
g(x.b;—ﬂ“ + a). h is continuous on [0,27] and h(0) = h(27). Let € > 0, by the

first case, there exists K. € C[z] such that sup |h(z) — K:(2z)| < e, thus
z€[0,27]
2m
sup [g(y) — Ke(—(y —a))| <e.
z€[a,b] b—a

We set Q.(y) = K:(2=(y — a)). This is a polynomial and gives an answer to
the corollary.

Other Proof

Theorem 1.19

(Weierstrass Theorem)

Let f be a continuous function on an interval I, there exists a se-
quence (fy)n of polynomials which converges uniformly on any closed
and bounded interval I to f.

Proof .
We assume in the first case that f is continuous on R and identically zero on

the complement of the interval [—, 1]. In this case we set

Po(x) = c,(1 — zH)"

1
where ¢, is chosen such that / P, (z)dz = 1. We define the sequence
~1

+00 Foo
fulz) = / F(0)Palz — y)dy = / f@— Py, (18)

— 00 —00

a



The functions f, are polynomials and converge uniformly to f on the
interval [—3, 3].

Proof .
From the left side of the formula (1.8), f is a polynomial. From the right side
of the formula (1.8), we have for |z < 1

ﬂm—n@waﬁyu—wm@Wy (1.9)

Let £ > 0, M the maximum of f on R and ¢ > 0 such that |f(z)— f(z—y)| < e
if ly| < d. It results from the formula (1.9) that

|ﬂ@—nuns/

ea@@+/ M Py (y)dy.
ly|<é

6<]y|<1

We intend to prove that / P, (y)dy tends to 0 when n tends to infinity.
d<lyl<1
Let 0 <r < 1.

1o /1 (1— ) da > / (1= 2)de = 20(1 — 12)".

Cn —1 —r

Thus Cp, S m and

I S e
/6§|yS1 Faly)ly < 2r(1 —r2)" /_1(1 )y = r(l—r2)n’

The result is deduced if we take r < § and tends n to infinity.
Proof of the theorem
If f is zero outside the interval [—s,s], the function F(x) = f(2sx) is zero

outside the interval [—1, 1]. From the previous lemma there exists a sequence

272
(fn)n of polynomials which converges uniformly to F' on the interval [—%, %]
The sequence of polynomials g, (z) = fn(55) converges uniformly to f on the
interval [—s, s].
If f is continuous on the interval I = (a,b). For any n € Ny and n > o
—a
there exists a continuous function ¢, on I such that ¢, =1 on [a + %, b— %]
and zero outside [a + %,b - %] There exists a polynomial f,, such that

1
[ fn(x) — on(z) f(x)] < —on I. The sequence (f,,)n is a solution of the problem.
O



1.8 Exercises
Let t € R\ Z and f(z) = costx, for —m < x < 7 and 27 —periodic.

(a) Give the Fourier series of f.

t — (—1)"2
(b) Deduce that costz = sin 7 —|— g cos (nx)|, for z €
n=1

[—m, 7).
(¢) Show that

sintr  t t2 —n2’
n=1
1 = 2
1. wcotanmt = 7 + Z 2
n=1
2 +oo

T 1
i, —— = .

sin? 7t ; (t+n)?

Let 6 €]0, 5] and let f be the even function 27-periodic defined by:

27 T :
ﬂ@{ 0 if 20 <<

(a) Give the Fourier series the function f and prove that this series
converges uniformly to f on R.

IXsin2ns IX sintns
(b) Compute Z 2 and Z e

n=1 n=1

Let f be a continuous function on R and 27 —periodic.

Prove that if the Fourier series of f is convergent, then f is the sum of
its Fourier series.

(a) Prove the following formulas which gives an expansion in trigono-
metric series of the function f(x) = x in divers intervals, in looking
in each case, the periodic function ¢(z) whose expansion in Fourier
series yields the given result.

XX sin(nz)
=m—2 _— 0<x<2m.
r=m7 Z - pour xr <27

——QZ s1nnx) pour —w<ax<T.



(2
r_z Z cos2nn++1 pour 0<z <.
4 (—1) sin(2n + 1)z ™ T
== for — << —.
v wngo (2n + 1)2 o T ETEy
+
T 2 cos(2n + 1)z 1)+ sin(nx)
-T2 f
T ﬂz (2n+1)2 Z or
n=0 =1
(b) Deduce
~om+l 4 =(@2n+1)? 87
DI S U
nz 6 ' (2n+1)4 96
n=1 n=0

0<z<m.

(¢) i. In use of the formulas of the question 1) to compute the sum

sin(2n + 1)mx

g(x) of the trigonometric series Z Gn T 1)
n

ii. Verify the result in compute the Fourler coefficients of g.

Let f be the even function, 27 periodic defined by: f(z) =

(a) Determine the Fourier coefficients of f.

+oo
1 n
(b) Deduce the value of the sum Z )

on+1

™
1 if [o,—[
1 xr € 9

-1 if ze€ [g,ﬂ'

(a) Does there exists a locally Riemann integrable function f such that

sin(nx
its Fourier series is g NG )?
n>1
sin(nx
(b) Same question for the series g )
n?

n>1

1
—cos(z)’

f) = cosh(a)

27
d
(b) Deduce the value of / S —
o cosh(a) — cos(z)

Determine, for a > 0 the expansion in Fourier series of the function

(a) Compute the Fourier series of the following 27-periodic functions on

R given by:

[



i fz)=m—o if0<z<2m.
il. glx)=m—2 f0<x<m geven.
(b) Deduce that the Fourier series of the 2m—periodic odd function h
defined by: h(x) = x(w — g) for 0 <z <m.

Let ¢ be the 2m-periodic function on R defined on | — 7, 7] by ¢(x) = e*.

(a) Compute its Fourier coefficients.
(b) Prove that:

i 1 mcoshm +sinh7
n:01+n2 B 2sinh 7 '

6-1-10| (a) Find the Fourier series of the 2m-periodic function

0 if —7m<z2<0
f(x){xQ if 0<z<nm

(b) Use the first question to compute the following sums:

+o0 +00 n—1 too
1 (—1) 1
— d

n=1 n? 7 n=1 ? - nzz:l (2n - 1)2

6-1-11 | Let g be the odd 27-periodic function such that:

glx) =x(r—x), for 0 <z <.

(a) Give the Fourier series of g.

(b) Use the Parseval identity to compute

+o0o 1

§29n+nﬂ

n=0
6-1-12| (a) Compute the sum of the following series Z r™cosnb, for 0 < r < 1.
n>1
(b) Deduce the following equality:

1—72 = = ;

_ _ _ [n| in6

Q) = Tgrammpiye = L T2 " eosml =3 ritle.
n=1 —00



(¢) Using the theory of Fourier series, deduce the following value of the
integral:

27
0
In(r) = /U CoS N 20

1—2rcosf +r2
6-1-13 | Let h be the function defined by:

x? —1

hz)= 2 =
(z) 2 —4xr +1

(a) i. Give the power series of h in a neighborhood of 0.
ii. Compute the radius of convergence of the obtained series.

Let a and z be two complex numbers, such that |a| # |z| and az # 0.
Recall that:

1 = a
- =) < |z|.
1 DX i <
_ =0
z—a -1 z
— =" if >
T Qi >

(b) Prove that there exists a sequence of real numbers (A,)n<1, such
that Vz € C such that (|z] €]2 — v/3,2 4+ v/3]):

+00 A +00
h(z) = Z Z—: - Z)\nz"
n=1 n=1

in(t
Let f be the 2r-periodic function on R defined by: f(t) = ﬂ
2 — cos(t)

(c) Prove that h(el') = —if(t), VteR.

(d) Deduce the expansion of f in Fourier series.

. T sin?g
(e) Deduce the value of the following integral ——dx.
0o 2—cosz

Let F be the 2m-periodic function defined by: F(t) = In(2 — cost).
(f) Say why F' can has an expansion in Fourier series.

(g) Compute F'(t) and deduce, without compute the Fourier coefficients
of F' that the Fourier series of F' converges normally to F.

(h) Deduce the value of the integral / In(2 — cos x)dz.
0

1
6-1-14 | Define the sequence (f,)n by: fn(z) = PR P T and a > 0.
7



(a) Prove that the series Z fn converges normally on any interval
n>1
[-4,A] CR.
fu(t)

a

(b) i. Prove that for any n > 1 and any t € R, | £} (t)| <

+oo
ii. Deduce that the series Z f converges normally on any interval
n=1

[-4,A] CR.
(¢) Deduce that the function

+oo 1
f(z) = n:z_:oo a? + (z + 2nm)?

is even, 2m-periodic and equal in each point to its Fourier series on
R.

