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CHAPTER I

THE RIEMANN INTEGRAL

1 Definition of The Riemann Integral

Definition 1.1

1. A finite ordered set σ = {x0, . . . , xn} is called a partition of the
interval [a, b] if a = x0 < . . . < xn = b. The interval [xj , xj+1] is

called the jth subinterval of σ.

2. If σ = {x0, . . . , xn} is a partition of the interval [a, b], we define
the norm of σ by:

||σ|| = sup
0≤j≤n−1

xj+1 − xj .

3. A partition σn = (x0, . . . , xn) of the interval [a, b] is called uni-

form if (xk = a+ k
b− a

n
). In this case ∥σ∥ =

b− a

n
.

4. A partition σ1 = {x0, . . . , xn} is called finer than a partition
σ2 = {y0, . . . , ym} if {y0, . . . , ym} ⊂ {x0, . . . , xn} and we denote
σ2 < σ1.

5. If σ1 = {x0, . . . , xn} and σ2 = {y0, . . . , ym} are two partitions
of the interval [a, b], we define the partition σ1 ∪ σ2 defined by
ordering the points {y0, . . . , ym, x0, . . . , xn}.
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Definition 1.2

Let f : [a, b] −→ R be a bounded function. Define

Mj = sup
x∈[xj ,xj+1]

f(x), mj = inf
x∈[xj ,xj+1]

f(x),

U(f, σ) =

n−1∑
j=0

Mj(xj+1 − xj), L(f, σ) =

n−1∑
j=0

mj(xj+1 − xj) (1.1)

The sums U(f, σ) and L(f, σ) are called respectively the upper and the
lower sums of f on the partition σ. (Note that L(f, σ) ≤ U(f, σ).)

Lemma 1.3

Let σ1 = {x0, . . . , xn} be a partition of the interval [a, b], σ2 = {a, y, b}
with y ∈]a, b[ and f : [a, b] −→ R a bounded function, then

L(f, σ1) ≤ L(f, σ) ≤ U(f, σ) ≤ U(f, σ1), (1.2)

where σ = σ1 ∪ σ2.

Proof .
The proof is obvious if y ∈ σ1. Suppose now that y ∈]xj , xj+1[, we have

L(f, σ1) =
∑j−1

i=0 (xi+1 − xi)mi + (xj+1 − xj)mj +
∑n−1

i=j+1(xi+1 − xi)mi,

U(f, σ1) =
∑j−1

i=0 (xi+1 − xi)Mi + (xj+1 − xj)Mj +
∑n−1

i=j+1(xi+1 − xi)Mi and

L(f, σ) =

j−1∑
i=0

(xi+1 − xi)mi + (y − xj) inf
x∈]xj ,y[

f(x)

+ (xj+1 − y) inf
x∈]y,xj+1

f(x) +

n−1∑
i=j+1

(xi+1 − xi)mi.

U(f, σ) =

j−1∑
i=0

(xi+1 − xi)Mi + (y − xj) sup
x∈]xj ,y[

f(x)

+ (xj+1 − y) sup
x∈]y,xj+1

f(x) +

n−1∑
i=j+1

(xi+1 − xi)Mi.



But mj ≤ infx∈]xj ,y[ f(x), mj ≤ infx∈]y,xj+1[ f(x), Mj ≥ supx∈]xj ,y[ f(x) and
Mj ≥ supx∈]y,xj+1[ f(x). This yields that L(f, σ1) ≤ L(f, σ) and U(f, σ) ≤
U(f, σ1).

Corollary 1.4

If σ1 is finer than σ2 and f : [a, b] −→ R is a bounded function, then

L(f, σ2) ≤ L(f, σ1) ≤ U(f, σ1) ≤ U(f, σ2) (1.3)

Proof .

Theorem 1.5

If f : [a, b] −→ R is a bounded function and σ1, σ2 are two partitions of
the interval [a, b], then L(f, σ1) ≤ U(f, σ2).

Proof .
L(f, σ1) ≤ L(f, σ1 ∪ σ2) ≤ U(f, σ1 ∪ σ2) ≤ U(f, σ2).

Definition 1.6

Let f : [a, b] −→ R be a bounded function, P ([a, b]) the set of partitions
of [a, b], then we define respectively the upper and the lower integral of
f on the interval [a, b] by:

U(f) = inf
σ∈P ([a,b])

U(f, σ), L(f) = sup
σ∈P ([a,b])

L(f, σ).

U(f) and L(f) are called respectively the upper and the lower Darboux
sums of f on the interval [a, b].

Definition 1.7

Let f : [a, b] −→ R be a bounded function. The function f is called
Riemann integrable on the interval [a, b] if U(f) = L(f).



If f is Riemann integrable on the interval [a, b], we denote

∫ b

a

f(x)dx =

U(f) = L(f) and called the integral of f on the interval [a, b].
The set of Riemann integrable functions on the interval [a, b] is denoted

by R ([a, b]).

Remark 1 :
Let f : [a, b] −→ R be a bounded function. If there exists a partition σ of
[a, b] such that U(f, σ) = L(f, σ), then f is Riemann integrable on [a, b] and∫ b

a

f(x)dx = U(f, σ).

This is because L(f, σ) ≤ U(f) and L(f) ≤ U(f, σ).

Example 1 :

1. Any step function on an interval [a, b] is Riemann integrable. Indeed let
σ = (x0 = a, . . . , xn = b) be a partition of [a, b] associated to f . If
f(x) = cj on ]xj , xj+1[, then Mj = mj = cj and U(f, σ) = L(f, σ) and f
is is Riemann integrable.

2. Let f be the caracteristic function of Q ∩ [0, 1]. For any partition σ of
[0, 1], L(f, σ) = 0 and U(f, σ) = 1. Then f is not Riemann integrable.

Theorem 1.8

[Riemann’s Criterion]
Let f : [a, b] −→ R be a bounded function. The following statements
are equivalent

1. f is Riemann-integrable.

2. ∀ε > 0; there exists a partition σ such that U(f, σ)−L(f, σ) ≤ ε.

Proof .
NC: If U(f) = L(f), then ∀ ε > 0, there exists a partition σ such that 0 ≤
L(f) − L(f, σ) ≤ ε

2 and there exists a partition σ′ such that 0 ≤ U(f, σ′) −
U(f) ≤ ε

2 . Then 0 ≤ U(f, σ ∪ σ′) − U(f) ≤ U(f, σ′) − U(f) ≤ ε
2 . Also

0 ≤ L(f)−L(f, σ∪σ′) ≤ L(f)−L(f, σ) ≤ ε
2 . Then U(f, σ∪σ′)−L(f, σ∪σ′) ≤ ε.

SC: L(f, σ) ≤ L(f) ≤ U(f, σ) and L(f, σ) ≤ U(f) ≤ U(f, σ), then 0 ≤
U(f)− L(f) ≤ U(f, σ)− L(f, σ) ≤ ε, for all ε > 0. Hence U(f) = L(f).



Proposition 1.9

A function f is Riemann integrable if and only if
∀ ε > 0, there are two step functions on [a, b] fε and gε such that

fε ≤ f ≤ gε and

∫ b

a

(gε − fε)(x) dx ≤ ε.

Proof .

1. If f is Riemann integrable, then ∀ ε > 0, there exists a partition σ of
[a, b] such that U(f, σ) − L(f, σ) ≤ ε. We take fε = mi and gε = Mi on
]xi, xi+1[ and fε(xi) = gε(xi) = f(xi) for all 0 ≤ i ≤ n− 1.

2. Conversely : Let ε > 0 and σ a partition of [a, b] associated to both fε
and gε. fε ≤ f ≤ gε.

0 ≤ U(f, σ)− L(f, σ) ≤ U(gε, σ)− L(fε, σ) =

∫ b

a

(gε − fε) dx ≤ ε. So f

is Riemann integrable.

Theorem 1.10

Let f : [a, b] −→ R be a bounded function. We denote S ([a, b]) the set
of step functions on [a, b]. We have the following:

L(f) = sup{
∫ b

a

g(x)dx : g ≤ f, g ∈ S ([a, b])}, (1.4)

L(f) = inf{
∫ b

a

g(x)dx : f ≤ g, g ∈ S ([a, b])}. (1.5)

Proof .

For any partition σ = {a0, . . . , an} of [a, b], L(f, σ) =
∫ b

a

fσ(x)dx and U(f, σ) =∫ b

a

Fσ(x)dx, where fσ and Fσ are the step functions defined by fσ(x) =

inft∈[ak−1,ak) f(t) and Fσ(x) = supt∈[ak−1,ak)
f(t), for x ∈ [ak−1ak), k = 0, . . . , n.

If g ≤ f and g ∈ S ([a, b]), then there exists a partition σ = {a0, . . . , an}
of [a, b] such that g is constants on any interval (ak−1, ak). In this case



∫ b

a

g(x)dx ≤ L(f, σ). Then

sup{
∫ b

a

g(x)dx : g ≤ f, g ∈ S ([a, b])} ≤ L(f).

Moreover for any partition σ, there exists g ≤ f, g ∈ S ([a, b]) such that

L(f, σ) =

∫ b

a

g(x)dx. Then

L(f) ≤ sup{
∫ b

a

g(x)dx : g ≤ f, g ∈ S ([a, b])}.

The same method for the upper sum.

Theorem 1.11

[Darboux’s Criterion]
Let f : [a, b] −→ R be a bounded function. The following statements
are equivalent

1. f is Riemann-integrable,

2. For all ε > 0; there exists δ > 0 such that for all partition of the
interval [a, b] such that if ||σ|| ≤ δ then U(f, σ)− L(f, σ) ≤ ε.

Recall the notion of oscillation of a function on an interval.

Definition 1.12

[Oscillation of a function]
The Oscillation of a function f : I −→ R at a point a ∈ I is defined by

wa(f) = lim
r→0

sup{|f(y)− f(z)|; y, z ∈]a− r, a+ r[∩I}.

If f is bounded, the oscillation of f on the interval [a, b] denoted by
O(f, [a, b]) is defined by sup

x∈[a,b]

f(x)− inf
x∈[a,b]

f(x).

Note that wa(f) ≥ 0 and f is continuous at a if and only if wa(f) = 0.
Moreover, if f is bounded then wa(f) ≤ O(f, [a, b]).

Proof .
The condition is obviously sufficient.



NC: Let f be a Riemann integrable function (we assume that f is not con-
stant), so ∀ ε > 0 there is a partition σ = (x0 = a, . . . , xn = b) such that
U(f, σ) − L(f, σ) ≤ ε. We set M = O(f, [a, b]) the oscillation of f on the

interval [a, b], α1 =
ε

nM
, α2 = inf

0≤j≤n−1
(xj+1 − xj) and α = min(α1, α2). That

is σ′ = (y0 = a, . . . , ym = b) a partition of [a, b] such that |σ′| < α. There are
at most n intervals ]yj−1, yj [ which contain xi. The others are contained in the
intervals ]xk−1, xk[. We denote

M ′
j = sup

x∈]yj ,yj+1[

f(x), Mj = sup
x∈]xj ,xj+1[

f(x),

m′
j = inf

x∈]yj ,yj+1[
f(x) et mj = inf

x∈]xj ,xj+1[
f(x).

U(f, σ′)− L(f, σ′) =
∑

]yj ,yj+1[⊂]xi,xi+1[

(yj+1 − yj)(M
′
j −m′

j)

+
∑

xi∈]yj ,yj+1[

(yj+1 − yj)(M
′
j −m′

j)

It follows that

U(f, σ′)− L(f, σ′) ≤
n−1∑
i=0

(xi+1 − xi)(Mi −mi) + nαM

= U(f, σ)− L(f, σ) + nαM ≤ 2ε.

Proposition 1.13

Let f be a Riemann integrable function and I =

∫ b

a

f(x)dx. Then

∀ ε > 0 there exists α > 0 such that for all partition σ of [a, b] with
∥σ∥ < α, |U(f, σ)− I| ≤ ε and |L(f, σ)− I| ≤ ε.

Theorem 1.14

Any monotone function on an interval [a, b] is Riemann integrable.

Proof .



Suppose that f is increasing. Let σ = (x0 = a, . . . , xn = b) be a partition of
[a, b] and α = ∥σ∥ = sup0≤j≤n−1(xj+1 − xj).
U(f, σ)− L(f, σ) ≤ α[(M0 −m0) + . . .+ (Mn−1 −mn−1)].
Mj = supx∈]xj ,xj+1[ f(x) ≤ f(xj+1) and mj = infx∈]xj ,xj+1[ f(x) ≥ f(xj).
Then

U(f, σ)− L(f, σ) ≤ α

n−1∑
j=0

(f(xj+1)− f(xj)) ≤ α(f(b)− f(a)).

For ε > 0, we take a partition σ = (x0 = a, . . . , xn = b) of [a, b] such that

(f(b)− f(a)) sup
0≤j≤n−1

(xj+1 − xj) ≤ ε.

We get : U(f, σ)− L(f, σ) ≤ ε. Then f is Riemann integrable.

Theorem 1.15

Any continuous function on an interval [a, b] is Riemann-integrable.

Proof .
Let f be a continuous function on an interval [a, b], then f is uniformly contin-
uous. Hence ∀ ε > 0, ∃ α > 0 such that |f(x)− f(x′)| < ε

b−a for all |x−x′| < α.
Let σ = (x0 = a, . . . , xm = b) be a partition of [a, b] such that sup0≤j≤n−1(xj+1−
xj) < α. As f is continuous on [a, b], there exists x′j and x

′′

j in [xj , xj+1]

such that Mj = f(x′j) and mj = f(x
′′

j ); |x′j − x
′′

j | ≤ |xj+1 − xj | < α, then
Mj −mj ≤ ε

b−a . We deduce that

0 ≤ U(f, σ)−L(f, σ) ≤
n−1∑
j=0

(xj+1 − xj)(Mj −mj) ≤
ε

b− a

n−1∑
j=0

(xj+1 − xj) = ε.

Definition 1.16

Let σ = {x0, . . . , xn} be a partition of the interval [a, b]. We say that
α = {α0, . . . , αn−1} is a mark of σ if ∀0 ≤ j ≤ n− 1, αj ∈ [xj , xj+1].
We define



U(f, σ, α) =

n−1∑
j=0

f(αj)(xj+1 − xj)

called the Riemann sum of f on the partition σ with respect to the
mark α.

Remark 2 :

1. Let f be a Riemann integrable function on the interval [a, b]. If σ =
{x0, . . . , xn} a partition of [a, b] and τ = (λ1, . . . , λn) a mark on σ, then

the sum R(f, σ, τ) =

n−1∑
j=0

(xj+1 − xj)f(λj) verifies

U(f, σ) ≤ R(f, σ, τ) ≤ L(f, σ).

Then ∀ ε > 0 ∃α > 0 such that for all partition σ such that ∥σ∥ < α and
for all τ = (λ1, . . . , λn) a mark on σ, we have: |R(f, σ, τ)− I| ≤ ε.

2. The same result is obtained if we replace f(λj) by any constant µj , with
mj ≤ µj ≤Mj .

3. If f is Riemann integrable on the interval [a, b], the sequence (Sn)n defined
by:

Sn =
b− a

n

n∑
k=1

f(a+ k
b− a

n
)

converges to

∫ b

a

f(x)dx.

2 Properties of the Riemann Integral

2.1 Basic Properties

Properties 2.1

1. Linearity :

∫ b

a

α(f + βg)(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx.

2. If f ≥ 0, then

∫ b

a

f(x)dx ≥ 0.



3. If f ≤ g, then

∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

4.
∣∣∣∫ b

a

f(x)dx
∣∣∣ ≤ ∫ b

a

|f(x)|dx.

5. If m ≤ f(x) ≤M , for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

2.2 The Chasles Indentity

Proposition 2.2

If f is Riemann integrable on [a, b], it is also interval on any interval
[c, d] ⊂ [a, b].

Proof .
Lett ε > 0. there exist g ∈ S ([a, b]) g ≤ f and h ∈ S ([a, b]) f ≤ h such that

0 ≤
∫ b

a

(h− g)(x)dx < ε. From the Chasles identity, we have

∫ b

a

(h−g)(x)dx =

∫ c

a

(h− g)(x)dx︸ ︷︷ ︸
≥0

+

∫ d

c

(h−g)(x)dx+
∫ b

d

(h− g)(x)dx︸ ︷︷ ︸
≥0

≥
∫ b

a

(h−g)(x)dx.

Then 0 ≤
∫ d

c

(h− g)(x)dx ≤ ε and hence f is integrable on [c, d].

Theorem 2.3

A bounded function on an interval [a, b] is Riemann-integrable if and
only if it is Riemann-integrable on [a, c] and on [c, b], for all c ∈ [a, b].
Moreover if f is Riemann-integrable on [a, b], then∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (2.6)



(This identity is called the Chasles identity)

Proof .
Assume that f is Riemann-integrable on [a, b], so ∀ ε > 0, there exists a par-
tition σ of [a, b] such that U(f, σ) − L(f, σ) ≤ ε. Let σ′ = σ ∪ {c}; then
U(f, σ′) − L(f, σ′) ≤ U(f, σ) − L(f, σ) ≤ ε. Consider σ′ = σ1 ∪ σ2, with σ1 a
partition of [a, c] formed from the points of σ′ in [a, c] and σ2 a partition of [c, b]
formed from the points of σ′ in [c, b]. It follows that U(f, σ1) − L(f, σ1) ≤ ε
and U(f, σ2) − L(f, σ2) ≤ ε. So f is separately Riemann-integrable over [a, c]
and [c, b].

If f is separately Riemann-integrable over [a, c] and [c, b], so ∀ ε > 0, there is
a partition σ1 of [a, c] and a partition σ2 of [c, b] such that U(f, σ1)−L(f, σ1) ≤ ε
and U(f, σ2) − L(f, σ2) ≤ ε. The set σ = σ1 ∪ σ2 is a partition of [a, b] and
U(f, σ)− L(f, σ) ≤ 2ε, which proves that f is Riemann-integrable on [a, b].

Consider for a Riemann-integrable function f on [a, b] the numbers: I =∫ b

a

f(x) dx, I1 =

∫ c

a

f(x) dx and I2 =

∫ b

c

f(x) dx.

∀ ε > 0, there exists α >0 such that for any partitions σ of [a, b], σ1 of [a, c] and
σ2 of [c, b], with (∥σ∥ < α, ∥σ1∥ < α and ∥σ2∥ < α we have: |U(f, σ) − I| ≤
ε, |U(f, σ1) − I1| ≤ ε and |U(f, σ2) − I2| ≤ ε. We consider the partition
σ′ = σ1 ∪ σ2, ∥σ′∥ < α, |U(f, σ′) − I| ≤ ε; similarly |U(f, σ′) − I1 − I2| ≤
|U(f, S1)− I1|+ |U(f, S2)− I2| ≤ 2ε. So I = I1 + I2.

Remark 3 :

By convention if b < a, we set

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Exercise 1 :
Compute the following integrals:

1. F (x) =

∫ π

0

|x− t| sin tdt for x ∈ R.

2. F (x) =

∫ π

0

|x− t| sin tdt for x ∈ R.

Solution

1. I x ≤ 0, F (x) =

∫ π

0

(t− x) sin tdt = π − 2x.

If 0 ≤ x ≤ π, then F (x) =

∫ x

0

(x−t) sin tdt+
∫ π

x

(t−x) sin tdt = π−2 sinx.

If x ≥ π, then F (x) =

∫ π

0

(x− t) sin tdt = 2x− π.



2. If x ≤ 0, then F (x) =

∫ π

0

(t− x) sin tdt = π − 2x.

If 0 ≤ x ≤ π, then F (x) =

∫ x

0

(x−t) sin tdt+
∫ π

x

(t−x) sin tdt = π−2 sinx.

If x ≥ π, then F (x) =

∫ π

0

(x− t) sin tdt = 2x− π.

Proposition 2.4: (Chasles Indentity for Lower and Uper sums)

Let f : [a, b] −→ R be a bounded function and let c ∈ [a, b]. Then

L[a,b](f) = L[a,c](f) + L[c,b](f), and U[a,b](f) = U[a,c](f) + U[c,b](f).
(2.7)

Proof .
The identities are trivially true for c = a or b. Let c ∈]a, b[ and g ∈ S ([a, b]),
g ≤ f . Consider g1 and g2 the restrictions respectively of g on [a, c] and [c, b]
respectively. g1 and g2 are step functions. Using the Chasles identity for the
step function g, we get:∫ b

a

g(x)dx =

∫ c

a

g1(x)dx+

∫ b

c

g2(x)dx ≤ L[a,c](f) + L[c,b](f).

Then L[a,b](f) ≤ L[a,c](f) + L[c,b](f).
Inversely let g1 ∈ S ([a, c]), g ≤ f and g2 ∈ S ([c, b]), g2 ≤ f . Define the
function g on the interval [a, b] by g = g1 on [a, c] and g = g2 on ]c, b]. The
function g is a step function and g ≤ f on [a, b]. We have:∫ c

a

g1(x)dx+

∫ b

c

g2(x)dx ≤ L[a,b](f).

We fix g2 and take the sup on g1, we get

L[a,c](f) +

∫ b

c

g2(x)dx ≤ L[a,b](f)

and if we take the sup on g2 we get

L[a,c](f) + L[c,b](f)dx ≤ L[a,b](f).

We deduce that
L[a,c](f) + L[c,b](f)dx = L[a,b](f).



Proposition 2.5

Let f : [a, b] −→ R be a bounded function and let m,M ∈ R such that
m ≤ f(x) ≤M for all x in the open interval ]a, b[. Then we have:

(b− a)m ≤ L[a,b](f) ≤ U[a,b](f) ≤ (b− a)M.

Proof .
Let g (resp. h ) be the step functions on [a, b] defined by g(a) = f(a) = h(a),
g(b) = f(b) = h(b) and g(x) = m (resp. h(x) = M) for all x ∈]a, b[. Then
g ∈ S ([a, b]), g ≤ f and h ∈ S ([a, b]), h ≥ f and therefore

(b− a)m =

∫ b

a

g(x)dx ≤ L[a,b](f) ≤ U[a,b](f) ≤
∫ b

a

h(x)dx = (b− a)M.

Remark 4 :
The lower and upper integrals are not linear: for two bounded functions
f, g : [a, b] −→ R we can show that L[a,b](f) + L[a,b](g) ≤ L[a,b](f + g) and
U[a,b](f + g) ≤ U[a,b](f) + U[a,b](g), but these inequalities can be strict. For
example, if f, g : [0, 1] −→ R are defined by f(x) = 1 if x ∈ Q and f(x) = 0
otherwise, and g(x) = 1 − f(x), then L[a,b](f) = 0 = L[a,b](g) and U[a,b](f) =
1 = U[a,b](g), while L[a,b](f + g) = 1 = U[a,b](f + g).

2.3 Examples of Riemann Integrable Functions

Definition 2.6

A function f defined on an interval [a, b] is said to be piecewise continu-
ous if there is a partition σ = (x0 = a, . . . , xn = b) of [a, b] such that f
is continuous on each open interval ]xi, xi+1[ and f admits a right limit
of xi for all 0 ≤ i ≤ n− 1 and a left limit of xi+1 for all 1 ≤ i ≤ n.

Exercise 1 :
Show that any piecewise continues function on an interval [a, b] is Riemann
integrable.



Theorem 2.7

The space of Riemann-integrable functions on [a, b] is a vector space on
R.

Theorem 2.8

If f is Riemann-integrable on an interval [a, b], then |f | is too.

Proof .
Let [c, d] ⊂ [a, b].
• If f is non negative on [c, d], then sup

[c,d]

|f | = sup
[c,d]

f and inf
[c,d]

|f | = inf
[c,d]

f .

• If f is non positive on [c, d], then sup
[c,d]

|f | = − inf
[c,d]

f and inf
[c,d]

|f | = − sup
[c,d]

f .

• If f has no constant sign on [c, d], then sup
[c,d]

f ≥ 0 and inf [c,d] f ≤ 0.

It follows that sup
[c,d]

|f | = max(sup
[c,d]

f,− inf
[c,d]

f). We deduce that in all cases

sup
[c,d]

|f | − inf
[c,d]

|f | ≤ sup
[c,d]

f − inf
[c,d]

f , which gives that U(|f |, σ) − L(|f |, σ) ≤

U(f, σ) − L(f, σ), for any partition σ of [a, b]. It results that |f | is Riemann-
integrable.

Proposition 2.9

If two functions f and g are Riemann-integrable on a interval [a, b], then
sup(f, g) and inf(f, g) are Riemann-integrable.

Proof .
sup(f, g) = 1

2 (f + g + |f − g|) and inf(f, g) = 1
2 (f + g − |f − g|).

Theorem 2.10

The product of two Riemann-integrable functions is a Riemann-
integrable function.

Proof .



It suffices to prove the result for two non negative functions. Let f and g be two
non negative Riemann-integrable functions on [a, b]. LetM be an upper bound
of f and g over [a, b]. For any a partition σ of [a, b], U(fg, σ) − L(fg, σ) ≤
M(U(f, σ) − L(f, σ)) +M(U(g, σ) − L(g, σ)). It follows that f.g is Riemann-
integrable.

Theorem 2.11

Let f be a non negative Riemann-integrable function on [a, b]. Then for
all α > 0, the function fα(x) is Riemann-integrable.

Proof .
Let ε > 0, there is a partition σ = (x0 = a, x1, . . . , xn = b) such that :

n−1∑
i=0

(xi+1 − xi)(Mi −mi) < ε,

with

Mi = sup
x∈]xi,xi+1[

f(x) et mi = inf
x∈]xi,xi+1[

f(x).

Note that ∀ t ∈ [0, 1]; 1− tα ≤ (1− t) sup(1, α), which gives that

Mα
i −mα

i ≤ (Mi −mi)M
α−1
i sup(α, 1).

If α > 1: Mα−1
i ≤Mα−1, with M = sup

x∈[a,b]

f(x). In this case, we have:

n−1∑
i=0

(xi+1 − xi)(M
α
i −mα

i ) < αεMα−1,

which gives the result in this case.
If α < 1 and if Mi ≤ ε we have: Mα

i − mα
i ≤ εα and if Mi > ε we have:

Mα−1
i < εα−1 which yields

n−1∑
i=0

(xi+1 − xi)(M
α
i −mα

i ) ≤
n−1∑
i=0

(xi+1 − xi)ε
α +

n−1∑
i=0

(xi+1 − xi)(Mi −mi)ε
α−1

= (b− a)εα + εα−1
n−1∑
i=0

(xi+1 − xi)(Mi −mi) ≤ εα(b− a+ 1).

In general, we have the following theorem:



Theorem 2.12

Let f : [a, b] −→ [c, d] be a Riemann integrable function and φ : [c, d] −→
R a continuous function. Then φ ◦ f is Riemann integrable.

Proof .
Let ε > 0, we will construct a partition σ = (x0 = a, x1, . . . , xn = b) of [a, b]
such that : U(φ ◦ f, σ)− L(φ ◦ f, σ) < ε.
The function φ is uniformly continuous on [c, d] and bounded, then there is

M > 0 such that |φ(x)| ≤ M , ∀x ∈ [c, d] and if ε′ =
ε

2M + (b− a)
, there is

0 < α < ε′ such that for |x− y| < α, |φ(x)− φ(y)| ≤ ε′, for all x, y ∈ [c, d].
Since f is Riemann-integrable on [a, b], there exist a partition σ = (x0 =
a, x1, . . . , xn = b) of [a, b] such that :

U(f, σ)− L(f, σ) < α2. (2.8)

Let Mj = sup{f(x); x ∈ [xj , xj+1]}, mj = inf{f(x); x ∈ [xj , xj+1]}, M̃j =
sup{φ ◦ f(x); x ∈ [xj , xj+1]}, m̃j = inf{φ ◦ f(x); x ∈ [xj , xj+1]}.
We denote J1 = {0 ≤ j ≤ n−1; Mj−mj < α et J2 = {0 ≤ j ≤ n−1; Mj−mj ≥
α.
If j ∈ J1, then by the uniform continuity of φ◦f , we have |φ◦f(x)−φ◦f(y)| < ε′

for all x, y ∈ [xj , xj+1], which yields M̃j − m̃j ≤ ε′, then∑
j∈J1

(M̃j − m̃j)(xj+1 − xj) ≤ ε′(b− a). (2.9)

By (1.1),

α2 >
∑
j∈J2

(Mj −mj)(xj+1 − xj) ≥ α
∑
j∈J2

(xj+1 − xj).

Then
∑
j∈J2

(xj+1 − xj) < α < ε′ and since M̃j − m̃j ≤ 2M , we have:

∑
j∈J2

(M̃j − m̃j)(xj+1 − xj) ≤ 2M
∑
j∈J2

(xj+1 − xj) < 2Mε′. (2.10)

It results by (1.2) and (1.5) that

U(φ ◦ f, σ)− L(φ ◦ f, σ) =
n−1∑
j=0

(M̃j − m̃j)(xj+1 − xj) ≤ ε′((b− a) + 2M) = ε.

Remark 5 :



1. The integral of a non negative Riemann-integrable function is a non neg-
ative real number.

2. If f is Riemann-integrable on [a, b], then∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx ≤ (b− a) sup
x∈[a,b]

|f(x)|.

Corollary 2.13

If f is Riemann-integrable on [a, b], then the function F (x) =

∫ x

a

f(t) dt

is continuous on [a, b].

Proof .

F (x)−F (y) =
∫ x

y

f(t) dt. Since f is bounded on [a, b], there existM > 0 such

that |F (x)− F (y)| ≤M |x− y|.

Corollary 2.14

Let f be a Riemann-integrable function on [a, b]. If m = infx∈[a,b] f(x)
and M = supx∈[a,b] f(x), there exist λ ∈ [m,M ] such that

1

b− a

∫ b

a

f(x) dx = λ.

Proof .