(d) i. For any k € Z compute the integral

“+o00
Ik(a):/ cos kx d

Z.
2 2
o @ T

27
ii. Prove that () cos kxdx = Ii(a).
0
iii. Give the expression of f.






CHAPTER VII

LEBESGUE INTEGRAL

In this chapter, we present the Lebesgue measure theory and compare it with
the Riemann integral.

1 Classes of Subsets of R

1.1 Algebra and o—Algebra

Definition 1.1

1. A non empty collection of subsets A of R is called an algebra or
a field if:

(a) If A€ A, then A° € A,
(b) If A,B € A, then ANB € A.

2. An algebra o/ in Z(R) is called a o—algebra if every countable
intersection of a collection of elements of <7 is again in <. That
is if (A;); is a sequence in &7 then ’;O(l’ Ajed.

If o7 is a o—algebra. The pair (R, o) is called a measurable
space, and the elements of & are called measurable subsets.

153



Let A be an algebra, then

1. O,R € A,

2. A is closed under finite union and finite intersection.
(ie. if Ay, ..., A, € &, then ﬂ?zl Aj € o/ and U?Zl Aje ).

3. Let & be a o—algebra then: if (A;); is a sequence in 7, then
+oo

U4 ew.

=1

Proof .

1.

Since A is non empty there exists A € A. So A° € A, hence ) = ANA° €
Aand R = (° e A.

2. Let A,B € A, then A°, B¢ € A and A°N B° € A. Since (AU B)¢ = A°N
B¢ € A then AU B € A. By induction we prove that if A7, ..., A, € A
then | J A; € Aand N_, 4; € A.

j=1
A + ¢ +
3. We have A € &/ and ﬂ Af§ € o/, hence ( 7:;A§) =U,51 4 e o
j=1
g
Example 23 :

1. o ={0,R} is a o—algebra in Z(R).

2. The power set Z(R) is a o—algebra in Z(R).

3. Let {A, B,C} be a partition of R. The set A = {0, R, A, B,C, A, B¢, C°}
is an algebra. (AUB =C° AUC =B, BUC = A°.)

4. Let A be the collection of subsets A of R such that either A or A€ is
finite. A is an algebra. but not a o-algebra.

5. Let <7 be the collection of subsets A of R such that either A or A€ is count-

able or (). &7 is a o—algebra. Indeed: let (A4;); be a sequence of elements
of of. If there exists p such that A, is countable, then ﬂ;':‘XfAj C Ay is
countable and ﬂj:o?Aj € /. If the sets A; are all not countable, then the
sets A§ are countable. The set UjffA; is countable and ﬁ;r:oTAj S



Any intersection of algebras (resp o— algebra) is an algebra (resp o—
algebra) i.e. if (A;);cs is a family of algebras (resp o— algebra) on R,

then m Aj is an algebra (resp o— algebra).
jeg

Proof .
Consider the case where A; are algebra.
R € A forall j € J, then R € [] A;.
jed
If A€ e Aj, as A€ A;forall j € J, then A° € (N, A;.
Let Ay, ..., A, in [| A;j, then Ay, ... A, are in A; for all j € J. Thus
JjeJ
=1 Ar € Njes As
Now, if &7; are o— algebra.
If (A,), is a sequence in ﬂ o;, then (A,), € «; for all j € J. Thus
j€J
“+o0
et An € Njey ;-

Theorem 1.4

Let (27;) je.s be a family of c—algebras on R, then ﬂ of; is a o— algebra.
jeJ

Proof .
ﬂ of; is an algebra. Let (A4,), be a sequence in ﬂ o7;. Since each &7 is a
jeJ jeJ
—+oo +oo
o— algebra then ﬂ A, € & for all j € J. Thus m A, € ﬂ ;. O
n=1 n=1 jedJ

Definition 1.5

Let B € Z(R). The intersection of the algebras (resp o— algebra) on

R that contain B is the smallest algebra (resp o— algebra) denoted by
A(B) (rep o(B)) that contain B. This algebra (resp o— algebra) is called
the algebra (resp the o— algebra) generated by B.




Example 24 :
Let o7 be the o— algebra of subsets A C R such that either A or A¢ is countable.
o/ is the o-algebra generated by the singleton sets S = {{z} : © € R}.

It is evident that if A or A€ is countable then A € o(S). Then &/ C o(S). The
other inclusion is evident.

Exercise 4 :
Let A and B two family of subsets of R.

Prove that
VAe A, Ae€o(B)
o(A)=0(B) < &
VBeB, Beoa(A
Solution:

11 suffices to prove that o(A) C o(B) <= A€ a(B), VAec A.

Assume that o(A) C o(B). If A€ A, then A€ AC o(A) C o(B).

Assume that A € 0(B), VA € A. Then A C o(B). Since o(A) is the smallest
o— algebra that contain A, then o(A) C o(B).

1.2 The Borelian o—Algebra

Definition 1.6: [The Borelian c—Algebra on R]

Let %g be the o—algebra generated by the family {[a,b[: (a,b) € R?}.
This o—algebra is called the Borel o—algebra on R. The elements of
PBr are called Borel subsets of R.

We have the following theorem:

Theorem 1.7

1. The open and the closed subsets of R are Borel subsets;
2. Ar is generated by the family of open subsets in R;
PBr is generated by the family of closed subsets in R;

PBr is generated by {]a, +oo[: a € R};

& 88

PBr is generated by {] — 00,a] : a € R}.

Proof .
For the proof we use the exercises (1.1).



. As any open subset of R is countable union of open intervals. It suffices
to prove that the open intervals are Borel sets. We have Ja, b[= U2 [a +

n=1
1
—,b[. Then |a, b€ SBr.
n

1
. Since [a,b[= N12]a — =, b], then %y is generated by the family of open
n

subsets in R;

1 1
. Since [a, b[= U [a,b— E] and [a,b] = N> [a, b+ ﬁ[’ then %y is gener-
ated by the family of closed subsets in R;
. The o—Algebra generated by the family {]a,+oo[: a € R} is a subset of
the o—Algebra generated by open sets. To prove that %p is generated

by {]a,+oo[: a € R}, it suffices to prove that any open interval ]a, ] is
in the o—Algebra generated by the family {]a, +oo[: a € R}.

1

We have |a, b] =]a, +oo[N(]b, +00[)¢ and ]a, b[= U >]a,b— —]. Then %
n

is generated by {]a, +oo[: a € R}.

. With the same arguments as in the previous property, g is generated
by {] — o0,a]: a € R}.

O



1.3 Exercises

Find all o—algebras that contain three elements in Z(R).
Find all o—algebras that contain four elements in Z(R).

Let f: R — R be a function. Prove that the set & = {A C R :
Y f(A)) = A} is a o—algebra in Z(R).

Let f: R — R be a bijective function.
Prove that the set

o ={ACX: f(A) C A& f~1(A) c A}
is a o—algebra.

Let E be a non empty subset of R.
Find all the o—algebras generated by the set € = {F : £ C F C R}.

Let E be infinite subset of R and S = {{z} : z € E}.
Find the o—algebra generated by S. (Discuss the case of E countable
and not countable)

Let A be non-empty subset of R.

(a) Find the o—algebra generated by the set ¥ = {B C R: A C B}.
(b) In which case this c—algebra is equal to Z(R)?

2 The Lebesgue Measure on R

2.1 Lebesgue Outer Measure

Definition 2.1

A set function p*: Z(R) — [0, 00] is called an outer measure or exte-
rior measure on R if:

L p*(0) =0;
2. p* is increasing (i.e. p*(A) < p*(B) if A C B);

e e 400
3. w*( U Ap) < Z w*(Ay), for any sequence (A,,), of subsets of R.
n=1 n=1

. J

We give an example of an outer measure on R which helps us to construct
the Lebesgue measure on R.



Proposition 2.2

Let A C Z(R) be a family of subsets of R such that §, R € A. Consider
a function p: A — [0, +00] such that p()) = 0. For all subset A C R,
define

“+o0
pr(A) =inf{d  p(An): An € A, ACUINALY (2.1)
n=1

The function p* is an outer measure on R.

Proof .

For each subset A C R, there exists a sequence (A,), € A such that A C
UF> A,. (We can take A, = R). So the function p* is well-defined.