We have: m(b−a) ≤
∫ b

a

f(x) dx ≤M(b−a), then 1

b− a

∫ b

a

f(x) dx ∈ [m,M ].

Corollary 2.15

[First Mean Value Formula]
Let f and g be two Riemann-integrable functions on an interval [a, b].
Assume that f is continuous and g has a constant sign on [a, b]. Then
there exists c ∈ [a, b] such that



∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x) dx.

Proof .

If

∫ b

a

g(x) dx = 0, then

∫ b

a

f(x)g(x) dx = 0.

If

∫ b

a

g(x) dx ̸= 0, we set g1 =
1∫ b

a
g(x) dx

g, then

∫ b

a

g1(x) dx = 1 and

if m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x), there is λ ∈ [m,M ] such that∫ b

a

f(x)g1(x)dx = λ.

2.4 The Fundamental Theorem of Calculus

The following theorem can be called the ”fundamental theorem of integral
calculus”, although we usually reserve this terminology for the particular case
where f is assumed to be continuous.

Theorem 2.16

Let f : [a, b] −→ R be a bounded function. Let c ∈]a, b[ and suppose
that f has a limit on the left at c denoted by f(c−), (respectively a limit
on the right of c denoted by f(c+)). Then the functions x 7−→ L[a,x](f)
and x 7−→ U[a,x](f) are left (resp right) differentiable at c, with left
derivative f(c−) (resp with right derivative f(c+)).

Proof .
Let ε > 0, there exists δ > 0 such that for all x ∈]c− δ, c[ we have f(c−)− ε <
f(x) < f(c−) + ε and therefore we have

(c− x)(f(c−)− ε) ≤ L[x,c](f) ≤ U[x,c](f) ≤ (c− x)(f(c−) + ε).

Now, according to the Chasles identity, for all x ∈ [a, c[ we have:

L[a,c](f)− L[a,x](f) = L[x,c](f) and U[a,c](f)− U[a,x](f) = U[x,c](f)

We deduce that

(f(c−)− ε) ≤
L[a,c](f)− L[a,x](f)

c− x
≤ (f(c−) + ε)



and

(f(c−)− ε) ≤
U[a,c](f)− U[a,x](f)

c− x
≤ (f(c−) + ε).

Using the same method for the right derivative.

Theorem 2.17

Let f : [a, b] −→ R be a bounded function. We suppose that at any
point x ∈]a, b[, f has a limit on the left, denoted f(x−), and a limit on
right, denoted f(x+). So:

1. f is Riemann integrable on [a, b].

2. The function F : [a, b] −→ R defined by F (x) =

∫ x

a

f(t)dt is con-

tinuous on [a, b], F (a) = 0, and for all x ∈]a, b[, F is left and
right differentiable at x, with left derivative f(x−) and with right
derivative f(x+).

3. If f has a right limit f(a+) at a, then F is right differentiable
at a with right derivative f(a+), and likewise if f has a left limit
f(b−) at b.

Proof .
For all x ∈ [a, b], let G(x) = U[a,x](f) − L[a,x](f). We have G(a) = 0, G
is continuous on [a, b] and for all x ∈]a, b[, G is left differentiable at x with
left derivative zero, and also right differentiable at x with zero right derivative.
Therefore, G is differentiable at every point x ∈]a, b[, with derivative G′(x) = 0.
It follows that G is constant on [a, b], with value G(a) = 0. So 0 = G(b) =
U[a,b](f)− L[a,b](f). This proves that f is integrable on [a, b].

Moreover, the proof also gives that for all x ∈ [a, b], we have 0 = G(x) =
U[a,x](f)−L[a,x](f), which proves that U[a,x](f) = L[a,x](f) and that f is inte-

grable on [a, x]. So the function F : [a, b] −→ R, defined by F (x) =

∫ x

a

f(t)dt =

U[a,x](f) = L[a,x](f) is well defined, and it is continuous on [a, b], zero at a, and
at all x ∈]a, b[ it is differentiable on the left of derivative left F ′

ℓ(x) = f(x−)
and right differentiable from right derivative F ′

r(x) = f(x+), and we also have
F ′
r(a) = f(a+) (resp. F ′

ℓ(b) = f(b−)) if the limit f(a+) (resp. f(b−)) exists.

In the particular case where f is continuous on [a, b] (therefore bounded on
[a, b]), we obtain:



Theorem 2.18

[The Fundamental Theorem of Calculus]
Let f : [a, b] −→ [c, d] be continuous function, then the function F de-
fined by

F (x) =

∫ x

a

f(t)dt

is differentiable and F ′(x) = f(x).

Proof .
For x ∈ [a, b] and h ∈ R∗ such that x+ h ∈ [a, b].

F (x+ h)− F (x)

h
=

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt
)

=
1

h

∫ x+h

x

f(t) dt = f(c)

where c ∈ [x, x + h] or c ∈ [x + h, x]. Since f is continuous, lim
h→0

f(c) = f(x).

Then F ′(x) = f(x).

Corollary 2.19

Let f : [a, b] −→ R be a differentiable function and f ′ is Riemann inte-
grable, then ∫ b

a

f ′(x)dx = f(b)− f(a).

Theorem 2.20

[The Cauchy-Schwarz Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b],
then

(∫ b

a

f(x)g(x) dx
)2 ≤

∫ b

a

f2(x) dx

∫ b

a

g2(x) dx.

Proof .



Let λ be a real number.

P (λ) =

∫ b

a

(f(x)+λg(x))2 dx = λ2
∫ b

a

g2(x) dx+2λ

∫ b

a

f(x)g(x) dx+

∫ b

a

f(x)2 dx

If

∫ b

a

g2(x) dx > 0, P (λ) is a non negative polynomial. It follows that its

discriminant is non positive, which gives the desired inequality.

If

∫ b

a

g2(x) dx = 0, P (λ) ≥ 0, then

∫ b

a

(fg)(x) dx = 0 and the inequality holds.

Corollary 2.21

[Minkowsky Inequality]
Let f and g be two Riemann-integrable functions on an interval [a, b],
then(∫ b

a

(f(x) + g(x))2 dx
) 1

2 ≤
(∫ b

a

f2(x) dx
) 1

2 +
(∫ b

a

g2(x) dx
) 1

2 .

Proof .∫ b

a

(f(x)+ g(x))2 dx =

∫ b

a

f2(x) dx+

∫ b

a

g2(x) dx+2

∫ b

a

f(x)g(x) dx. By the

Cauchy-Schwarz inequality we have

(∫ b

a

(f(x) + g(x))2 dx
) 1

2 ≤
(∫ b

a

f2(x) dx
) 1

2 +
(∫ b

a

g2(x) dx
) 1

2 .

Remark 6 :

If f is a non negative Riemann-integrable function and

∫ b

a

f(x) dx = 0, then∫ b

a

f(x)g(x) dx = 0 for all Riemann-integrable function g. In particular∫ b

a

fα(x) dx = 0, ∀α > 0.

Theorem 2.22

[Hölder Inequality for Integrals]
Let f and g be two non negative Riemann-integrale functions on an
interval [a, b]. Then for all conjugate positive numbers p, q, ( 1p + 1

q = 1)



we have: ∫ b

a

f(x)g(x) dx ≤
(∫ b

a

fp(x) dx
) 1

p
(∫ b

a

gq(x) dx
) 1

q

.

Proof .

If

∫ b

a

fp(x) dx = 0 or

∫ b

a

gq(x) dx = 0, the result is trivial.

If

∫ b

a

fp(x) dx ̸= 0 and

∫ b

a

gq(x) dx ̸= 0, we set f1(x) =
f(x)

(

∫ b

a

fp(t) dt)1/p

and g1(x) =
g(x)

(

∫ b

a

gq(t) dt)1/q
, we get

∫ b

a

fp1 (x) dx =

∫ b

a

gq1(x) dx = 1. From

the convexity of the function t 7−→ tp on ]0,+∞[, for p > 1, we get f
1
p

1 g
1
q

1 ≤
1

p
f1 +

1

q
g1. We deduce the desired result.∫ b

a

f(x)g(x) dx ≤ (

∫ b

a

fp(x) dx)
1
p (

∫ b

a

gq(x) dx)
1
q .

Theorem 2.23

[Second Mean Value Formula]
Let f be a decreasing non negative continuous function on the interval
[a, b] and let g be a Riemann-integrable function on [a, b]. Then there
exists c ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(a)

∫ c

a

g(x) dx.

Proof .

Consider the function G(x) =

∫ x

a

g(t) dt. G is continuous on [a, b]. Let m =

infx∈[a,b]G(x) and M = supx∈[a,b]G(x). To prove the theorem it suffices to

prove that mf(a) ≤
∫ b

a

f(x)g(x) dx ≤ Mf(a). Let σn = (x0 = a, . . . , xn) be



the uniform partition of [a, b] i.e. xi+1 − xi =
b− a

n
, xj = a + j b−a

n . We set

λi =
G(xi+1)−G(xi)

xi+1 − xi
.

lim
n→+∞

n−1∑
i=0

(xi+1 − xi)(fg)(xi) =

∫ b

a

f(x)g(x) dx.

|
n−1∑
i=0

(xi+1 − xi)f(xi)(g(xi)− λi)| ≤ f(a)

n−1∑
i=0

(xi+1 − xi)(Mi −mi)

= f(a)(U(g, σn)− L(g, σn) −→
n→+∞

0,

with Mi = sup
t∈]xi,xi+1[

g(t) and mi = inf
t∈]xi,xi+1[

g(t). It results that

lim
n→+∞

n−1∑
i=0

f(xi)(G(xi+1)−G(xi)) =

∫ b

a

f(x)g(x) dx.

n−1∑
i=0

f(xi)(G(xi+1)−G(xi)) =

n−1∑
i=0

f(xi)G(xi+1)−
n−1∑
i=0

f(xi)G(xi)

=

n−1∑
i=0

(f(xi−1)− f(xi))G(xi) + f(xn−1)G(b).

Since f is decreasing and non negative, we deduce

m
[
f(xn−1) +

n−1∑
i=0

(f(xi−1)− f(xi))
]

≤
n−1∑
i=0

f(xi)(G(xi+1)−G(xi))

≤ M
[
f(xn−1) +

n−1∑
i=0

(f(xi−1)− f(xi))
]
.

Then

mf(a) ≤
∫ b

a

f(x)g(x) dx ≤Mf(a).

Corollary 2.24

Let f be a monotone continuous function on an interval [a, b] and let g



be a Riemann-integrable function, then there exist c ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(a)

∫ c

a

g(x) dx+ f(b)

∫ b

c

g(x) dx.

Proof .
We can assume that f is increasing. We use the previous theorem to the
functions h(x) = f(b)− f(x) and g.

Theorem 2.25

Let f be a Riemann-integrable function on the interval [a, b].

1. If lim
x→t,(x>t)

f(x) = s exists, then the function F (x) =

∫ x

a

f(t) dt

is differentiable at the right of t and F ′(t+) = s.

2. If lim
x→t,(x<t)

f(x) = s exists, then the function F is differentiable

at the left of t and F ′(t−) = s.

Proof .

1. For ε > 0, there exists α > 0 such that |f(x)− s| ≤ ε, for all x ∈]t, t+α[.

If u ∈ [t, t + α], then |
∫ u

t

(f(x) − s) dx| ≤ ε(u − t) and |F (u) − F (t) −

s(u− t)| ≤ ε(u− t). Hence F (u)−F (t)
u−t − s| ≤ ε.

2. With the same arguments we get the result.

Theorem 2.26

Let f : [a, b] −→ R be a continuous function and u : I −→ [a, b] a differ-

entiable function. Then the function F (x) =

∫ u(x)

a

f(t) dt is differen-

tiable on I and F ′(x) = u′(x)f(u(x)), for all x ∈ I.

Proof .



Let G be an antiderivative of f such that G(a) =. Then G ◦ u = F and

F ′(x) = (G ◦ u)′(x) = G′(u(x)).u′(x) = f(u(x))u′(x).

Theorem 2.27

[Integral by Substitution]
If g is continuously differentiable (C1) on [a, b], and if f is continuous
on g([a, b]. Then ∫ g(b)

g(a)

f(x) dx =

∫ b

a

f ◦ g(t)g′(t) dt.

Proof .

Let F (t) =

∫ g(t)

g(a)

f(x) dx, G(t) =

∫ t

a

f ◦ g(x)g′(x) dx, G′(t) = g′(t)f ◦ g(t),

F (a) = G(a) = 0 and F ′(t) = g′(t)f ◦ g(t). Then F ′ = G′ on the interval [a, b]
and F = G on the interval [a, b].

Example 2 :

1. If the function f is even, then

∫ a

−a

f(t) dt = 2

∫ a

0

f(t) dt and if f is odd,

then

∫ a

−a

f(t) dt = 0

2. If the function f is T−periodic, with T > 0 on R. Then
∫ a+T

a

f(t) dt =∫ T

0

f(t) dt, for all a ∈ R.∫ a+T

a

f(t) dt =

∫ 0

a

f(t) dt+

∫ T

0

f(t) dt+

∫ a+T

T

f(t) dt. Then

∫ a+T

T

f(t) dt =∫ a

0

f(t) dt, (substitution t = T + x).

Theorem 2.28

[Integration by Parts]
Let f and g be two continuously differentiable functions (C1) on an



interval I, then∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

Moreover if [a, b] ⊂ I, then∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

Example 3 :∫ 1

0

x tan−1 xdx =
x2

2
tan−1 x

]1
0
− 1

2

∫ 1

0

x2

1 + x2
dx =

π

4
− 1

2
.

Theorem 2.29

Let f and g be two functions of class Cn on an interval I, then

∫
f(x)g(n)(x)dx =

n−1∑
p=0

(−1)pf (p)(x)g(n−1−p)(x)+(−1)n
∫
g(x)f (n)(x)dx.

Proof .

(n−1∑
p=0

(−1)pf (p)(x)g(n−1−p)(x)
)′

=

n−1∑
p=0

(−1)pf (p+1)(x)g(n−1−p)(x)

+

n−1∑
p=0

(−1)pf (p)(x)g(n−p)(x)

=

n−1∑
p=0

(−1)pf (p)(x)g(n−p)(x)

−
n∑

p=1

(−1)pf (p)(x)g(n−p)(x)

= f(x)g(n)(x)− (−1)ng(x)f (n)(x).



Theorem 2.30

[Taylor Formula with integral Reminder]
Let f be function of class Cn+1 defined on an interval I in R. For a and
x in I, we have:

f(x) = f(a) +
n∑

k=1

(x− a)k

k!
f (k)(a) +

∫ x

a

(x− t)n

(n)!
f (n+1)(t)dt.

Proof .

We apply the theorem (2.4) to the function f and the function g(t) =
(x− t)n−1

(n− 1)!
.

2.5 The Lebesgue Theorem

Definition 2.31

A subset E ⊂ R is said to be a null set (or a set of zero measure
or a negligible set or zero set) if for any ε > 0 there is a countable

number of open intervals (]an, bn[)n such that

+∞∑
n=1

(bn − an[< ε and

E ⊂ ∪+∞
n=1]an, bn).