It is obvious that p* (@) = 0 and that p*(A) < p*(B) if it was A C B.

Let (A,), be a sequence in 2 (R) such that A C U/ > A,,.

+oo
If there exists A,, such that p(4,) = +oo, then p*(A4) < Z,u*(Ak) = 4o0.
k=1

Now assume that p(A4,,) < +oo for every n € N.
For € > 0, and for each n € N, there is a sequence (A, ;) in A such that
A, C UZEATLJC and

“+o0

. €
Zp(An,k) <p (An) + 2_"
k=1

+oo +o00

We have A C U:{j:’:lAmk and Z p(An k) < Z w (A, +e. O
n,k=1 n=1

Remark 22 :

If we take 7 is the family of open intervals in R and the function p(I) = Z(I),

where £ (I) is the length of I.

In this case, we denote the outer measure defined by this function by A*. It is

called a the Lebesgue outer measure.

+oo
N(A) =inf{)_L(I,): I, €T, AC UINI,}.
n=1

This outer measure fulfills the following properties:

For any interval I in R, \*(I) = Z(I).




Proof .

The result is obvious if the interval is not bounded, and if the interval is
bounded I and a and b are its limits, then for any € > 0, I Cla —€,b+ €.
Then A*(I) < Z(I) 4 2¢ and X\*(I) < Z(I).

Inversely if (Ij;)), is open covering of I, then [a +¢,b— €] C Uf 251 As the in-
terval [a+¢, b—e] is compact, there is a finite covering (Ix)1<k<n of [a+¢,b—¢].

n +o0o
Therefore b —a — 2¢ < ZGS,”(I;C) < Ziﬂ([k) Then b — a — 2e < A*(I) for
k=1 k=1

every € > 0. Therefore \*(I) = .Z(I).
ad

Let © be an open subset of R and let (I,,),, the connected components

of €. Then
+o0
Q) =Y .20
n=1

Proof .
Using the definition of the outer measure A*, we have \*(Q) < S3F 2(1,).

n=1
Inversely, let (Jg)x be a covering of © by open intervals. As I, = u;;’j Je NI,

then
—+o0 —+o00 +oo 400 400

ZZ(In)S ﬂJk Zzg ﬂJk
n=1 n=1k=1 k=1n=1
On the other hand, since the intervals (I,), are disjoint, then U (JuNI,) C
m +<>on:1
Jy for every m. Therefore Zﬁ Je N 1,) < Z(Jg) and Z,Ef NJg) <
n= n=1
+oo +oo !

Z.,?(Jk). Hence Zﬁ([n) < A*(Q) and therefore A\*(Q) = S 2(1,). O

n=1
k=1 n=1

For any subset A C R, A*(4) = Om(g A*(O), where O 4 the collection

€0a
of open sets that contain the subset A.

Proof .



Let (I,)n be any countable covering of A C R formed by open intervals. If
w= U* I,,, then \*(A) < M\ (w) < 3°7°9 Z(1,,). Then \*(A) < b A*(0).
€0a

The converse inequality is evident if /\*(A) = +00.
Assume that A*(A) < +oo. For € > 0, there exist a countable covering (I,),

+oo
of A by open intervals so that Z Z(I,) < A*(A) 4+ e. The open interval =
n= 1
U231, contains A and A\* (9 Z.i” ) <A (A)4+e. Then inf A*(0) <
0€e0y
A*(A). ad

Corollary 2.6

If A is countable subset of R, then A*(A) = 0.

As M{a} = Z([a,a]) = 0, then if A = {a, : n €N}, \*(4) <3 N\ {a,} =
0.

R and any interval [a, b] are not countable, for a # b.

Theorem 2.8

Let A C R and r € R, then A*(A +r) = A*(A) and A*(rA) = |r|A*(A).

Proof .

If A= (a,b), then A+r = (a+r,b+r)andifr >0, rA = (ra,rd) and if r <0,
rA = (rb,ra). Therefore \*(A+7r) =b—a = X*(A) and \*(rA) = |r|(b—a) =
|| A*(A).

If A is an open subset, then A = U/>(a;,b;) with (a;,b;) N (ax,by) = 0 for
every j # k and )\*(A) = US> (b; — a;). Therefore \*(A + 1) = A\*(A) and
A (rA) = |r|]A*(A).

In the general case since, for any subset A C R, A\*(A) = Oien(gA A*(0), where

04 is the collection of open subsets that contain A, then A*(A + r) = A\*(4)
and A*(rA) = |r|A*(4). ]



2.2 The Lebesgue o—algebra
Definition 2.9

Let p* be an outer measure on R. We say that a subset A of R is
measurable with respect to the outer measure p* If

VX CR: p"(X)=p"(XNA)+p (XnNA).

Theorem 2.10

The set & of measurable subsets in R with respect to the outer measure
w* is a o—Algebra.

Proof .
1. As p*(X N0) + p*(X N0 = p*(0) + p*(X) = p*(X) for any subset X
in R, then ) is measurable.

2. Let A € A, the for any subset X in R, p*(X) = p*(XNA)+p* (X NA°).
This definition is symmetric with respect to A and A¢. Then A€ is also
measurable.

3. Let A,B € & and X a subset in R. As A is measurable

p (XN(AUB)) = p"(XN(AUB)NA)+up*(XN(AUB)NA®)

p(XNA)+p* (X NnBNAS.
Then
p(XN(AUB))+p*(XN(AUB)?) = p*(XNA)+up*(XNBNA®)
+1*(XNA°NBC)
p(XNA) + p* (XNA°)
p* (X).

We deduce that AU B is measurable.

4. Let Ay, Ay be two disjoint measurable sets and X a subset in R. Let
B=XnN(A1UAs). As BN (A1 UA5)¢ =0, then
pi(B) = pH(BN(A1UAz))+p" (BN (AU A2)%)
= p*(BNAp)+u"(BNAD)
/1,*<X N Al) + ,u*(X N A2)



Therefore p*(X N (A1 U Ag)) = p*(X N Ap) + p*(X N Ag).
Let (A,), be disjoint sequence in & and X C R.

=

) = ween YA+ a4
. .
> (X0 JAa)+ x4
Jj=1 j=1
n +o0
> S na) +prxn (A
Then
+o0 Foo
pHX) = ) (XN Ay + (X0 ([ 4n)9) (2:2)
n=1 n=1
“+oo +oo
> (0 A+ e n (| 409,

The inverse inequality results from the outer measure property.

So that to complete the proof, consider a sequence (B,), in #B. We

n—1

define the sequence (A, ), as follows: Ay = By, A, = B, \ U B;. Hence

j=1
+oo +o0o
U 4. = B
n=1 =1
“+oo “+o0
Since U A, € & then U B,, € # Therefore # o—algebra.
n=1 n=1

The Borel sets are measurable with respect to the outer measure \*, i.e.
Pr C B.

Proof .
It suffice to prove that Ja, +oo[€ £ for any a € R.
Let X be a subset in R, We want to prove that:



A (X) = A (XN]a, +oo]) + A*(XN] — 00, a]).

As \* is an outer measure
AM(X) < X (XNa, +o]) + A (XN] — 00, a]).

For the inverse inequality, the result is evident if A\*(X) = +o0.

Suppose that A*(X) < +o00. So for any € > 0, there exists an open set 2. such
that X C Q¢ and A*(Q.) < A*(X) +e.

Assume first that a ¢ (..

Q)= 2n= Y 2+ Y 20,

Iec IeCnla,+oo| IeCn]—oo,a|

where C is the set of component connected of €2.. Then

Q) = A(QcN]a,4+o0]) + A" (QN] — 00, a)
> N(X Nla,4o00]) + A" (XN] — 00, al).
Therefore A*(X) > A*(X N [a, +o0]) + A*(XN] — 00, al).

If a € ., we use the first case, by considering the open set Q. = Q. \ {a}
instead of Q.. (A*(2L) = A*(Q2.).) O

Exercise 1 :

We say that a subset A C R is a zero set with respect to outer measure \* if
there exists a measurable subset B so that A C B and A*(B) = 0.

Prove that each zero set is measurable.

Solution

If A is a zero set, there is B € 4 such that A C B and A*(B) =0. If X is a
subset of R, then A*(X N A) =0 and

A(X) > A(XNAY) =X (X NA)+ A (X NAY).

The inverse inequality results from the definition of the outer measure A\*. So
the set A is measurable.

2.3 The Lebesgue Measure

2.3.1 Measure Theory

Definition 2.12

Let o/ be a oc—algebra on R. We say that a function p: &/ — [0, 0]

is a measure (positive measure) on  if the following conditions are
satisfied:




L u(@) =0,
+oo

2. For any disjoint sequence (A,), € &, u(US>5A,) = Z w(Ay)
n=1

The set (R, o7, i) is called a measure space.

Examples 25 :

1. If o = Z(R) and p(A) = #A (number of elements of A if A is finite
and +oo otherwise). The function y is a measure on «/. This measure is
called a the counting measure on R.

2. LetaceRand 60,(A)=1ifac Aand 0if a & A.
04 is a measure called a point measure at a or the Dirac measure at a.

3. Let u be the function defined on & (R) as follows: u(A) = 0 if the set A
is finite and p(A) = 400 if the set A is infinite.
The function y is not a measure since N = U2 {n}, but u(N) = +oc #

“+o0
S u({n}) = 0.
n=1

Theorem 2.13

Let &/ be a o—algebra on R and p a measure on o/. The measure p
satisfies the following properties:

1. If Ay, ..., A, € & are disjoint, then

n

p(UtA5) = u(4y).
j=1
2. If A,B € o/ and A C B, then p(A) < u(B). (p is increasing)
3. If (A,)n € & and A = US> A, then

+oo
n(A) < Y p(An).

4. If (A,), is increasing sequence in & and A = U712 A, then

pd) = lim u(An).




5. If AAB € & and A C B and p(B) < o0, then pu(B\ 4) =
w(B) — u(A) (The result remains true if p(A) < 00).

6. If (A,)n is a decreasing sequence in & and A = ﬁ:ﬁAn =
lim A,. If p(A41) < oo, then u(A) = lim wu(A4,).
n—-+oo n—-+00

Proof .
1. We prove this property by induction.
2. Since B= AU (B\ A), then u(B) = pu(A) + n(B\ A) > p(A).

3. Let By = Ay, and B, = 4, \ U?;llBj, for every n > 2. The sets (By)n
are disjoint and A = US> B,, = U/>S A,,. Therefore

n=1
+oo +00
MCA)::EE:AKlLJ < E::M(An)
n=1 n=1

4. Let (Bp)n the sequence defined previously. As Uj_; A; = Uj_; Bj, then

n(A) = p(Ui254) = n(U2By)

+oo n
= D p(Bn) = lim > u(By)
n=1 j=1

= lim p(UfBy) = lim p(Uf_ A7) = lim p(Ay).

n—roo n—oo
5. w(B\ A) + pu(A) = u(B). If p(A) < oo, then u(B\ A) = u(B) — u(A).
6. We apply property (3) to the sequence (41 \ Ay)n.

O

Example 26 :
Let &7 be a o—algebra on R and p: & — [0, +00] a function on &/. p is a
measure if and only if:

L. u(@) =0
2. wW(AUB) = u(A)+u(B),if AnB=1.

3. If (A,,)n is an increasing sequence in <7, then p(UF29A4,) = lim u(A,).

n——+00



If p is a measure, it fulfills the properties (1) and (2).
Let (A,), be an increasing sequence in /. Define By = A; and B, = A, \
U;-’;llAj for every n € N. The sequence (B,), is disjoint and U5 A, =
Ut B,,. Then

n

+oo
(U2 A4,) > u(Bn) = lim Y u(B))

n—-+oo
j=1
= 1 'fL S ) = 1
= AR UinB) = By wds)

Inversely, if 4 is a function satisfying the properties (1), (2) and (3). If (A,)n
is a disjoint sequence of measurable sets. So the sequence (B, = ?zlAj)n is
increasing and U2 A,, = U2 B,,. Therefore

n +oo
pUIA) = lim p(B,) = Tim > p(A;) =Y u(An).
n=1

n—-+oo n——+00 4
Jj=1

2.3.2 The Uniqueness Theorem

Theorem 2.14

Let ¢ and v two measure on the measurable space (R, %g). Assume
that there exists a class ¥ C %Br that satisfies the following properties:

1. ReF andif A,B€%,then ANB€%
2. € generates the c—algebra Br. (0(€) = HBr)
3. w(C) =v(C) < 400 for every C € G.

Then p = v.

Remarks 23 :

Let p and v two measures that fulfill the hypotheses of the theorem (2.3.2).
Define the family .# = {A € % : p(A) = v(A)}. The class .Z verifies the
following properties:

1. If A e #, then A° € Z.
This is because p(A°) = u(R) — u(A) = v(R) — v(A) = v(A°).

2. IfA,Be.% and A C B, then BN A° € .7
w(B) = pu(A) + w(B N A% = v(B) = v(A) + v(B N A°). Therefore
uw(BNA®) =v(BnN A



3. If (A,)n is a monotone sequence in &, then lim A, € Z.
n—-+4oo

Let Ac Z, theset: A={BeBr: AUB,BNA°, ANB°ec F}isa
o—algebra.

Proof .

We have ) € A. Moreover from the definition of A, we have Be A «—= A € B.
Alsoif Ae .Z and B € A, then AN B € .Z. Therefore A C Z.

We want to prove first that R € A. We have

iR U A) = u(R) = »(R) = v(RU A), u(R N A°) = pu(A°) = (A°) = p(R N A°)
and p(R°NA) = (@) = v(0) =0 =v(R°N A). Then R € A.

In this step we want to prove that A€ € A.

m(AU A%) = p(R) = v(R) = v(AU A%), (AN (A)) = u(A) = v(4) =
v(AN(A%)°), p(A° N A°) = p(A°) = v(A°) = v(A°N A°). Then A° € A.

Let B € A. We want to prove that B¢ € A

n(AU B)

n((ANB)U B°) = (AN B) + u(B°)
= v(ANB)+v(B°) =v(AUB°)

w(B°N A°) = u(AU B)® = v(BUA). Since B € A, then AN B € .%. Then
B¢ e A

If (B,)n is an increasing sequence in A and B = hr—? B,,, the sequences
n—-+0oo

(BnUA), and (B, N A°),, are increasing, so AU B and BN A° are elements of
. But the sequence (AN Bg), is decreasing and since pu(R) = v(R) < 400,
then AN B¢ e #. d

Corollary 2.16

For every A € €, A = Bg.

Proof .

If A, B € ¢, then ANB € €. Therefore 1(ANB)=v(ANB). On the other hand,
since u(A)=v(A), then p(AN B¢)=v(AN B°) and so u(A°N B)=v(A°N B).
Therefore 1(AU B)=v(AU B). Since A is a o—algebra and since it contains
% then A = %g. 0

Proof of the theorem (2.3.2) .



If A € Pg, then A € R. Therefore A € Z. a

Theorem 2.17

Let p and v be two measures on the measurable space (R, Zg) and
suppose there is a class ¥ of measurable sets verifying the following
properties:

1. f A,B€ %, then ANB€%.

2. € generates the o—algebra Zg.

3. u(C)=v(C) < 4oo for every C € 6.

4. There is an increasing sequence (X,), in & such that R =
lim X,.

n—-+oo

Then p = v.

Proof .

Define p,, and v, the measures B as follows: p,(A) = p(ANX,) and v,(A) =
v(AN X,). We deduce from the theorem (2.3.2) that u, = v, and since the
measures (fin), and (vy), are increasing, then p = v, where p and v are the
limits respectively of (fin)n and (V). O

2.3.3 The Lebesgue Measure

Theorem 2.18

The restriction of the outer measure \* on the c—algebra % is a mea-
sure. We denote this measure by A and called the Lebesgue measure on
R.

A is the unique measure on %y which verifies the following properties:

1. A([0,1]) = 1

2. MA+z) = A(A), for all z € R and for all A € Br. (we say that
A is invariant by translation)

Proof .
The restriction of the outer measure A* on the o—algebra % is a measure
results from the inequality (2.2) if we take the set X = U} A,,.



The uniqueness: Suppose there are two measures p and v on Py that they
achieve the proof.

As [0, L[< L then v{0} = 0 and any finite or countable set is a zero set. Also
the intervals [a, b], ]a,b], [a, b] and ]a, b] has the same measure b — a.

Let € be set of finite union of intervals [a, b], where a,b € R.

The set € closed under finite intersection and R = (J/}[~n,n[. Then p = v
on ¢ and using the theorem (2.3.2), we have y = v on Hy. ad

Remark 24 :
The Lebesgue measure A can be defined on the o—algebra #* = ZU.4", where
A is the set null sets. We proved that Br C B C B*.