Theorem 2.32

[Lebesgue’s Theorem on Riemann Integrable Functions]
A bounded function f : [a, b] −→ R is Riemann integrable if and only if
the set of discontinuity points of f is a null set.

Proof .
Let D = {x ∈ [a, b] : f is discontinuous at x}. We have

D = {x ∈ [a, b]; wx(f) > 0} =

+∞⋃
n=1

{x ∈ [a, b]; wx(f) ≥
1

n
}.

Let Dn = {x ∈ [a, b]; wx(f) ≥ 1
n}. Note that D is a null set if and only if each

Dn is a null set.



Now assume that f be Riemann integrable on [a, b]. Let k ∈ N and ε >
0 arbitrary. Since f is Riemann integrable, there exists a partition σ =
(x0, x1, . . . , xn) of [a, b] such that

U(f, σ)− L(f, σ) =

n∑
k=1

(Mk −mk)(xk − xk−1) < ε,

Let Jk = {j : ]xj−1, xj [∩Dk ̸= ∅}.
If Jk = ∅, then Dk ⊂ {x0, x1, · · · , xn}, hence Dk is finite and then it is a
null set. Otherwise, for each j ∈ Jk, there exists t ∈ Dk∩]xj−1, xj [ and hence
1
k ≤ wt(f) ≤Mj −mj . Thus we have∑

j∈Jk

1

k
(xj − xj−1) ≤

∑
j∈Jk

(Mj −mj)(xj − xj−1) < ε

and hence
∑
j∈Jk

(xj −xj−1) < kε. Then Dk \σ ⊂
⋃
j∈Jk

]xj−1, xj [, where
∑
j∈Jk

(xj −

xj−1) < kε. Since ε is arbitrary, Dk \ σ is a null set. Thus Dk ⊂ (Dk \ σ) ∪ σ
is a null set.
Conversely if D is a null set, to show f is Riemann integrable, we take an
arbitrary ε > 0. Since D is a null set, there is a countable family of open

intervals (Ij =]aj , bj [)j such that

+∞∑
j=1

(bj − aj) < ε and D ⊂ ∪+∞
j=1Ij . For all

x ∈ [a, b] \D, wx(f) = 0 and hence by definition there exists an open interval
Jx containing x such that sup{|f(y)− f(z)|; y, z ∈ Jx ∩ [a, b]} < ε.
The set F = {Ij ; j ∈ N}∪{Jx; x ∈ [a, b]\D} is an open cover of the compact set
[a, b]. So F has a finite subcover F ′ = {Ij ; j = 1, . . . ,m}∪{Jxj

; j = 1, . . . , p}.
Let σ = {t0, t1, . . . , tn} with a = t0 < t1 < · · · < tn = b be the partition of [a, b]
determined by those endpoints of (Ij)1≤j≤m and (Jxj )1≤j≤p which are inside
[a, b]. Also let Mj = sup

t∈[tj−1, tj ]

f(t), mj = inf
t∈[tj−1, tj ]

f(t) and δj = tj − tj−1,

j = 1, 2, . . . , n and |f(x)| ≤M .
Then for each j ∈ {1, 2, . . . , n} the interval ]tj−1, tj [ is contained in some Ik, 1 ≤
k ≤ m or some Jxk

, 1 ≤ k ≤ p and let J = {j; ]tj−1, tj) ⊂ Ik for some k =
1 ≤ m}.
Note that if j /∈ J then ]tj−1, tj [⊆ Jxk

for some k = 1, 2, . . . , p and
Mk −mk ≤ sup{|f(t)− f(s)|; t, s ∈ Jxk

∩ [a, b]} < ε. Then



U(f, σ)− L(f, σ) =

n∑
j=1

(Mj −mj)δj

=
∑
j∈J

(Mj −mj)δj +
∑
j ̸∈J

(Mj −mj)(tj − tj−1)

≤
∑
j∈J

2M(tj − tj−1) +
∑
j ̸∈J

ε(tj − tj−1)

≤
∑
j∈Λ

2M(bj − aj) + (b− a)ε

≤
∑
j∈N

2M(bj − aj) + (b− a)ε

< 2Mε+ (b− a)ε = (2M + b− a)ε.

can be made arbitrary small. Hence f is Riemann integrable on [a, b].

3 Improper Integrals

3.1 Presentation of the Improper Integral

Definition 3.1

1. Let f be a piecewise continuous function on the interval [a, b[,
where a ∈ R, b ∈ R ∪ {+∞}.
We say that the integral of f on the interval [a, b[ is convergent if

the function F (x) =

∫ x

a

f(t)dt defined on [a, b[ has a finite limit

when x tends to b (x < b). This limit is called the improper

integral of f on [a, b[ and will be denoted by:

∫ b

a

f(x)dx.

2. Let f a piecewise continuous function on the interval ]a, b], where
a ∈ R ∪ {−∞}, b ∈ R.
We say that the integral of f on the interval ]a, b] is convergent if

the function G(x) =

∫ b

x

f(t)dt defined on ]a, b] has a finite limit

when x tends to a (x > a). This limit is called the improper

integral of f on ]a, b] and will be denoted by:

∫ b

a

f(x)dx.



3. Let f be a piecewise continuous function on the interval ]a, b[,
where a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}.
We say that the integral of f on the interval ]a, b[ is convergent if
the integral of f is convergent on ]a, c] and on [c, b[ for any c in
]a, b[.

4. Let f be a piecewise continuous function on an interval I. The
function is called integrable on I (or the integral is absolutely
convergent) if the integral of |f | on the interval I is convergent.

Example 4 :

1.

∫ +∞

0

dx

1 + x
is divergent,

∫ +∞

0

dx

1 + x2
=
π

2
,

∫ 1

0

dx√
x
= 2.

2. Let α ∈ R and a ∈ R∗
+. The integral

∫ +∞

a

dx

xα
is convergent if and only

if α > 1 and the integral

∫ a

0

dx

xα
is convergent if and only if α < 1.

3. For β ∈ R and a ∈]1,+∞[, we set

Fβ(x) =

∫ x

a

dt

t(ln t)β
,

for x ≥ a. In taking the change of variable u = ln t, we get :

F1(x) = ln(lnx)− ln(ln a) and for β ̸= 1;

Fβ(x) =

∫ ln x

ln a

du

uβ
=

1

1− β
[

1

(lnx)β−1
− 1

(ln a)β−1
]. Thus the integral∫ +∞

a

dx

x(lnx)β
is convergent if and only if β > 1.

Definition 3.2

Let f be a locally Riemann integrable function on an interval I. The
intgeral of f on I is called absolutely convergent if the integral of |f | on
I is convergent.



Proposition 3.3

Let f be a locally Riemann integrable function on the interval [a, b[.

1. If the integral

∫ b

a

f(x)dx is absolutely convergent, then

∫ b

a

f(x)dx

is convergent.

2. If there exists a non negative piecewise continuous function g on

[a, b[, such that

∫ b

a

g(x)dx converges and |f(x)| ≤ g(x), then∫ b

a

f(x)dx is absolutely convergent.

Remark 7 :

If

∫ b

a

f(x)dx is convergent, then

∫ b

a

f(x)dx is not in general absolutely con-

vergent.

Consider the function
sinx

x
on the interval [1,+∞[.

By integration by parts,

∫ s

1

sinx

x
dx = cos 1 − cos s

s
−
∫ s

1

cosx

x2
dx; this shows

that the integral of the function
sinx

x
is convergent on [1,+∞[. (we can also

use the second mean value formula theorem 2.4). Moreover

∫ nπ

π

| sinx|
x

dx =

n−1∑
k=1

∫ (k+1)π

kπ

| sinx|
x

dx

≥
n−1∑
k=1

1

(k + 1)π

∫ (k+1)π

kπ

| sinx|dx

=

n−1∑
k=1

2

(k + 1)π

As the sequence (vn)n defined by vn = 1 +
1

2
+ . . . +

1

n
is divergent, then the

integral of f is not absolutely convergent.
Another proof: we remark that | sinx| ≥ sin2 x = 1−cos 2x

2 . As the integral∫ +∞

1

cos(2x)

2x
dx is convergent, the integral

∫ +∞

1

| sinx|
x

dx is divergent.



3.2 Convergence Tests of Improper Integrals

Theorem 3.4

[The Cauchy Test]
Let f be a piecewise continuous function on [a, b[, b ∈ R ∪ {+∞}.∫ b

a

f(x)dx converges if and only if

∀ε > 0,∃ c tel que ∀x, y ∈]c, b[;
∣∣∣∫ y

x

f(t)dt
∣∣∣ ≤ ε.

(We can suppose only f locally Riemann integrable function).

Corollary 3.5

Let f : [a, b[−→ R a bounded function and a, b ∈ R. If f is piecewise
continuous on [a, b[, then the integral of f on [a, b[ is convergent.

Example 5 :

The integral of the function f(t) =
sin t

t
is convergent on ]0, 1].

Also the function g(t) = sin
1

t
on ]0, 1].

Theorem 3.6

Let f be a non negative locally Riemann integrable function on [a, b[.

The integral

∫ x

a

f(t)dt converges if and only if there exists M > 0 such

that ∀x ∈ [a, b[;

∫ x

a

f(t)dt ≤M .

Corollary 3.7

Let f and g be two non negative locally Riemann integrable functions
on [a, b[. Assume that f(t) ≤ g(t); ∀t ∈ [a, b[. Then



If

∫ b

a

g(x)dx converges; the integral

∫ b

a

f(x)dx converges.

If

∫ b

a

f(x)dx diverges, the integral

∫ b

a

g(x)dx diverges.

Corollary 3.8

Let f be a non negative locally Riemann integrable function on the
interval [a, b[ and let E = {(xn)n ∈ [a, b[; limn→+∞ xn = b}. For any

x ∈ [a, b[, we define F (x) =

∫ x

a

f(t)dt. Then following properties are

equivalent

1. The integral of f on [a, b[ is convergent.

2. {F (x); x ∈ [a, b[} is bounded.

3. For any sequence (xn)n ∈ E , the sequence (F (xn)n is convergent.

4. There exists a sequence (xn)n ∈ E such that the sequence (F (xn)n
is convergent.

Example 6 :

1. f(t) = e−t2 , t ∈ [0,+∞[, we have f(t) ≤ e−t and

∫ +∞

0

e−xdx = 1, thus∫ +∞

0

e−x2

dx is convergent.

2.

∫ π
2

0

dx

sin x
diverges because

1

sinx
≥ 1

x
∀ x ∈]0, π

2
].

Proposition 3.9

Let I be an interval and f : I −→ R+ a non negative locally Riemann
integrable function. The integral of f on I converges if and only if there
exists an increasing sequence of intervals ([an, bn])n which covers I and

a real M ≥ 0 such that

∫ bn

an

f(x)dx ≤M , for any n ∈ N. In this case



∫
I

f(x)dx = sup
n∈N

∫ bn

an

f(x)dx.

Theorem 3.10

Let f : [a, b[−→ R and g : [a, b[−→ R+ be two locally Riemann integrable
functions. Assume that there exists ℓ ∈ R \ {0} such that f ≈ ℓg (when

t tends to b−). Then

∫ b

a

f(x)dx converges if and only if

∫ b

a

g(x)dx

converges.

Proof .
If f ≈ ℓg (when t tends to b−), then there exists a function h such that
f(t) = ℓh(t)g(t) and lim

t→b−
h(t) = 1. Thus f(t)−ℓg(t) = (h(t)−1)ℓg(t) and, thus

there exists c such that ∀t ∈]c, b[, |f(t)− ℓg(t)| ≤ g(t), let |f(t)| ≤ (1+ |ℓ|)g(t).

If the integral

∫ b

a

g(x)dx converges, then the integral

∫ b

a

f(x)dx converges

absolutely.

If the integral

∫ b

a

f(x)dx converges, as ℓ ̸= 0, there exists c such that ∀t ∈

]c,b[ ; |f(t)− ℓg(t)| ≤ |ℓ|
2
g(t). If x < y ∈]c, b[, we have:

∣∣∣∫ y

x

f(t)− ℓg(t)dt
∣∣∣ ≤

|ℓ|
2

∫ y

x

g(t)dt, thus
|ℓ|
2

∫ y

x

g(t)dt ≤
∣∣∣∫ y

x

f(t)dt
∣∣∣ −→
x,y→b

0.

Remark 8 :
If g change of sign the previous result is not true. It suffices to take the

function f(t) =
| sin t|
t

+
sin t√
t

and g(t) =
sin t√
t
, for t ∈ [1,+∞[. The integral of

the function g is convergent on [1,+∞[, it suffices to use the Cauchy test and
the second Mean Value Formula. The integral of the function f is divergent.

Theorem 3.11

Let f : [1,+∞[−→ R+ be a piecewise continuous function.

1. If there exists α > 1 such that lim
x→+∞

xαf(x) = 0, then the integral

of f is convergent on [1,+∞[.



2. If there exists α < 1 such that lim
x→+∞

xαf(x) = +∞, then the

integral of f is not convergent on [1,+∞[.

Theorem 3.12

Let a, b ∈ R and f : ]a, b] −→ R+ be a locally Riemann integrable
function.

1. If there exists α < 1 such that lim
x→a+

(x − a)αf(x) = 0, then the

integral of f is convergent on ]a, b].

2. If there exists α > 1 such that lim
x→+∞

(x − a)αf(x) = +∞, then

the integral of f is not convergent on ]a, b].

Theorem 3.13

[Abel’s Theorem]
Let a ∈ R and b ∈ R∪ {+∞}, and f and g be two continuous functions
on the interval [a, b[. Assume that :

i) there exists M ≥ 0 such that
∣∣∣∫ y

x

f(t)dt
∣∣∣ ≤M for any x, y in [a, b[.

ii) g is monotonic on [a, b[ and lim
t→b

g(t) = 0.

Then

∫ b

a

f(x)g(x)dx converges.

Proof .
We can assume that g is decreasing. By second mean value formula, theorem
2.4, for any x < y in [a, b[,

∣∣∣∣∫ y

x

f(t)g(t)dt

∣∣∣∣ = g(x)

∣∣∣∣∫ c

x

f(t)dt

∣∣∣∣
≤ Mg(x) −→

x→b−
0.

Example 7 :



1. Let f be a non negative continuous function, decreasing and lim
x→+∞

f(x) =

0, then the integral

∫ +∞

0

eiλxf(x)dx converges for λ ̸= 0.

2. Let f : [a,+∞[−→ [0,+∞[ be a decreasing continuous function. Define

for all n ∈ N; xn =
n∑

k=0

f(a+ k) and yn = xn −
∫ a+k+1

a

f(x)dx. Then

i) the sequence (yn)n is convergent,

the integral

∫ +∞

a

f(x)dx converges if and only if the sequence (xn)n

converges.