2.4 Measurable Functions

In which follow, €2 is a measurable set in R.

Definition 2.19

We say that a function f: @ — R is measurable if f~1(A) € £ for any

Borel set A, (A € ).
The of measurable functions on Q will be denoted by .#(2) and the set
of non negative measurable functions on  will be denoted by .# " ().

Theorem 2.20

Let f: Q@ — R be a function. The following properties are equivalent:

1. The function f is measur- 4. f~Y—o00,a] € B, for every
able, a€R,

2. f~la,+ocfe B for every a € 5. f~la,ble B, for every a,b €
R

K )

3. f71] —o0,ale B, for every 6. f~la,ble B, for every a,b €
a€ R,

& #

This theorem results from the definition of the Borel o—algebra % which
generated by any of the following family of sets:

1. {[a,+oo[: a € R}, 3. {] —o0,al: a€R},

2. {Ja,+o0[: a € R}, 4. {] —o00,a]l: a €R},



5. {]a,b[: a,b € R}, 7. {]a,b] : a,be R},
6. {[a,b]: a,be R}, 8. {[a,b] : a,b e R}.

Remark 25 :
Let Q be an open set. Any continuous function f: Q@ — R is measurable.

Theorem 2.21

1. If f € # (), then the function |f| € .# ().

2. If (fn)n is a sequence in .Z(£2), then the following functions are

measurable
(a) g =sup fn, (b) h = limys o0 fn,
neN

(C) k= h—mn—>+oofn

Proof .

1. fa<0,then Q={z € Q: |f(x)] >a}
If > 0, then

{zeQ: |f(x)|>a} = {z€Q: f(z)>a}U{ze: f(x)<—a}
= f'(a4oc]) U f7H(foo,—a) € 2.
2. h(o) = inf(sp 5 (0)
{zeQ: gx)>a}= Uneniz € Q: fu(z) > a} € BBB,

+oo oo
{zeQ: h@)>al= () J{zeQ: fi(z) >a} ez
n=1j=n
3. k(z) Zitelg(}ggfj(x))-
+oo oo
{zreQ: k(z) >a} = U m{xGQ: filx) >a} € A
n=1j=n



Corollary 2.22

1. If f € .#(9), then the functions f* = sup(f,0) and f~ = inf(f,0)
are measurable.

2. If (fn)n is a pointwise convergent sequence of measurable func-
tions. The limit function f, is measurable.

3. Let (fn)n be a sequence of measurable functions. The set C' of
points z € Q where the sequence (fy)n(z) has a limit in R is
measurable.

\ J

Proof .
1. The proof results from the theorem (2.4).
2. The function f =lim,_,.  f, is measurable.

3. Let g =lim, ,  f, and h = limy oo fn- Theset D =C° = {z € Q:
lim,, oo fno(z) < limp— o0 fn(2)}. For every number r, the set

D, ={zeQ: g(z) <r<h(x)}={g(z) <r}n{h(z) >r}

is measurable, so the set D = (J, o D is also measurable.



2.5 Exercises

Let p be a measure on (R, Zg). Prove that
1(A) + p(B) = p(AU B) + u(AN B)
for every A, B € $g.
Give an example of measure p on (R, %g) and a decreasing sequence
(A,,)n such that nll)r_{loo w(Ay,) # u(nliﬁloo Ay).

Let € > 0. Give a dense open subset of R and its measure is less than ¢.

Let A be a measurable set in R of finite measure.
Prove that the function f(z) = A(AN] — oo, z]) is continuous.

Prove that for each increasing function f: R — R is measurable.

Let f: R — R be a measurable function.
Prove that the set {x € R: f(x) # 0} is measurable.

Let (R, %, A) be the measure space where A is the Lebesgue measure and
% the Lebesgue o—algebra.
For every measurable set A, we define the function u as follows:

p) = [ i),

A 1 + .132
Prove that p is a measure.

Let f be an integrable function on the measure space (R, Zg, \).
Prove that the set {z € R: f(x) = £oo} is a null set.

Let f be an integrable function such that / f(z)du(z) =0 for all mea-
B

surable set F.
Prove that f =0 a.e.

7-2-10 | Prove that the two functions sin(z?) and cos(z?) are not integrable on
[0, +o00].

3 The Lebesgue Integration

3.1 Simple Functions



Definition 3.1

A function f: 2 — R is called simple if it is measurable and takes a
infinite number of values.

If f: © — R is a simple function and if {ci, ... ,¢,, } are the different values of

f, then f = ZCjXAja where A; = f~*{c¢;} and the function f is measurable

j=1

if and only if the sets A; are measurable for each j =1, ... ,m.
Theorem 3.2
Let f: Q —R

1. If f is a bounded measurable function, there exists a sequence of
simple functions which converges uniformly on 2 to f.

2. If f is a non-negative measurable function, there exists a sequence
of non-negative simple functions which increases to f.

Proof .

1. Let M > 0 such that |f(z)| < M for every z € Q. For (n,k) € Ng x Z
and —2" < k < 2™ — 1, consider the measurable subsets

kM k+1)M
2°1 o
and the measurable functions f, = Z S XA where Ny = NU{0}.
k=-—2n
For any zg € €, there exists ko such that xg € A, ,. Then f,(zo) =

Mk M
no and |f(zo) — fu(zo)] < on Hence, the sequence (f,), converges
uniformly on € to f.

2. For n € N, the function g,, = inf(f,n) — 1 is bounded and measurable,
then from the first case there exists a sequence (fy,, ) of simple functions

1
such that || f, — gnlleo < on- Therefore

oo fr = B 0 = Bp ind(fym) = £



1 . 1 1 1
fnggn+2_n:1nf(f> )__+2_n<1nf(f7n"il_1) n__’_l—’—mgﬁn-i-l
It suffices t that fi bi h——+—<——4+ —-
(It suffices to prove that for n big enoug —|— 2n 1 + ol )

So the sequence (f, ), increasing.

O

3.2 The Lebesgue Integration

To define the Lebesgue integral of measurable functions, we first define the
integral of non negative positive simple functions. Then we define the integral
of non-negative measurable functions using the increasing limit. For arbitrary
measurable functions f, we use the decomposition f = fT— f~ as the difference
of two non-negative measurable functions and we extend the definition of the
integral to the measurable functions only if one of the integral of f or f~ is
finite.

Definition 3.3
N

If f = Z CkX{f=cy} 1S @ non negative simple function, we define the

k=1
integral of the function f as follows:

| r@axe chx{f—cm (3.3)

fA={zecQ: f(r)=0} and A(A) =+ orif A={xeQ: f(z)=
+o00} and A(A) = 0, we assume that 0.0co = 0.

Theorem 3.4

Let &T be the set of non negative simple functions defined on 2. The
integral defined on &7 fulfills the following properties:

. /af( YAz —a/f Jd\(z) for every a € RT and for each
fe &,

2. @[g (f +9)(@)d\(z)= /Q f(@)d A=)+ /Q g(z)d\(z) for every f,ge




3. / flx)d\(z) < / g(z)d \(z) for every f,g € & such that f <
b :

4. If (f,)n is an increasing sequence in &+ and if lirf fo=f€E&T,
n——+00

then /Q F@)dA(z) = lim /Q Fa@)dA(@).

n—-+0o0o

Proof .
It is obvious that if @ > 0 and f and g are in &t then af € & and f+g € &+.

1. The first property is evident.

2. Let f and g be two elements of & and let F' (resp G) be the set of values
of f (resp of g). We have:

f= Z ax{f=a), 9= ZbX{g=b}-

acF beG

{f:a}:U{fza,g:b}, VaeF

beG

{g=bt=J{f=ag=0b}, Vbed

acF

[r@axe =Y a-a=- ¥ a{f-ag=)

a€F (a,b)EF timesG

/Q g@)dr@) =Y aMg=tt= S {f-ag=b}

beG (a,b)€F timesG
/ F@)dA(z) + / oAz = S (a+bMf=a,g=b)
Q Q (a,b)EFXG
{f + g = U} = U(a,b)EFXG,a-‘,-b:u{f =a,g= b} Therefore

Mf+g=u}= > Mf=a,g=0}.

(a,b)EFXG,a+b=u



Then

/Q F@)d () + / JDaN) = SN o=

Q

/ (f + 9)(@)d \(z).
Q

3. If/Qf(x)d/\(x) = 400, then /Qg(a:)d/\(x) = 4o0.

The result is evident if/ f(x)dA(x) < 400 and the / g(z)d A(z) = +o0
Q Q

éuppose that / f(x)dM(z) < 400 and / g(x)d A(z) < +o0.