Indeed:

f(a+ n+ 1) =

∫ a+n+1

a+n

f(a+ n+ 1)dx

≤
∫ a+n+1

a+n

f(x)dx ≤
∫ a+n+1

a+n

f(a+ n)dx = f(a+ n)

yn =

n∑
k=0

(f(a + k) −
∫ a+k+1

a+k

f(x)dx), thus the sequence (yn)n is non

negative and increasing. Moreover yn ≤
n∑

k=0

(f(a+k)−f(a+k+1)) ≤ f(a),

thus the sequence (yn)n is convergent.

The sequence (xn)n is increasing and

∫ a+n+1)

a

f(x)dx ≤ xn and xn+1 ≤

f(a) +

∫ a+n+1

a

f(x)dx, thus the sequence (xn)n converges if and only if

the integral

∫ +∞

a

f(x)dx converges.

As application the sequence zn = (

n∑
k=1

1

k
) − lnn is convergent. Its limit

is called the Euler constant.



CHAPTER II

INFINITE SERIES

1 Tests of Convergence of Infinite Series

Definition 1.1

1. Let (un)n be a sequence of real numbers (eventually complex num-

bers). Consider the sequence (Sn)n defined by: Sn =

n∑
k=1

uk.

If the sequence (Sn)n is convergent, we say that the series
∑

n≥1 un
is convergent.

The limit of the sequence (Sn)n if it exists is denoted by

+∞∑
n=1

un .

2. The series
∑
n≥1

un is called divergent if the sequence (Sn)n is di-

vergent.

Remark 9 :

1. If the series
∑
n≥1

un converges, then lim
n−→+∞

un = 0. (un = Sn − Sn−1.)

2. The condition lim
n−→+∞

un = 0 is not, however, sufficient to ensure the

convergence of the series
∑

n≥1 un. For instance, the series
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∑
n≥1

√
n+ 1−

√
n is divergent because Sn =

√
n+ 1− 1, for every n ∈ N

and lim
n→+∞

un = 0.

Theorem 1.2

[Cauchy Criterion]

Let (un)n be a sequence of real numbers. The series
∑
n≥1

un converges

if and only if,

∀ ε > 0, ∃ Nε ∈ N; |
q∑

n=p

un| ≤ ε, ∀ q ≥ p ≥ Nε. (1.1)

Definition 1.3

A series
∑
n≥1

un is called absolutely convergent if the series
∑
n≥1

|un| is

convergent.

Remark 10 :
Every absolutely convergent series is convergent but the converse is false, it

suffices to take the series
∑

n≥1
(−1)n+1

n . Indeed, if Sn =

n∑
p=1

(−1)p+1

p
, then

S2n+1 − S2n = −1
2n+1

−−−−−−→
p→+∞

0. To prove that the series
∑

n≥1
(−1)n+1

n is

convergent, it suffices to prove that the sequence (S2n)n is convergent.

We have: S2n+2−S2n =
1

2n+ 2
− 1

2n+ 1
≤ 0 and S2n+1−S2n−1 = 1

2n−
1

2n+1 ≥
0, then the sequences (S2n)n and (S2n+1)n are adjacent, which shows that the
sequence (Sn)n is convergent.

We remark also that

2n∑
k=n+1

1

k
≥ n

2n
=

1

2
, then the series

∑
n≥1

(−1)n+1

n is not

absolutely convergent.
There are several standard tests for convergence of a series of non negative
terms. These tests are based primarily on the fact that an increasing sequence
is convergent if, and only, if, it is bounded above. It follows that a series∑

n≥1 un with non negative terms is convergent if, and only, if, the sequence

(Sn)n defined by: Sn =
∑n

k=1 uk is bounded.



1.1 Comparison Test

Theorem 1.4

[Comparison Test]
Let (un)n and (vn)n be two sequences with non negative real numbers.
Assume that there exists an integer k ∈ N such that un ≤ vn, for every

n ≥ k. Then if the series
∑
n≥1

vn is convergent, the series
∑
n≥1

un is also

convergent.

Proof .

Let Sn =

n∑
j=k

uj and Tn =

n∑
j=k

vj . We have Sn ≤ Tn. The series
∑
n≥1

vn is

convergent if and only if the sequence (Tn)n is bounded above, which gives the
result.
The result can also be deduced by the Cauchy Criterion (1).

Corollary 1.5

Let (un)n and (vn)n be two sequences with non negative numbers. As-
sume that there exists a > 0 and b > 0 such that aun ≤ vn ≤ bun
for every n ≥ k, then the series

∑
n≥1

un and
∑
n≥1

vn converge or diverge

together.

Corollary 1.6

Let (un)n and (vn)n be two sequences with non negative numbers. As-

sume that lim
n→+∞

un
vn

= ℓ.

1. If ℓ > 0, the series
∑
n≥1

un and
∑
n≥1

vn converge or diverge together..

2. If ℓ = 0, the convergence of the series
∑
n≥1

vn involves the conver-

gence of the series
∑
n≥1

un.



3. If ℓ = +∞, the convergence of the series
∑
n≥1

un involves the con-

vergence of the series
∑
n≥1

vn.

Theorem 1.7

Let (un)n and (vn)n be two sequences of positive numbers. If there exists
m ∈ N such that, un+1

un
≤ vn+1

vn
, whenever n ≥ m, then the convergence

of the series
∑
n≥1

vn involves the convergence of the series
∑
n≥1

un.

Proof .
LetN ∈ N be large enough such that ∀n ≥ N,

un+1

un
≤ vn+1

vn
. Thus

un+1

vn+1
≤ un
vn

for n ≥ N . The sequence
(un
vn

)
n≥N

is decreasing and
un
vn

≤ uN
vN

= M ∈ R∗
+,

∀n ≥ N . Then un ≤Mvn for all n ≥ N , which yields the result.

1.2 Integral Test

Theorem 1.8

[Integral Test]
Let f be a decreasing continuous function on [1,+∞[. We define un =
f(n), for all n ∈ N. Then:∫ +∞

1

f(x)dx is convergent ⇐⇒
∑
n≥1

un is convergent.

Proof .

Let Sn =

n∑
k=0

uk and vn =

∫ n

1

f(t)dt. We have: f(n + 1) ≤
∫ n+1

n

f(t)dt ≤

f(n), thus
n∑

k=1

f(k + 1) ≤
∫ n+1

1

f(t)dt ≤
n∑

k=1

f(k).

If the sequence (Sn)n is convergent, then it is bounded above. Hence the
sequence (vn)n is also bounded above, and since it is increasing it is convergent.



Conversely if the sequence (vn)n is convergent, the sequence (Sn)n is bounded
above and then it is convergent.

Corollary 1.9

[Convergence of Riemann series]
The series

∑
n≥1

1
nα is convergent if and only if, α > 1.

Proposition 1.10

[Application: Comparison with Riemann series]
Let (un)n be a sequence with non negative real numbers. Assume that
there exist 0 < a < b such that 0 < a ≤ nαun ≤ b < +∞ for every
n large enough, then the series

∑
n≥1 un is convergent if and only if,

α > 1.

This proposition results from Theorem (1.1)

Exercise 2 :

Show that the Bertrand series
∑
n≥2

1

nα lnβ n
is convergent if and only if α > 1

or α = 1 and β > 1.
Solution
If α ≤ 0, lim

n→+∞

n

nα(lnn)β
= +∞, then the series is divergent.

If 0 < α < 1, we take α < γ < 1 and consider the sequence vn =
1

nγ
.

lim
n→+∞

nγ

nα(lnn)β
= +∞, then the series

∑
n≥2

1

nα(lnn)β
is divergent.

If α > 1, we take 1 < γ < α and consider the sequence vn =
1

nγ
, lim
n→+∞

nγ

nα(lnn)β
=

0, then the series
∑
n≥2

1

nα(lnn)β
is convergent.

If α = 1, we consider the sequence un =
1

n lnβ n
and f(x) =

1

x lnβ x
, for

x ≥ 2. The function f is decreasing for x large. Then the series
∑
n≥2

1

n(lnn)β

is convergent if and only if

∫ ∞

2

dx

x lnβ x
.

The integral ∫ ∞

2

dx

x lnβ x

t=ln x
=

∫ ∞

ln 2

dt

tβ



is convergent if and only if β > 1.

1.3 Root Test or the Cauchy Test

Theorem 1.11

[Root Test or the Cauchy Test]
Let (un)n be a sequence of real numbers and ℓ = limn→+∞

n
√

|un|.

1. If ℓ < 1, the series
∑
n≥1

un is absolutely convergent.

2. If ℓ > 1, the general term of the series does not tends to 0 and the
series

∑
n≥1 un is divergent.

3. If ℓ = 1, we can not conclude about the convergence of the series.

Proof .

1. Let α be such that ℓ < α < 1, there exists N ∈ N such that n
√

|un| < α,
for every n ≥ N . Then un ≤ αn. Since the series

∑
n≥1 α

n is convergent,
the series

∑
n≥1 un is convergent.

2. Let 1 < β < ℓ, there exists an increasing sequence of integers (nk)k
such that lim

k→+∞
|unk

|1/nk = ℓ > β. Hence there exists k0 ∈ N such

|unk
| ≥ βnk , for all k ≥ k0. It follows that lim

k−→+∞
|unk

| = +∞ and the

series
∑
n≥1

un is divergent.

3. We know that the series
∑
n≥1

1

n
is divergent and

∑
n≥1

1

n2
is convergent, but

in the two cases lim
n→+∞

n−
1
n = lim

n→+∞
n−

2
n = 1.

1.4 The Ratio Test or the D’Alembert’s Test

Proposition 1.12

Let (un)n be a sequence of real numbers. Assume that lim
n−→+∞

|un+1

un
| =

ℓ. Then



1. If ℓ < 1, the series
∑
n≥1

un is absolutely convergent.

2. If ℓ > 1 the series
∑
n≥1

un is divergent.

3. If ℓ = 1, we can not conclude about the convergence of the series.

We prove that is this case lim
n−→+∞

n
√
|un| = ℓ.

Proof .

1. Let α be a real number such that ℓ < α < 1, there exists N ∈ N such

that for every n ≥ N,
|un+1|
|un|

< α, then un ≤ αn |uN |
αN

. Since the series∑
n≥1

αn is convergent, the series
∑
n≥0

un is absolutely convergent.

2. Let 1 < β < ℓ, there exists N ∈ N such that for every n ≥ N,
|un+1|
|un|

≥ β,

then un ≥ βn |uN |
αN

. Since the series
∑

n≥1 β
n is divergent, the series∑

n≥0 un is not convergent.

3. We know that
∑

n≥1
1
n diverges and

∑
n≥1

1

n2
converges, but in the two

cases lim
n→+∞

un+1

un
= 1.

Assume lim
n−→+∞

|un+1

un
| = ℓ and 0 < ℓ < +∞.

For 0 < α < ℓ < β < +∞, there exists N ∈ N such that ∀n ≥ N, α < |un+1|
|un| <

β. It follows that

αn |uN |
βN−1

≤ α|un| ≤ |un+1| ≤ β|un| ≤ βn−N+1|uN | = βn |uN |
βN−1

, ∀n ≥ N.

We deduce that

α = lim
n→+∞

α1−N/n n
√
|uN | ≤ lim

n→+∞
n
√
|un| ≤ lim

n→+∞
β1−N/n n

√
|uN | = β.

Thus α ≤ limn→+∞
n
√
|un| ≤ β for every 0 < α < ℓ < β < +∞, this which

yields that limn→+∞
n
√

|un| = ℓ.



If ℓ = +∞ and 0 < α. The above proof yields that α ≤ limn→+∞
n
√

|un|, then
limn→+∞

n
√

|un| = +∞.

If ℓ = 0 and 0 < β. The above proof yields that limn→+∞
n
√

|un| ≤ β, then

limn→+∞
n
√
|un| = 0.

Examples 8 :

1. Let z ∈ C, the series
∑

n≥0
zn

n! is absolutely convergent on C, because for

every z ∈ C; |un+1

un
| = |z|

n+ 1
−−−−−−→
n−→+∞

0. We denote ez the sum of this

series. ez =

+∞∑
n=0

zn

n!
.

2. For |z| < 1, the series
∑

n≥1
zn

n is absolutely convergent.

1.5 The Abel’s Criterion

Theorem 1.13

[Abel’s Criterion]
Let (un)n be a sequence of real numbers and let (vn)n be a sequence of
non negative real numbers such that :

1. the sequence (vn)n is decreasing and converges to 0.

2. the sequence
(
Sn =

n∑
k=1

uk

)
n
is bounded.

Then the series
∑
n≥1

unvn is convergent.

Proof .
We use the Cauchy criterion (1) for the existence of the limit of sequences. Let
q > p ≥ 1,

q∑
k=p+1

ukvk =

q∑
k=p+1

(Sk − Sk−1)vk =

q∑
k=p+1

Skvk −
q−1∑
k=p

Skvk+1

=

q−1∑
k=p+1

(vk − vk+1) + Sqvq − Spvp+1



Since |Sk| ≤M , then |
q∑

k=p+1

ukvk| ≤ 2Mvk+1
−−−−−−→

k→+∞
0.

Remark 11 :
The result holds also if we suppose that the sequence (Sn)n is bounded and

the sequence (bn)n converges to 0 and the series

+∞∑
n=0

(bn − bn+1) is convergent.

Examples 9 :

1. Let bn =
(−1)[

√
n]

n
, for n ≥ 1 and an = einθ for 0 < θ < 2π.

|
q∑

n=p

an| ≤
1

sin θ/2
and we can prove that

+∞∑
n=2

|bn − bn−1| ≤
+∞∑
n=2

2

(n− 1)2
.

It results that the series
∑
n≥1

(−1)[
√
n]einθ

n
converges for all 0 < θ < 2π.

2. Let sn =

n∑
k=1

1

k
− lnn, n ≥ 1. We set u1 = S1 = 1 and for all n ≥ 2;

un = Sn−Sn−1 =
1

n
+ln

n− 1

n
=

1

n
+ln(1− 1

n
) =

1

n
+(− 1

n
− 1

2n2
+o(

1

n2
)),

then un = −1
2n2 + o( 1

n2 ), thus (sn)n converges. We set γ = lim
n→+∞

sn, γ is

called the ”Euler constant.

2 Alternating Series

Definition 2.1

An alternating series is any series,
∑
n≥0

an such that anan+1 ≤ 0 for all

n ∈ N.

Theorem 2.2: (Alternating series Test)

Consider an alternating series
∑
n≥0

(−1)nan. If the sequence (an)n is

decreasing and lim
n→0

an = 0, then the series
∑
n≥0

(−1)nan is convergent.



Moreover for all m ≥ n ∈ N,

∣∣∣∣∣
m∑

k=n

(−1)kak

∣∣∣∣∣ ≤ an.

Proof .
The convergence of the series results from the Abel theorem (1.5).

Consider the sequences (Sn)n defined by Sn =

n∑
k=0

(−1)kak, S2n and S2n+1.

We have S2n+1 − S2n = −a2n+1 ≤ 0, S2(n+1) − S2n = a2n+2 − a2n+1 ≤ 0
and S2(n+1)+1 − S2n+1 = a2n+2 − a2n+3 ≥ 0. Hence the sequence (S2n)n is
decreasing, the sequence (S2n+1)n is increasing and 0 ≤ S2p+1 ≤ S2n+1 ≤
S2n ≤ S2q, for all p ≤ n ≤ q. We deduce that S2p − S2q+1 ≥ 0. Then for all
n ≤ m, |Sm −Sn| = Sm −Sn if n is even and |Sm −Sn| = Sn −Sm if n is odd.
Also |Sm − Sn| ≤ |an+1, for all m > n.



2.1 Exercises

2-2-1 Consider a sequence (un)n≥1 of real numbers such that the series
∑
n≥1

nun

is convergent. Prove that the series
∑
n≥1

un is convergent.

2-2-2 Let (un)n≥1 be a decreasing sequence such that the series
∑
n≥1

un is con-

vergent.

(a) Prove that lim
n→+∞

nun = 0.

(b) Prove that
∑
n≥1

n(un−un+1) converges and

+∞∑
n=1

n(un−un+1)

+∞∑
n=1

un.

(c) Compute for 0 ≤ r < 1 the following sums:
+∞∑
n=1

nrn and

+∞∑
n=1

n2rn.

2-2-3 (a) Prove that the series
∑
n≥0

(−1)n

n+ 1
is convergent.

(b) Show that

∣∣∣∣∣
n∑

k=0

(−1)k

k + 1
−
∫ 1

0

dt

1 + t

∣∣∣∣∣ ≤ 1

n+ 2
.

(c) Deduce that

∞∑
n=0

(−1)n

n+ 1
= ln 2.

2-2-4 Find the following sums:

1)

+∞∑
n=2

1

n2 − 1
,

2)

+∞∑
n=1

1

n(n+ 1)(n+ 2)
,

3)

+∞∑
n=1

n2

n!
,

4)

+∞∑
n=0

2n3 + 1

n!
,

5)

+∞∑
n=2

ln

(
1− 1

n2

)
,

6)

+∞∑
n=1

ln

(
cos

1

2n

)
,

7)

+∞∑
n=0

1

n!

∫ x

0

(ln t)ndt.

2-2-5 Study the convergence of the following series :



1)
∑
n≥1

2nn!

nn
,

2)
∑
n≥1

3nn!

nn
,

3)
∑
n≥1

n!

nn
,

4)
∑
n≥2

(−1)n lnn

n
,

5)
∑
n≥2

ln

(
1 +

(−1)n

nα

)
,

6)
∑
n≥1

(
n

n+ 1

)n2

,

7)
∑
n≥0

cosn√
n+ cosn

,

8)
∑
n≥0

1

Cn
2n

,

9)
∑
n≥1

(2n)!

nn(n− 1)!
,

10)
∑
n≥1

n sin(
1

n
),

11)
∑
n≥1

e−
(
1 +

1

n

)n

,

12)
∑
n≥1

coshα n− sinhα n,

13)
∑
n≥1

cos−1

(
n3 + 1

n3 + 2

)
,

14)
∑
n≥1

ln
(n3 + 1)2

(n2 + 1)3
,

15)
∑
n≥1

(
1

2
)
√
n,

16)
∑
n≥1

√
1 +

(−1)n√
n

− 1,

17)
∑
n≥1

(lnn)n

nlnn
,

18)
∑
n≥1

1

(lnn)lnn
,

19)
∑
n≥1

sin
1

n
− ln

(
1 +

1

n

)
,

20)
∑
n≥1

(−1)n

nα + (−1)n
,

21)
∑
n≥3

1

n lnn
(
ln(lnn)

)α ,
22)

∑
n≥1

(
cos

1√
n

)n

− 1√
e
,

23)
∑
n≥1

ln
1√
n
− ln

(
sin

1√
n

)
,

2-2-6 Let a, b and c three real numbers. Consider the sequence (un)n defined
by:

un = a lnn+ b ln(n+ 1) + c ln(n− 1), n ≥ 2.

(a) Express in term of a, b and c the necessary condition of the conver-

gent of the series
∑
n≥2

un.



(b) If this condition is satisfied, prove that the series
∑
n≥2

un is absolutely

convergent.

(c) Chooses a = −2, b = c = 1, prove that the series
∑
n≥2

un is convergent

and compute its sum.

2-2-7 Consider f(n) =
n!

nne−n
√
n

and Sn = ln f(n), for (n ≥ 1).

(a) Prove that the series
∑
n≥2

un is convergent, where un = Sn − Sn−1.

(b) Deduce the convergence of the sequence (Sn)n.

(c) Set ℓ = lim
n→+∞

Sn. Determine in term of ℓ an equivalent of n! when

n→ +∞.

2-2-8 Define the sequence of real numbers (un)n by:

u0 arbitrary and un+1 = 1− e−un , ∀n ≥ 0.

(a) Study the convergent of the sequence (un)n.

(b) Assume u0 > 0, compute lim
n→+∞

un+1 − un
u2n

and study the conver-

gence of the series
∑
n≥0

u2n.

2-2-9 Verify that the series
∑
n≥1

(−1)n√
n

+
1

n
is alternate and divergent. Conclude.

2-2-10 (a) Consider the function f(x) = | sin(2πx)|, for x ≥ 1.

Prove that

∫ +∞

1

f(t)dt diverges and the series
∑
n≥1

f(n) converges.

(b) Consider the function

g(x) =

 n2x+ 1− n3 for x ∈
[
n− 1

n2 , n
]

(n ≥ 2)
−n2x+ 1 + n3 for x ∈

[
n, n+ 1

n2

]
(n ≥ 2)

0 for x does not in any of these intervals
.

Prove that

∫ +∞

0

g(t)dt converges and the series
∑
n≥1

g(n) diverges.

Conclude.

2-2-11 Let f be a function of class C1 such that the integral

∫ +∞

0

f(t)dt is

convergent and the integral

∫ +∞

0

f ′(t)dt is absolutely convergent.



(a) Prove that the series
∑
n≥0

f(n) converges. (Hint: We can use Taylor

formula with integral remainder).

(b) Study the convergence of the following series

+∞∑
n=1

sin(π
√
n)

n
.

2-2-12 (a) Prove that for any θ ∈
]
0,
π

2

[
:

sin(2m+ 1)θ = (sin2m+1 θ)Pm(cot2 θ),

where Pm the polynomial defined by: Pm(x) =

m∑
k=0

(−1)kC2k+1
2m+1x

m−k.

(One will be able to use the Moivre Formula).

(b) Deduce the roots of the polynomial Pm and the following relation

m∑
k=1

cot2
(

kπ

2m+ 1

)
=
m(2m− 1)

3
.

(c) Prove that : ∀t ∈
]
0,
π

2

[
, cot2 t ≤ 1

t2
≤ cot2 t+ 1.

(d) Apply this result for t =
kπ

2m+ 1
, deduce that

+∞∑
n=1

1

n2
=
π2

6
.

2-2-13 Let
∑
n≥0

un and
∑
n≥0

vn be two convergent series with non negative terms.

(a) Prove that the series
∑
n≥0

u2n and
∑
n≥0

√
unvn are convergent.

Let
∑
n≥0

wn be a series with non negative terms and such that lim
n−→+∞

(nwn) =

ℓ.

(b) Prove that if the series
∑
n≥0

wn is convergent, then ℓ = 0.

2-2-14 Let u0 be a number real of ]0, 1[ and define the sequence (un)n by:
un+1 = un − u2n.

(a) Prove that the sequence (un)n is a decreasing sequence.

(b) Prove that ∀n ∈ N, un ∈]0, 1[.
(c) Deduce that the sequence (un)n is convergent and compute its limit.



(d) Prove that the series
∑
n≥0

u2n converges and give its sum.

(e) Prove that the series
∑
n≥0

ln(
un+1

un
) and

∑
n≥0

un are divergent.

(f) Define for n ∈ N, vn =
1

un
− 1

un−1
.

i. Prove that lim+∞ vn = 1.

ii. Deduce that un ≈ 1
n .

iii. Study the convergence of the series
∑
n≥1

sin(u2n) and
∑
n≥1

un√
n
.

2-2-15 Let (un)n be a sequence of real numbers. Assume that |un| < 1, for any
n ∈ N.

(a) Prove that the series
∑
n≥0

ln(1 + un) is absolutely convergent if and

only if the series
∑
n≥0

un is absolutely convergent.

(b) What can we say about the convergence?

(c) Assume that the series
∑
n≥0

un is absolutely convergent.

(a) Prove that the series
∑
n≥0

u2n,
∑
n≥0

un
1 + un

are absolutely convergent.

(b) What can we say about the convergence?

2-2-16 Let (un)n be a sequence of non negative numbers. Define vn =
un

1 + un
.

Prove that the series
∑
n≥0

un and
∑
n≥0

vn converge or diverge together.

2-2-17 Let (un)n, (vn)n and (wn)n be three reals sequences such that the series∑
n≥0

un and
∑
n≥0

wn converge, and un ≤ vn ≤ wn for any n.

Prove that the series
∑
n≥0

vn is convergent.

2-2-18 Consider the sequence (un)n, with un =

∫ √
(n+1)π

√
nπ

sin(x2)dx.

(a) Prove that the series
∑
n≥1

un is an alternate series.



(b) Prove that ∀n ∈ N, |un| =
∫ (n+1)π

nπ

| sin t|
2
√
t
dt.

Deduce that the series
∑
n≥1

un is convergent.

Prove that it is conditionally convergent.

2-2-19 Study the convergence and the absolutely convergence of the following

series
∑
n≥2

un, where un =
(−1)n

n
3
4 + cosn

.

2-2-20 Let (un)n≥0 be a sequence defined by : u0 > 0, ∀ n ∈ N, un+1 = un+u
2
n.

(a) Prove that lim
n→+∞

un = +∞.

(b) Set vn = 2−n lnun.

Prove that the sequence (vn)n is convergent. (Study the series∑
n≥0

vn+1 − vn)

(c) Deduce that there exists α > 0 such that un ≈ α2n .

2-2-21 Let f(x) =
1

1 + coshx sin2 x
defined on [0,+∞[.

(a) Prove that

∫ +∞

0

f(x)dx is convergent if and only if the series
∑
n≥0

un

is convergent, with un =

∫ (n+1)π

nπ

f(x)dx.

(b) Prove that for any n ∈ N, 0 ≤ un ≤
∫ (n+1)π

nπ

1

1 + enπ

2 sin2 x
dx.

(c) Deduce that ∀n ∈ N, un ≤ π2

√
2
e

−nπ
2 and that the integral

∫ +∞

0

f(x)dx

is convergent.

2-2-22 Let (an)n be a sequence of non negative numbers such that the series∑
n≥0

an is convergent. Define the sequences (Rn)n and (bn)n by: Rn =

+∞∑
k=n+1

ak and bn =
an
Rα

n−1

, with α ∈]0, 1[ fixed.

(a) Prove that for any n ∈ N∗, bn ≤
R1−α

n−1 −R1−α
n

1− α
. (We will be able to

use the integral

∫ Rn−1

Rn

dt

tα
).



Deduce that the series
∑
n≥1

bn is convergent.

(b) Set for any n ∈ N∗, cn =
an
Rn

, dn =
an
Rn−1

and en = ln(
Rn−1

Rn
).

Prove that the series
∑
n≥1

cn and
∑
n≥1

dn are divergent. (Prove that

the series
∑
n≥1

en diverges and 0 ≤ en ≤ cn and cn =
dn

1− dn
.)

(c) If (un) is a given non negative sequence such that the series
∑
n≥0

un

converges, is there exists a sequence (vn)n such that the series
∑
n≥0

unvn

converges and lim
n→+∞

vn = +∞?

3 Series Product

Definition 3.1

Let (un)n and (vn)n be two sequences of real numbers. For n ∈ N, we
set

cn =

n∑
k=1

ukvn−k. (3.2)

The series
∑
n≥1

cn is called the series product of the two given series∑
n≥1

un and
∑
n≥1

vn.

In this definition we are not interested in whether the product of the series
exists, because it depends on some conditions. Indeed we have the following
example :

Consider
∑
n≥1

cn the series product of the series
∑

n≥1
(−1)n√
n+1

with itself. The

series
∑

n≥1
(−1)n√
n+1

is convergent but the series
∑
n≥1

cn is divergent. Indeed:

cn =

n∑
k=1

(−1)k√
k + 1

(−1)n−k

√
n− k + 1

= (−1)n
n∑

k=0

1√
k + 1

√
n− k + 1

.



Then |cn| ≥ 1 and the series
∑
n≥1

cn is divergent.

The following theorem affirms the existence of the series product under some
conditions.

Theorem 3.2

Let (un)n and (vn)n be two sequences of real numbers.

1. Assume that the series
∑
n≥1

un and
∑
n≥1

vn are absolutely conver-

gent. Then the series
∑
n≥1

cn is absolutely convergent and we have

+∞∑
n=1

cn = (

+∞∑
n=1

un)(

+∞∑
n=1

vn). (3.3)

2. Assume that the series
∑
n≥1

un is absolutely convergent and the

series
∑
n≥1

vn is convergent. Then the series
∑
n≥1

cn is convergent

and we have:

+∞∑
n=1

cn = (

+∞∑
n=1

un)(

+∞∑
n=1

vn). (3.4)

Proof .
It suffices to proves 2). We set

An =

n∑
k=1

uk, Bn =

n∑
k=1

vk, Cn =

n∑
k=1

ck,

A =

+∞∑
n=1

un, α =

+∞∑
n=1

|un| and B =

+∞∑
n=1

vn.

Then

Cn =

n∑
j=1

cj =

n∑
j=1

ujBn−j =

n∑
j=1

uj(Bn−j −B) +BAn.



Since lim
n→+∞

B.An = A.B, then to show that lim
n−→+∞

Cn = A.B, it suffices to

show that the sequence (∆n)n converges to 0, where ∆n =

n∑
j=1

aj(Bn−j −B).

Let ε > 0: ∃N ∈ N such that |Bn −B| < ε
2α and

+∞∑
j=N

|aj | ≤
ε

2M
, ∀ n ≥ N .

Thus for every n ≥ 2N ,

|∆n| ≤
N∑
j=1

|aj ||Bn−j −B|+
n∑

j=N+1

|aj ||Bn−j −B| ≤ ε

2
+
ε

2
= ε.

It results that lim
n−→+∞

|∆n| = 0.



3.1 Exercises

2-3-1



CHAPTER III

INTEGRALS DEPENDING ON PARAMETERS

We recall in this chapter, that a piecewise continuous function f is called inte-

grable on I if the integral

∫
I

|f(x)|dx is convergent.

1 Convergence Theorem

Theorem 1.1

[Monotone Convergence Theorem]

Let
(
fn : I −→ R

)
n
be a sequence of integrable piecewise continuous

functions on I. Assume that
i) the sequence (fn)n is increasing, (i.e. fn ≤ fn+1)
ii) the sequence (fn)n is pointwise convergent to a integrable piecewise
continuous function f on I.

Then f is integrable on I if and only if the sequence
(∫

I
fn(x)dx

)
n
is

bounded above. Moreover with these assumptions∫
I

f(x)dx = sup
n∈N

∫
I

fn(x)dx = lim
n→+∞

∫
I

fn(x)dx.