Q Q
So the sets {z € Q: f(z) = +oo} and {z € Q : g(x) = oo} are
zero sets. Let {a1, ... ,an} and {by, ..., by} the sets of finite values of
f respectively of g.

Zajx{xeg Fla)= a]}andg—ijX{er g(x)=b;}- Therefore/ flx)dA(z) =
j=1

/ and/ oz )dA(x)z/Qg(x)dA( )and h=§—f €&+,

e deduce from 2. that

/ /fd)\ /hd)\ /fdA

Let (fn)n be an increasing sequence in &7. if there exists g € &+ such
that g < lim,— 4o fr, then / g(x)dA(z) < lim / fr(x)d A(x)
Q n—-+4o0o Q

Proof .
Let B, = {z € Q: g(z) = y} for every y € ¢g(Q). To prove the lemma it
therefore suffices to prove that for all y € g(X)

n——+o0o

/Q g(@)xE, ()d Mz) = yM(E,) < lim / fu(@)xm, ()d A(2).

The result is obvious if y = 0.
Now suppose that y > 0, for every 0 < t < y, define the sets A, = E, N {x €



Q: fo(z) >t}

The sequence (A,), is increasing and measurable and E, = hr—? A,, because
n——+0oo
for v € Ey, f,(x) >t for every n big enough.
IME, N {2 €Q: fule)> 1)} = /Q B, et fu(eyoy (©)AA@)

< / ful@)xE, (2)dA(z).

NE) <t [ f@)xe, @A)

This is for every 0 < t < y. Therefore

INE,) < hm/fn )X, (@)dA(@).

n—-+oo

To prove (4), we define the function g = hril fn-
n—+o0o

fn < g, for n € N and the sequence /fn x)d)\(x)) is increasing and
Q

n

bounded above by the number / g(x) A(z).
Q
To prove the other inequality, we apply the lemma (3.2). O

Definition 3.6

Let f be a non negative measurable function, we define the integral of

f by:

/f )d Az —Sup{/ ):g<f ge&t}

This is a non negative real number or +oc.

Remark 26 :
If f is a non negative measurable function, by theorem (3.1) there exists an
increasing sequence (fy,), in &7 which converges to f. We conclude from

which above that lir_~r_1 / fa(@)dX(z) < / f(z)dA(x). On the other hand,

according to the lemma (3.2) for any function g € & such that g < f =

limy,_, 4 oo fr, we have / g(z)dA\(z) < lir_irrl / fu(z)dA(z). So by definition
Q n—-—+0o0 Q



(3.2)/Qf(x)d)\(:r)§ lim /an(x)d)\(x) Therefore

n—-+4oo

/Qf(a:)d)\(:c): lim fo(@)d A(x).

n—-+oo Q

. This result is not related to the sequence (fy), in & which converges to f.

Theorem 3.7

If f and g are in .Z () and a > 0, then
1. /Qaf(:c)d)\(:c) :oz/Qf(x)d)\(:v)
2 [ (F+o)@dAe) = [ f@ar@) + [ a@)iA@)

3. If f < g, then /Qf(x)d)\(x) < /Qg(a:)d)\(x).

Proof .
For proof, it suffices to take two increasing sequences (f,,), and (g,), in &
which converge respectively to f and g, and we apply the theorem (3.2). O

Definition 3.8

Let f, g two functions. We say that f = g outside a zero set or f =g
a.e. If the set {x € Q: f(z) # g(x)} is a null set.

Let A be a measurable set. The function y4 = 0 a.e. if and only if
A(A4) = 0.

Definition 3.9

We say that a function f is defined a.e. on (Q, if there exists a null set
N so that the function f is defined on Q\ N.




Definition 3.10

We say that sequence of functions (f,,), on € is convergent a.e. if there
exists a function f such that {x € Q: f,(z) /= f(x)} is a null set.

Theorem 3.11

Let f,g be two functions in .2 (Q).

1. / f(z)dA(z) =01If and only if f =0 a.e.
Q

2. If f =g a.e then /Qf(x)d)\(x) = /Qg(x)/\(x)

Proof .

1. Suppose that /f(x)d)\(x) = 0. Then for every n € N, the subsets
Q
Ap={z€Q: f(x)> 1} are measurable and x4, < nf. Then
[ xa,@ar@) =34 <n [ fa)dr@) =0
Q Q

and \(A,) = 0, for every n € N. Therefore {z : f(z) #0} == A, is
a null set.

If f=0ae, theset A ={x € Q: f(x) # 0} is a null set and the
function g = 00.x4 is a simple and f < g. As / g(z)dA\(z) = 0, then

Q

/Q F@)dA(z) = 0.

2. suppose that f < g. the function h = g — f is defined a.e and equal to 0
a.e
If/ f@)dXMz) = / g(x)d A(z) = 400, the result is correct.
Q Q
If/ f(z)dA(x) < 400, and / g(x)d A(z) < 400, then
Q Q

Oz/ﬂh(x)d)\(w)z/Qg(x)d)\(m)—/Qf(x)d)\(m).



The function h = inf(f, g) is non negative and measurable and h = f = ¢
a.e. As h < f then /f(:z:)dk(:c) = /f(x)d/\(x). Also as h < g,
Q Q

then/ﬂh(ax)d)\(m) = /Qg(x)d)\(x). We conclude that /Qf(x)d)\(sc) =
Qg(w)dk(x)-

a

Definition 3.12

We say that a function f: Q — R is integrable if the functions f* and
f~ are integrable, where f™ = sup(f,0) and f~ = sup(—£,0). In this
case we define the integral of f as:

/fdA /f+ YA A(z /f 2)d Mz

Also if the function f is measurable and / ff(x)dX(z) < oo or
Q

/ f(z)dA(z) < co We define the integral of the function f on

-
/f YA A(z /f+ YA A(z /f 2)d Mz

The set of integrable functions on (2 is denoted by £'(£2).

Theorem 3.13

The set £1(12) is a vector space on R and the map f — / f@)d X(z)
Q

is linear on the space £!(Q2) and

’/f YA A(z /|f )|d A=)

for every f € L1(Q).

Proof .



As [f+g| <|f|+|gl, for every f,g € .# (), then

/Q 1£(@) + g(@)|d M) < /Q |F@)]dA ) + /Q ()] dA@)

If f+g€e ().
fH9=U+9 " =(f+9) =f"—f"+g"—g".
Then (f+g)* +f~+9- =(f+9)~ +f" +g%, and

[u+ot@ + [ F@ia / ~(2) dA(z)
= [(+or @dx@ + [ 1@ dae
+/Qg (z)d \(z)

and

/ (f + )" (2)dA(x)) — / (f +9) () dA(x)
- /f+ YA /f

+ [ g @are) - [ o @irw
- /f e / D)d().

The other properties are evident. O

Corollary 3.14

1. If the function is f measurable and a < f < b and A(2) < 400,
then f € £1(Q) and aA\(Q2) < / fx) dX(z) < bA(Q).
Q

/ (f + 9)(@)dA(x)
Q

2. If f < g, where f € #(Q2) and g € L}(Q then/f YdA(x) <

/Qg(a:)d)\(x).

3. If E is a measurable null set, / f(z)d A(z) = 0 for every measur-
E




[ able function f. ]

Remarks 27 :

1. If f is an integrable function, then the set {x € Q : f(x) = +oo} is a
null set.

2. We introduce the equivalence relation ~ on £'(X, .o/, u) by setting f ~
g <= f = ga.e. Thus we may consider the quotient space L!(X, o, u) =
LY(X, o/, )/~ This space is often abbreviated to L'(u).

3.3 The Monotone Convergence Theorem

Theorem 3.15

[Monotone Convergence Theorem]

(The theorem is called also the Beppo-Levi’s Theorem)

Let (fn)n be an increasing sequence of non-negative measurable func-
tions on 2, then

/gnlggm ﬂx ) zrggﬁmu/ fﬁ dA

Proof .
For every n € N, there exists a non-negative increasing sequence (¢y, ;); in &

which converge to f,. For every j, define the function ¢; = sup ¢, ;. The
1<n<j

sequence (1;); € &7 is increasing because

Yj = sup @n; < Sllp Onj+1 < SUD  Pnjt1 = Yjp1

1<n<j 1<n<j 1<n<j+1
for every j > n, ¢, ; < v, therefore f, = lim ¢,; < lim ;. Then
Jj—+oo Jj—+oo
f= lim f, < lim ;. on the other side inequalities ¢, ; < f, < f prove
n—+00 Jj—+o0

that ¢; < f and lliI_El 1; < f. The sequence (¢;); is increasing in &+ with
j—+oo

limit f. Then / f@)dX(z) = 'liIJ'I_l /mj(x)d)\(:z:). Moreover ; < f;, then
Q It Jo

jgrfoo/gqu(x)m <Jilrfoo/f] ) d Mz /f YA Az



Corollary 3.16

Let (fn)n € #T(92) be a sequence, then

+o0 +oo
/Q n; fo(@)d () =n§::1 /Q Fo(@)d M\ z).