Remark 12 :
Let

(
fn : I −→ R

)
n
be a sequence of integrable piecewise continuous functions

on I. We assume that
i) the sequence (fn)n is decreasing, (i.e. fn ≥ fn+1)
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ii) the sequence (fn)n is pointwise convergent to a integrable piecewise con-
tinuous function f on I. Then f is integrable on I if and only if the sequence(∫

I
fn(x)dx

)
n
is lower bounded. Moreover with these assumptions∫
I

f(x)dx = inf
n∈N

∫
I

fn(x)dx = lim
n→+∞

∫
I

fn(x)dx.

Theorem 1.2

[Dominated Convergence Theorem]

Let
(
fn : I −→ R

)
n
be a sequence of integrable piecewise continuous

functions on I. We assume that
i) the sequence (fn)n is increasing, (i.e. fn ≤ fn+1),
ii) the sequence (fn)n is pointwise convergent to a integrable piecewise
continuous function f on I,
iii) there exists an integrable function φ : I −→ R+ such that |fn| ≤ φ,
for any n ∈ N. (This assumption is called the domination assumption).
Then for any n ∈ N, fn is integrable on I and f is integrable on I.
Moreover

lim
n→+∞

∫
I

fn(x)dx =

∫
I

f(x)dx.

1.1 Continuity

Theorem 1.3

Let Ω be a subset of Rm and f : Ω × I −→ C a continuous function
on Ω × I and fulfills the domination assumption, (i.e. there exists an
integrable function φ : I −→ R+ such that |f(x, t)| ≤ φ(t), for all x ∈

Ω.) Then the function x 7−→ F (x) =

∫
I

f(x, t)dt is continuous on Ω.

Theorem 1.4

Let Ω a subset of Rm and f : Ω × I −→ C a continuous function on
Ω×I and fulfills the local domination assumption, (i.e. for any compact
K ⊂ Ω, there exists an integrable function φ : I −→ R+ such that
|f(x, t)| ≤ φ(t), for all x ∈ K.) Then the function x 7−→ F (x) =



∫
I

f(x, t)dt is continuous on Ω.

1.2 Differentiability

Theorem 1.5

Let J be an interval and f : J× I −→ R a continuous function on J× I.
We assume that
i) For any x ∈ J , the function t 7−→ f(x, t) is integrable on I

ii)
∂f

∂x
exists, continuous on J×I and fulfills the domination assumption,

(i.e. there exists an integrable function φ : I −→ R+ such that
∣∣∣∂f
∂x

∣∣∣ ≤
φ(t), for all x ∈ J .)

Then the function x 7−→ F (x) =

∫
I

f(x, t)dt is of class C1 on J .

2 Generalized Integral Depending on Parame-
ter

2.1 Convergence Theorem of Generalized Integral

Let f(t, x) be a function defined on ]a, b[×]α, β[; with −∞ ≤ a < b ≤ +∞ and
−∞ ≤ α < β ≤ +∞. We intend to study the continuity and the differentiabil-
ity of the function

F (x) =

∫ b

a

f(t, x)dt.

To study this problem it suffices to study the case a ∈ R. In which follows
we consider the case a ∈ R. To study the function F , we consider a sequence
(un)n of [a, b[ which converges to b and we study the sequence

Fn(x) =

∫ un

a

f(t, x)dt

and we apply for each function Fn the previous results and deduce the regularity
of the function F = lim

n→+∞
Fn.



Definition 2.1

Let X be a subset of R and f a function defined on [a, b[×X such that

the integral

∫ b

a

f(t, x)dt converges for any x ∈ X.

We say that the integral

∫ b

a

f(t, x)dt converges unoformly on X if, ∀ε >

0, ∃c independent of x such that |
∫ b

s
f(t, x)dt| ≤ ε; for any c ≤ s < b.

We remark that if the integral

∫ b

a

f(t, x)dt converges unoformly on X,

then for any sequence (un)n of [a, b[ convergent to b, the sequence Fn(x) =∫ un

a

f(t, x)dt converges unoformly on X.

Theorem 2.2

[The Cauchy Criterion]
Let X be a subset of R and f a function defined on [a, b[×X such that

the integral

∫ b

a

f(t, x)dt converges for any x ∈ X.

The integral

∫ b

a

f(t, x)dt converges uniformly on X if and only if ∀ε >

0, ∃c independent of x such that |
∫ v

u
f(t, x)dt| ≤ ε, for any c ≤ u ≤ v <

b.

Theorem 2.3

Let X be a subset of R and f a function defined on [a, b[×X. We
assume that there exists an integrable function defined on on [a, b[ such
that |f(t, x)| ≤ φ(t), for any x ∈ X. Then

i) The integral

∫ b

a

f(t, x)dt converges absolutely for any x ∈ X.

ii) The integral

∫ b

a

f(t, x)dt converges unoformly on X.

Example 10 :



1. Consider the integral

∫ +∞

0

e−t2eitxdt, for x ∈ R. As |e−txeitx| ≤ e−t2

which is integrable, thus

∫ +∞

0

e−t2eitxdt converges unoformly on R.

2. Vonsider the integral

∫ +∞

0

e−tx sin t

t
dt. This integrable converges uno-

formly on any interval [a,+∞[; for any a > 0.

Theorem 2.4

[Abel Rule for the Uniform Convergence]
Let X be subset of R and f, g two functions defined one [a,+∞[×X
such that

i) There exists a realM independent of x such that |
∫ u

a

f(t, x)dt| ≤M ,

for any u ∈ [a,+∞.
ii) The function t 7−→ g(t, x) is decreasing for any x ∈ X and there exists
a non negative decreasing function φ on [a,+∞[ such that |f(t, x)| ≤

φ(t) and lim
t→+∞

φ(t) = 0. Then the integral

∫ +∞

a

f(t, x)dt converges

uniformly on X.

Therefore the integral

∫ +∞

0

e−tx sin t

t
dt converges uniformly on ]0,+∞[. It

suffices to take f(t) = sin t and g(t, x) = e−tx

t ≤ 1
t .

2.2 Continuity

Theorem 2.5

Let f be a continuous function on [a, b[×]α, β[ such that the integral∫ b

a

f(t, x)dt converges uniformly on any compact [ζ, ξ] ⊂]α, β[. Then

the function

F (x) =

∫ b

a

f(t, x)dt

is continuous on ]α, β[.



2.3 Differentiability

Theorem 2.6

Let f be a continuous function on [a, b[×]α, β[ such that
∂f

∂x
exists and

is continuous on [a, b]×]α, β[, for any x ∈]α, β[, the integral
∫ b

a

f(t, x)dt

converges and the integral

∫ b

a

∂f

∂x
(t, x)dt converges uniformly on any

compact [ζ, ξ] ⊂]α, β[. Then the function

F (x) =

∫ b

a

f(t, x)dt

is differentiable on ]α, β[ and

F ′(x) =

∫ b

a

∂f

∂x
(t, x)dt

.

Example 11 :

1. Let Fn(x) =

∫ 1

0

tx lnn tdt, for x ∈] − 1, 0]. Fn is well defined. Moreover

the functions fn(t, x) = tx lnn t and
∂fn
x

(t, x) = fn+1(t, x) are continuous

on ]0, 1]×]− 1, 0] and for x ∈ [a, 0], with −1 < a < 0, one has tx| lnn t| ≤

ta| lnn t|. Thus the integral
∫ 1

0

tx lnn tdt converges uniformly on [a, 0] and

Fn is continuous and of class C∞ on ]− 1, 0]. Fn(x) =
(−1)nn!

(x+ 1)n+1
.

2. Consider the function G defined for x ≥ 0 by:

G(x) =

∫ +∞

0

e−xt2

1 + t2
dt.

The function g(t, x) = e−xt2

1+t2 is continuous on [0,+∞[×[0,+∞[. g(t, x) ≤
1

1 + t2
, thus G is continuous on [0,+∞[.

∂g

∂x
(t, x) = −t2e

−xt2

1+t2 which is continuous on [0,+∞[×[0,+∞[ and

∫ +∞

0

∂g

∂x
(t, x)dt

converges uniformly on any interval [a,+∞[, for any a > 0, because



|∂g
∂x

(t, x)| ≤ e−at2 which is integrable, for x ≥ a. Therefore the function

G is differentiable on ]0,+∞[ and

G′(x) =

∫ +∞

0

∂g

∂x
(t, x)dt.



2.4 Exercises

3-2-1 Let E be the vector space of continuous functions on [0, 1], and let K be
the function of two variables defined by:

K(x, y) =

{
(x− 1)y si y ≤ x
x(y − 1) si x ≤ y

To any function f of E we associate the function

f̃(x) =

∫ 1

0

K(x, y)f(y)dy.

(a) Prove that for any f ∈ E, f̃ is of class C2, f̃(1) = f̃(0) = 0 and
f̃

′′
= f .

(b) Prove that for any f, g of E :∫ 1

0

g̃(x)f(x)dx =

∫ 1

0

f̃(x)g(x)dx.

3-2-2 (a) Study the convergence of the following integral with respect to the
parameter x ∈ R. ∫ +∞

1

t−(x+1)

√
t2 − 1

dt.

Let I be the set of x for which the integral is convergent.

(b) For x ∈ I, define

F (x) =

∫ +∞

1

t−(x+1)

√
t2 − 1

dt.

Prove that F is of class C∞ on I.

3-2-3 We claim to compute the following integral

F (x) =

∫ +∞

0

1− cos(tx)

t2
.e−tdt; x > 0

(a) Verify the existence of this integral.

(b) Prove that F ′′(x) =
1

1 + x2

(c) Deduce the expression of F .

3-2-4 For x > 0 define the functions F (x) =

∫ +∞

0

sin t

t+ x
dt andG(x) =

∫ +∞

0

e−tx

1 + t2
dt.



(a) Prove that F and G fulfills the same differential equation y′′+y =
1

x
.

(b) Prove that F = G.

(c) Deduce the value of the Dirichlet integral

∫ +∞

0

sin t

t
dt.

3-2-5 Let f be a continuous function and bounded on R+. We define for x > 0

the function F (x) =

∫ +∞

0

f(t)e−xtdt and G(x) =

∫ +∞

0

tf(t)e−xtdt.

(a) Verify that F and G are well defined for x > 0.

(b) Determine the limit of F at +∞.

(c) Prove that F is differentiable and compute F ′(x).

3-2-6 Let ψ(t) =
1

π(1 + t2)
and f a continuous function on R such that

∫ +∞

−∞
|f(t)|dt <

+∞.

Define

φ(x) =

∫ +∞

−∞
f(x− t)ψ(t)dt.

(a) Prove that φ is continuous on R.
(b) Prove that φ is of class C∞ on R.
(c) Prove that ∫ +∞

−∞
φ(x)dx =

∫ +∞

−∞
f(t)dt.

∫ +∞

−∞
ψ(t)dt.

(d) Let φ̃(x) =

∫ +∞

−∞

cos(x− t)

π(1 + t2)
dt.

a) Prove that φ̃ is of class C∞ and fulfills a differential equation of
second order.

b) Compute φ̃(0) and deduce the expression of φ̃.

3-2-7 (a) Let In =

∫ π
2

0

sinn xdx.

a) Compute I2p and I2p+1, for any p ∈ N.
b) Prove that for any n ∈ N, InIn+1 ≤ I2n ≤ InIn−1 and deduce the
Wallis formula:

In ∼+∞

√
π

2n
.



(b) a) Prove that f : x 7→
∫ π

2

0

sinx tdt is C∞ on ]− 1,+∞[.

b) Give a simple equivalent of f at +∞.

c) Give an asymptotic rxpansion of three terms of f at −1.

3-2-8 Let F (x) =

∫ +∞

0

dt√
(1 + t2)(x2 + t2)

.

(a) Prove that F is of class C1 on ]0,+∞[.

(b) Find a relation between F (x) and F ( 1x ).

(c) Determine the limit of F (x) when x −→ +∞.

(d) Remark that F (x) >

∫ 1

0

dt√
(1 + t2)(x2 + t2)

and determine lim
x→0

F (x).

(e) a) Prove that F (x) = 2

∫ √
x

0

dt√
(1 + t2)(x2 + t2)

.

b) Prove that F (x) ∼0 2

∫ √
x

0

dt√
x2 + t2

.

c) Deduce a simple equivalent of F in a neighborhood of 0 and +∞.

3-2-9 Define f(x) =

∫ 1

0

tx(1− t)

ln t
dt.

(a) Determine the domain of definition of f .

(b) Prove that f is differentiable on ]− 1,+∞[ and determine f ′(x) for
any x > −1.

(c) Give lim
x−→+∞

f(x) and deduce the value of f(x) for any x > −1.

3-2-10 Let f be a continuous function on [0,+∞[ and

D = {(u, t) ∈ R2; 0 < u < x, 0 < t < u}.

Define the function

g(x) =

∫ ∫
D

f(t)√
(x− u)(u− t)

dudt.

(a) Prove that g is well defined.

(b) Compute ∫ x

t

du√
(x− u)(u− t).

(We will be able make the change of variables u = t cos2 φ+x sin2 φ.)



(c) Prove that g(x) = π

∫ x

0

f(t)dt and deduce the expression of f in

term of g.

3-2-11 Define the function F by:

F (x) =

∫ π/2

0

1√
1− x2 sin2 t

dt.

(a) Prove that the domain of definition of F is ]− 1, 1[.

(b) Prove that F is of class C2 on ] − 1, 1[, and give the expression in
integral form of F ′ and F

′′
.

(c) a) Use the change of variables u = x sin t to prove that

F (x) ≥
∫ x

0

du

1− u2
, 0 < x < 1.

b) Deduce limx→1− F (x).





CHAPTER IV

SEQUENCES AND SERIES OF FUNCTIONS

1 Sequences of Functions

Definition 1.1

Let (fn)n be a sequence of functions defined on a subset A of R.

1. The sequence (fn)n is called pointwise convergent on A if for every
x ∈ A, the sequence (fn(x))n is convergent.

2. The sequence (fn)n is called uniformly convergent to f on A if

lim
n→+∞

sup
x∈A

∥fn(x)− f(x)∥ = 0.

Remark 13 :

1. The sequence (fn)n converges to f on A if and only if

∀x ∈ A, ∀ε > 0, ∃N ∈ N such that |fn(x)− f(x)| < ε, ∀n ≥ N.

2. The sequence (fn)n converges uniformly to f on A if and only if

∀ε > 0, ∃N ∈ N such that |fn(x)− f(x)| < ε, ∀n ≥ N and ∀x ∈ A.
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Examples 12 :

1. Let (fn)n the sequence of functions defined on I = [0, 1] by: fn(x) = xn,
for all x ∈ I and n ∈ N. The sequence (fn)n converges to the function f
defined by:

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

sup
x∈[0,1]

|fn(x) − f(x)| = sup
x∈[0,1[

xn = 1, then the sequence (fn)n is not

uniformly convergent on [0, 1] and also on [0, 1[. Moreover, the sequence
(fn)n converges uniformly on any interval [0, a], ∀a ∈ [0, 1[. Indeed,

lim
n→+∞

(
sup

x∈[0,a]

xn
)
= lim

n→+∞
an = 0.