Corollary 3.17

Let f € .#*(Q), then for every A € B, the function

u(A) = /Q F@xa@dA()

is a measure on .

\

Proof .
Let (A,), be a disjoint sequence of measurable sets (A; N Ay = 0 for every

—+o00
j#k). Then fxu,a, = Y. fxa, and

n=1

p U = [ faho.a @@

+o00
/Q S F()xa, (@)dA(@)

“+oo
> [ fapa@ar)

The second part of the result is true if the function f is the characteristic
function of a measurable set, and therefore is true for every simple function. So
if f is a non negative measurable function, there exists an increasing sequence
of simple functions which increases to f. We get the result using the monotone
convergence theorem. O



3.4 Fatou’s Lemma

Lemma 3.18

[Fatou’s Lemmal]
If (fo)n € A *(2), then

J @A) < T iy [ Fol@dA @)

Proof .

lim, o fn =lim, i (inf;>, f;). Therefore/ﬂjirgfl fi(x)dX(z) < ;rzlfl/gf](m)d/\(x)
and we get the result using the monotone convergence theorem. O
Example 27 :

Let fn, = nzx[m%], /Rli_mn%_koofn(x)d/\(x) =0 and li_mn_,+oo/an(x)d)\(x) =

400

3.5 Dominate Convergence Theorem

Theorem 3.19

[Dominate Convergence Theorem or Lebesgue’s theorem)]
Let (fn)n € () such that

1. (fn)n converges a.e. to a function f defined a.e.

2. There exists a non negative integrable function g so that: |f,| < g
a.e. for every n.
Then the sequence (f,), and the function f is integrable and

n—-+o0o

/Q f@) dA(@z) = lim /Q Fa(@)dA(@).

Theorem 3.20

Let (fn)n € A (). Assume that there is a non negative integrable
function g such that for every n, |f,| < g a.e. Then




[ 1 @)d@) < lim [ fa(eddA@) (3.4)

/ Fmfad A(z) > T / ful@)d () (3.5)
Q Q

If the sequence (f,), converges a.e. on {2 and its limit is a measurable
function f defined a.e., then f € L*(Q) and

n—-+oo

/f(m)d/\(x) = lim /fn(x)d/\(x) (3.6)
Q Q

Proof .

As the function g is Integral, the set {z € Q : |f(x)] = +oo} is a null set.
So we can be substitute the function g by the function gx(s: g(z)<to0}- This
substitution does not change anything about the inequality: |f,| < g a.e..
The sequence (f,)n can also be substituted by the sequence fnX{|f,|<g}- This

substitution does not change the value of the integral | f,(z)d A\(x) and not in
Q
the limit hr}rl fn a.e. So we can assume that |f,| < g on . So the functions
n—-+oo
limf, and limf, are integrable on 2. Using Fatou’s lemma on the sequence
fn+ g, we get

/Q (£, + 9)(2)d A(x) < lim / (o + 9)(@)d , A(z).

Aslim, , (fn +9) = (lim, ,, fn ) +gonQ, then
R AT S - AT}
Q Q
and using Fatou’s lemma on the sequence (—f, + ¢)n, we get

[t (CE)@N) <l [ fa@)dA @),
Q Q
Then
/ Tt 1 oo o (2)d (@) > T s 4o / Fa(@)d (@),
Q Q

Example 28 :
Let f be an Integrable function on [0, +o0o[. We want to prove that

—+o0

: —nsin®z _
ngr—ir-loo ; e f(x)dz = 0.



Consider the sequence (fy,), defined on [0, 00 by: fn(x) = gnsin® Tf(x).
Let A ={x: f(z) = £oo} UNy. For every z ¢ A, lirf fu(x) = 0 and
n——+0o0

|fn| < |f| and the function f is Integrable. Then

+oo 5

li —nsin® dr = 0.
lm ; e f(z)dx =0



3.6 Exercises

Find the following limits:

n—-+oo

(a) lim /\flnx )”dac

(b) nin}roo R 1+ 22 dz,
Hoo dx
I
() dm | TP
+oo L
(d) lim e "IN f(2) da, f € LY([0, +o00]),

n—-4oo 0

+oo +oo
(e) lim / h(@) dx, and lim / h(@) dx, Where f is an
h—s0+ « 0

h2 + z2 h—0+ h2 + z2
integrable function on the interval [0, +o0o[ and continuous at 0 and
a > 0.
o0 sin(e?)

f) 1
( ) nﬁn}rloo 0 14 nx2

(g) lim (1+ %)_" cos zdz,

n—-4o0o 0
" x
h li 1 n —2.Ld
(0) Jim (L4 2)"e™de,
" T e
i) i 1 - =)""ez2d
(i) lim ; (1-—~)""ezdz,
" 1
(G) lim (l—f)" +ne cos zdz,
n——+o0o 0 n
—+o0
X, 2
k) L 14+ 2)" e ™ dx.
(k) Jim [ (14 2)" e ™da

Prove that

/+OO C_QId(E B +§ (_1)n
0 L+er 3+n
and find the value of the series.

7-3-3| (a) Let f € L'(R) and a > 0.

Prove that lim f(nz)

n—+oo N

=0 ae. z € R (We can integrate the




(b) Let f: R — C be a measurable function and T—periodic and

T
/ F(8)] dt < +oo.
0

i. Prove that lim f(nz) 0

a.e.
n—-+oo n2

ii. Prove that lim (|cosnz|)* =1 a.e. (We can use the function
n—-+4oo

(In | cos z|)?.)

Consider the sequence (I,,), defined on |1, +oo[ as follows:

teo gt
I,(z) :/z e

Prove that the sequence (I,,),, is well defined and find its limit.

—ax

Let f(z) = fﬁ with a > 0 and b > 0.

—+o0
Prove that the function f is integrable on [0, +oo[ and / f(x)dx =
0

+oo

1
Z (a+nb)?’

n=0

z
Consider the sequence (1), where I,, = / tan™(z) dx.
0

Find the limit of the sequence (I,), and deduce the sum of the following
—1)» 1"
D" v, = 5D

sequence: U, = 1
n n

4 Riemann Integral and Lebesgue Integral

4.1 The Riemann and Lebesgue Integral

Let A be the Lebesgue measure to on the o—algebra % of measurable functions

on the interval [a, b].
b

If f: [a,b] — R is a Riemann integrable function, then / f(x)dx symbolizes
the Riemann integral of f on the interval [a, b], and if the %unction is Lebesgue

integrable on [a, b], then / f(z)d A(z) symbolizes the Lebesgue integral of f

la,b

on the interval [a, b].



Theorem 4.1

Let f: [a,b] — R be a Riemann integrable function, then f Lebesgue
integrable on [a, b] and

b
@@ = | sz

Proof .
As the function f is Riemann integrable on [a, b], there exists a sequence (o, =
{zo=a,...,xp, =0b}), of partitions of [a, b] such that

We define two sequences (g )n and (hy), of simple functions as follows:

= 1 <
gn(:l:) = {mk lnfte[xkvwarl[f(t) T < < Tpy1

gn(b) = £(b)
hn(x) = {Mk = SUPte(wy, w1l f@) op <w <mpp
hn(b) = f(b)
The sequence (gn)n, is increasing and the sequence (hy,), is decreasing. Let

g= lim g, and h= lim h,. Then
n—-+oo n—+oo

b
U(an,f)z/ hn(:z:)dxz/[ ) hp(2)d A(x).

b
Lo, f) = / () dz = /[ @A)

Since the functions g and h are measurable, using the monotone convergence
theorem, we get

b

Jm [ @ =0 = [ g@axa @)
b
lim ho(z)dz = U(f) = h(x)d \(z). (4.8)
® Ja [a,b]

De deduce from (4.7) and (4.8) that /
[a,b]

h(z)d\(z) = / g(x)dA(z).

[a,b]
Then / (h(z) — g(x))dA(xz) = 0. and since the function h — g is non negative
[a,b]



and integrable, then h = g a.e. and f = g a.e. So the function f is measurable
and

/ f@yde = [ f@)dA@).
a [a,b]

O

Theorem 4.2

Let f be a bounded function on an interval [a, b].

1. The function f is Riemann integral on [a,b] if and only if the set
of points where the function f is not continuous is a null set.

2. Inversely, if the set of points where the function f is not continuous
is a null set, f is integrable and

b
@@ = | sz

. J

For the proof, we keep the same notations as in theorem (4.1) and we need the
following lemma;:

For every z € [a,b] \ ( h(z) if and only if the function

f is continuous at x.

Proof .

Let z € [a,b] \ (U}90,) and 6, = ||oy,]|. If the function f is continuous at z,
for each € > 0, there exists n > 0 such that |f(z) — f(¢)| < € for every t € [a, D]
and |t — x| < n. Since the sequence (J, ), converges to 0, there exists ng such
that 6, < for every n > ny.

For each partition o, with n > ng, there exists k € {0,...,p, — 1} such that
T < T < Thyl-

Then |f(z) — f(t)| < € for every t € [zg,zk41]. Therefore h,(x) = M) <
f(x)+e, gn(z) =my > f(z) — e and hy(z) — gn(z) < e. and since this is for
each n > ng then h(z) — g(z) < e for every € > 0. Then g(x) = h(z).
Inversely: let = ¢ (U,—, 0,), where g(x) = h(z). as g(z) < f(z) < h(z), then
f(z) = g(z) = h(x). So the two sequences (g, (x)), and (h,(x)), converge and
have the same limit f(x).



Let € > 0, there exists ng € N such that 0 < f(z) — gn(z) < € and 0 <
hn(x) — f(z) < €, for every n > ng. Since oy, is a partition of the interval
[a,b], there exists k € {0,...,pn, — 1} such that x € [zg,xp+1] and

hing () — e < f(x) < gny(x) + €.

On the other hend h,,(x) = sup  f(t) and gn,(x) = inf  f(¢). Then
t€lwr, Tri1] tE€[Tp,Tht1]

ft)—e < f(z) < f(t)+e for every t €]a, Tr41[- So the function f is continuous

at z. O

Proof of Theorem (4.1) .

1. The function f is Riemann integral if and only if U(f) = L(f) and this
is equivalent to h = g a.e and we deduce the result from the previous
lemma.

The function f is Riemann integral if and only if h = ¢ a.e and this is
equivalent to the set {z : h(x) # g(x)} U (o~ 0x) is a null set, which

n=1
is equivalent to the function f is continuous a.e on the interval [a, b].

2. If the set where f is not continuous is a null set, then lirf gn(x) =
n—-+0oo
liIE hn(z) = f(z) at each point of continuity of the function f. So the
n—-+0oo

function f is measurable and we can deduce the result from the dominated
convergence theorem.

lim gn(x)dM(x) = flx)d\(z
n—+00 (a.b] ( ) ( ) (] ( ) ( )
lim hyp(x)d\(z) = flz)dX\(x).
n=t00 Jl (z)dA(z) o] (z)dA(z)

So the function f is Riemann integrable and

b
@@ = / f(z)dz.

We now give another proof of the following theorem:

Theorem 4.4

Let f: [a,b] — R be a bounded function. The function f is Riemann
integral if and only if f is continuous a.e. on the interval [a, b].

Proof .



1. Assume that the function f is Riemann integral. For any x € [a, b], define
the functions

) =su nf = lim inf ,
g9(x) = D e I|<§f(y) m inf f(y)

h(zx) = inf sup f(y) =limsup f(y).

>0 yela,bl.ly—z|<s y—oe
The function f is continuous at z if and only if g(z) = h(xz). We have
g < f < h. If o is a partition of interval [a,b], then U(c,g) < U(o, f) <
U(o,h) and L(o,g) < s(o, f) < s( sigma, h). But U(o, f) = U(o, h) and

L(o, g) = s(o, f). Because for every open interval |c, d[C [a, ],

inf g(z)= inf f(z), sup f(z)= sup h(z).
z€le,d| w€le,d| z€le,d| z€le,d|

Therefore

L(f) = L(g) <U(g) <U(f), L(f) < L(h) SU(h) = U(f).

As the function f is Riemann integrable, the two functions g and h are
b

Riemann integrable, and their integral is f(z)dz.

If the functions g and h are Lebesgue integ%able and have the same inte-
gral. But g < h, therefore g = h a.e. As the function f is continuous at
every point where the two functions g and h are equal, the function f is
continuous a.e.

2. Assume that the function f is continuous a.e.then for every n € N, let o,
be the uniform partition of the interval [a, b] and the number of points of
o, is 27,

Let

ho(z) = sup f(y), gn(z)= inf f(y).
y€le,d| y€le,d|

If there is an open interval |c, d[ of the partition o, and contains the point

z and hy,(x) = gp(z) = f(x) if x € 0,. So the sequences (g, )n and (hy)n
are respectively increasing and decreasing and

b b
Liow. f) = / gn(@)dr  Uon ) = / i ()



limy, s 00 gn (@) = limy, 00 hn () = f(z) at every point & where the func-
tion f is continuous, so

f= lim g, = lim h, a.e.
n—oo n—oo
Using the dominated convergence theorem

b b
lim gn(x)dm:/ flz)dr = lim [ hy(z)de.

n— 00 n— oo

and this proves that L(f) > fab f(x)dz > U(f). So the function f is
Riemann integrable.

a

4.2 Improper Integral and Lebesgue Integral

Theorem 4.5

Let f: ]a,b[— R be a function Lebesgue integrable on every closed and
bounded interval of ]a, b].
The function f is Lebesgue integrable on ]a, b[ if and only if the iproper

b
integral [ |f(z)|dz is convergent. In this case, the Lebesgue and the

a
Riemann integral of f are equal:

b
/ f@de= | f@)dre).
a la,b[

Proof . .
Suppose that the integral / |f(x)|dz is convergent. Let (an)n and (by), two

a
sequences in |a, b[ so that the sequence (a,), is decreasing and tends to a and
the sequence (b, ), is increasing and tends to b. We define the sequence of
functions (F,), as follows:

Fo(z) = | £(2)X[an,bn)-

. The sequence (F},), is increasing, measurable. Its limit isthe function | f|x)q,p[-
So the function f is measurable and by using the dominate convergence theorem
we get:

n——+o0o R

lim Fn(x)d/\(az):/] UGS



bn
On the other hand, using the previous theorem / F.(z)d\(z) = / |f(x)|dx.
R an

Using the previous definition, we get:

b
Jim [ Fu@are) = [ 1@,
So the function f is Lebesgue integrable. To prove that the two integrals are
equal, we define the sequence of functions (g, ), as follows: g, = fX(a,,b.]- The
sequence (gy, ), is convergent and its limit is the function fxjqs;- The functions
gn are integrable and |g,| < |f|x[q,s). Using the dominate convergence theorem

lim gn(x)d M) = flx) dX(x).
Jim [ @i = [ )

Inversely: If the function f is Lebesgue integrable on the interval ]a, b], the
the function |f| is also Lebesgue integrable on the interval ]a, b|.

Let (an)n and (b,), two sequences in |a, b as previous. Using the dominate
convergence theorem

Jim Fn(a:)d)\(x):/ F(2)|d (@) < +o0.

n=+00 J1g.b[ Ja,b]

b by
On the other hand F,(z)d\(z) = / |f(z)|dx, So the limit 113_1 / |f(z)|dx
Ja,b] an n > Jan

b
inRand/ |f(z)|dr < +o0. O



4.3 Exercises

7-4-1| (a) Calculate the integral of the following functions on [0, 1].

F@) = —= 4 xo(@) g(x) =sinz; z € Q

VT g(x) =cosz; r € R\ Q

(b) Find whether the following functions are integrable on ]0, +oo[?

sinx 1
flz) = . h(z) = 21+ [ma))?
g(x) =

1

(14 22)4/|sinz|
Calculate the following integrals:

(a) / e~ ld\(x), Where [2] is the entire part of the real number
[0,4-00[
.

(b) f(x)d\(z), where f(z) =sinz if z € QN[0, 7] and f(z) = cosz
O[gﬁgrwise.

(©) /H xo(@)dA(®).
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