2. Let (fn)n be the sequence of functions defined on R by: fn(x) =
sin(nx)

n
.

The sequence (fn)n converges uniformly to 0 on R. (|fn(x)| ≤ 1
n ).

3. Let (fn)n be the sequence of functions defined on R+ = [0,+∞[ by:

fn(x) =
x

n+ x
. The sequence (fn)n converges to 0 on R+ and not uni-

formly since sup
x∈R+

fn(x) = 1. Moreover the sequence (fn)n converges

uniformly on any closed interval [a, b] ⊂ R+.

4. Let fn(x) = xe−nx for x ∈ R+. We have supx∈R+ fn(x) =
1
n . Then the

sequence (fn)n converges uniformly to 0 on R+.

5. Let fn(x) =
x
√
n

1 + nx2
for x ∈ R. The sequence (fn)n converges to 0, but

supx∈R fn(x) =
1
2e . Then the sequence (fn)n is not uniformly convergent

on R. Moreover for all a > 0, the sequence (fn)n converges uniformly on
[a,+∞[. Indeed for n large enough supx∈[a,+∞[ fn(x) = fn(a).

1.1 Cauchy Criterion for the Convergence

Theorem 1.2

(Cauchy Criterion for the uniform convergence)
Let (fn)n be a sequence of functions defined on an open subset Ω of R.
The sequence (fn)n converges uniformly on a A ⊂ Ω if and only if

lim
p,q→+∞

sup
x∈A

|fp(x)− fq(x)| = 0.

This is still equivalent to :



∀ ε > 0,∃N, sup
x∈A

|fn+p(x)− fn(x)| ≤ ε, ∀ n ≥ N, ∀ p ∈ N.

Remark 14 :
If the sequence (fn)n converges uniformly to f on A ⊂ Ω, then for any sequence
(xn)n ∈ A, the sequence

(
un = |fn(xn) − f(xn)|

)
n
converges to 0. This is

because un ≤ sup
x∈A

|fn(x)− f(x)|.

1.2 Continuity and Uniform Convergence

Theorem 1.3

Let (fn)n be a sequence of functions defined on an open subset Ω ⊂ R
which converges uniformly to f on a subset I ⊂ Ω. Let a ∈ I and
assume that lim

x→a
fn(x) = ℓn exists for any n, then the sequence (ℓn)n

converges and lim
x→a

f(x) = lim
n→+∞

ℓn. Otherwise

lim
x→a,
x∈I

(
lim

n→+∞
fn(x)

)
= lim

n→+∞

(
lim
x→a,
x∈I

fn(x)
)
. (1.1)

Proof .
To prove that the sequence (ℓn)n is convergent, we prove that it is a Cauchy
sequence.
For ε > 0, there exists ∃N such that |fn(x) − fm(x)| ≤ ε, ∀n,m ≥ N and
∀x ∈ I. The inequality is still true if x tends to a. Then ∀ε > 0, |ℓn − ℓm| ≤ ε,
∀n,m ≥ N . The sequence (ℓn)n is a Cauchy sequence in R. Let ℓ = lim

n→+∞
ℓn.

For n0 ≥ N , we have:

|f(x)− ℓ| ≤ |f(x)− fn0(x)|+ |fn0(x)− ℓn0 |+ |ℓn0 − ℓ|.

Since the sequence (fn)n converges uniformly to f , |f(x)−fn0(x)| < ε, ∀x ∈ I.
(We take m = n0 and we tends n to +∞). Since limx→a fn0(x) = ℓn0 , there
exists η > 0 such that ∀x ∈ I, with 0 < |x− a| < η we have: |fn0

(x)− ℓn0
| <

ε ⇒ |ℓn0
− ℓ| < ε. We have: ∀x ∈ I such that |x − a| < η, |f(x) − ℓ| <

ε+ ε+ ε = 3ε, which proves the result.

Example 13 :

Let (fn)n be the sequence of functions defined on R+ by: fn(x) =

∫ n

0

sin t

t
e−xtdt.



fn(x)−fm(x) =

∫ m

n

sin t

t
e−xtdt, (m > n). The function t −→ e−xt

t is decreas-

ing on [n,m], by the second mean formula, 1 |fn(x)− fm(x)| ≤ e−xn

n
.2 ≤ 2/n,

then sup
x∈R+

|fn(x)−fm(x)| ≤ 2/n, which proves that the sequence (fn)n converge

uniformly on R+.

Moreover lim
x→0+

fn(x) =

∫ n

0

sin t

t
dt, because

∣∣∣fn(x)−∫ n

0

sin t

t
dt
∣∣∣ ≤ xn −−−−−−→

x→0+

0. Then

lim
x→0+

∫ +∞

0

sin t

t
e−xtdt =

∫ +∞

0

sin t

t
dt.

Theorem 1.5

Let (fn)n be a sequence of functions defined on an open subset I ⊂ R.
Assume that :

1. The sequence (fn)n converges uniformly to f on any closed interval
[a, b] ⊂ I,

2. For any n ∈ N, the function fn is continuous at c ∈ I.

Then f is continuous at c.

Proof .
We consider a sequence (xn)n ∈ Ω which converges to c. By Theorem 1.2
lim
x→c

f(x) = lim
n→+∞

fn(c) = f(c).

Examples 14 :

1. Let (fn)n be the sequences of functions defined on R+ by: fn(x) =∫ n

0

sin t

t+ x
dt. The function fn are continuous on R+.

1

Theorem 1.4

[Second Mean Formula]

Let f be non negative decreasing continuous function on the interval [a, b] and let g

be a Riemann integrable function on [a, b]. Then there exists c ∈ [a, b] such that

∫ b

a
f(x)g(x) dx = f(a)

∫ c

a
g(x) dx.



|fn(x)−fn(0)| ≤
∣∣∣∫ n

0

sin t

t
(
x

t+ x
)dt
∣∣∣ ≤ x(ln(n+x)−lnx), then lim

x→0
|fn(x)−

fn(0)| = 0. It results that fn is continuous at 0.

For x0 > 0, |fn(x)− fn(x0)| ≤Mn(x0)|x− x0|, ∀x > x0

2 , with Mn(x0) =∫ n

0

dt

(t+ x0)(t+
x0

2 )
.

In use the second mean formula, we get : |fn(x)− fm(x)| ≤ 2
n+x , for all

n < m and x > 0. Then sup
x∈R+

|fn(x) − fm(x)| ≤ 2

n
and the sequence

(fn)n converges uniformly on R+. It results that the function f defined

by f(x) =

∫ +∞

0

sin t

t+ x
dt is continuous on R+.

2. For x > 0, we set fn(x) =
1

x

∫ n

0

sin t

t+ x
dt. The functions fn are continuous

on R∗
+. The sequence (fn)n convergences uniformly on [h,+∞[, ∀h >

0. It results that the function g defined by g(x) =
1

x

∫ +∞

0

sin t

t+ x
dt is

continuous on R∗
+.

Theorem 1.6

Let (fn)n be a sequence of continuous functions on an open set Ω ⊂ R
and converges uniformly on compact subsets of I to a function f . Then
f is continuous on I.

1.3 Integrability and Uniform Convergence

Let (fn)n be a sequence of Riemann integrable functions on an interval [a, b].
Assume that the sequence (fn)n converges to the function f . Various problems
arise, however

1. the function f is it Riemann integrable?

2. if f is Riemann integrable on [a, b], can we have

lim
n→+∞

∫ b

a

fn(t)dt =

∫ b

a

f(t)dt?

The answer to the question a) is negative, it suffices to take the function f
defined on [a, b] by:



f(x) =

{
1 if x ∈ Q ∩ [a, b]
0 if not

This function is not Riemann integrable and it is a limit of Riemann integrable
functions. (Q is countable).
The answer to the question b) is also negative. We can take fn(x) = nx(1−x2)n

defined on [0, 1]. The sequence (fn)n converges to 0 and lim
n→+∞

∫ 1

0

fn(x)dx =

1

2
.

We still have the following theorem:

Theorem 1.7

Let (fn)n be a sequence of Riemann-integrable functions on an interval
[a, b]. If the sequence (fn)n converges uniformly to a function f on [a, b],
then f is Riemann-integrable on [a, b] and we have:

lim
n→+∞

∫ b

a

fn(t)dt =

∫ b

a

f(t)dt.

Moreover the sequence (Fn)n defined by: Fn(x) =

∫ x

a

fn(t)dt con-

verges uniformly to the function F defined by: F (x) =

∫ x

a

f(t)dt on

[a, b].

Proof .
As the sequence (fn)n is uniformly convergent to f on [a, b], the function f is
bounded. Indeed, for ε > 0, there is Nε ∈ N such that sup

x∈[a,b]

|fn(x)−f(x)| < ε,

∀n ≥ Nε. Then sup
x∈[a,b]

|f(x)| ≤ sup
x∈[a,b]

|fNε
(x)|+ ε < +∞.

Let σ = {x1, . . . , xp} be a partition of [a, b] and let n ≥ Nε. As ∀x ∈ [a, b]
fn(x)− ε ≤ f(x) ≤ fn(x) + ε, we have:
Mn

k −ε ≤Mk ≤Mn
k +ε andmn

k−ε ≤ mk ≤ mn
k+ε, withMk = sup

x∈[xk,xk+1]

f(x),

Mn
k = sup

x∈[xk,xk+1]

fn(x), mk = inf
x∈[xk,xk+1]

f(x) and mn
k = inf

x∈[xk,xk+1]
fn(x).

It results that :

U(fn, σ)− ε(b− a) ≤ U(f, σ) ≤ U(fn, σ) + ε(b− a)

L(fn, σ)− ε(b− a) ≤ L(f, σ) ≤ L(fn, σ) + ε(b− a).



Then

L(fn)− ε(b− a) ≤ L(f) ≤ U(f) ≤ U(fn) + ε(b− a). (1.2)

Since the functions fn are Riemann integrable, we have U(fn) = L(fn) for all
n ∈ N, and 0 ≤ U(f) − L(f) ≤ 2ε(b − a), for all ε > 0. It results that f is

Riemann integrable on [a, b] and for all n ∈ N : |
∫ b

a

f(t)dt −
∫ b

a

fn(t)dt| <

ε(b− a). Moreover we also have

∀x ∈ [a, b], |Fn(x)− F (x)| ≤ (b− a) sup
t∈[a,b]

|fn(t)− f(t)|.

Corollary 1.8

Let
(
fn : [a, b] −→ R

)
n
be a sequence of piecewise continuous functions

on [a, b] and uniformly convergent to f on [a, b], then f is Riemann-
integrable on [a, b] and we have:∫ b

a

f(t)dt = lim
n→+∞

∫ b

a

fn(t)dt.

1.4 Differentiability

Theorem 1.9

Let (fn)n be a sequence of continuously differentiable functions (of class
C1) on an interval [a, b] ⊂ R. Assume that :

1. the sequence (fn)n is pointwise convergent to f on [a, b].

2. the sequence (f ′n)n is uniformly convergent on [a, b].

Then f continuously differentiable on [a, b] and: ∀x ∈ [a, b], f ′(x) =
limn→+∞ f ′n(x) and (fn)n converges uniformly to f on [a, b]. In partic-
ular f is of class C1 on [a, b].

Proof .



We have

∫ x

a

f ′n(t)dt = fn(x) − fn(a). Let g be the limit of the sequence

(f ′n)n. We have

∫ x

a

g(t)dt = f(x)− f(a). Moreover g is continuous, then f is

differentiable and f ′(x) = g(x),∀x ∈ [a, b].

Exercise 3 :
Let (fn)n be a sequence of differentiable functions on an interval [a, b]. Assume
that the sequence (f ′n)n is uniformly convergent on [a, b] and there exists x0 ∈
[a, b] such that the sequence (fn(x0))n is convergent. Prove that the sequence
(fn)n is uniformly convergent on [a, b] to a differentiable function f and f ′(x) =
lim

n→+∞
f ′n(x).

(Hint : use the mean value theorem to the function fn−fm, for n and m large
enough.)



1.5 Exercises

4-1-1 Define the sequence of functions (fn)n on R by: fn(x) = n2x(1− x)n.

(a) Determine the domain of pointwise convergence of the sequence
(fn)n.

(b) Compute

∫ 1

0

fn(x)dx and deduce that the sequence (fn) is not uni-

formly convergent on the interval [0, 2[.

(c) Compute the limit of fn(
1
n ), when n −→ +∞, and deduce an other

time the previous result.

4-1-2 Study the pointwise and the uniform convergence of the following se-
quences of functions (fn)n defined by:

(a) fn(x) =
nx

1 + n2x2
on R,

(b) fn(x) =

 2n2x if x ∈ [0, 1
2n ]

0 if x ∈ [ 1n , 1]
2n− 2n2x if x ∈ [ 1

2n ,
1
n ]

on [0, 1],

(c) fn(x) =

{
x2 sin( 1

nx ) if x ̸= 0
0 if x = 0

on R,

(d) fn(x) =

{
sin(x)

x e−nx if x ̸= 0
1 if x = 0

on R+,

(e) fn(x) = nαx(1− nx− |1− nx|) on R+, α ∈ R,

(f) fn(x) =

{
nαx(1− nx) if 0 ≤ x < 1

n
0 if 1

n ≤ x ≤ 1
, α ∈ R

(g) fn(x) =

{
nx− 1

n if x ∈ [0, 1
n [

1− x if x ∈ [ 1n , 1]
on [0, 1].

(h) fn(x) =


sinnx

n
√
x

if x > 0

0 if x = 0

(i) fn(x) =
xn

1 + xn
on each of the following intervals, with 0 < a < 1.

[0, 1− a], [1− a, 1 + a], [1 + a,+∞[.

(j) fn(x) =

 sin2 nx

nx
if x /∈ πZ

0 if x ∈ πZ
,



4-1-3 (a) Consider the function φn : ]0, n[−→ R defined for n ≥ 2 by:

φn(x) = e−x −
(
1− x

n

)n
.

i. Prove that φ′
n has a unique zero on the interval ]0, n[.

ii. Study the variations of φn on [0, n].

(b) Study the pointwise and uniform convergence of the sequence of
functions (fn)n≥1 defined on [0,+∞[ by:

fn(x) =


(
1− x

n

)n
if 0 ≤ x ≤ n

0 if x > n

4-1-4 Study the pointwise and the uniform convergence of the following se-
quences of functions (fn)n defined by:

(a) fn(x) = (cosn x) sinx for x ∈ [0, π2 ].

(b) gn(x) = (1 +
x

n
)n, if x ≥ −n and gn(x) = 0 if x < −n.

Consider the case of the uniform convergence on ]−∞, a], for a ∈ R.

4-1-5 Let (fn)n be the sequence of functions defined by on R\{−2} by: fn(x) =
(x+ 1)n − 1

(x+ 1)n + 1
.

Study the pointwise and the uniform convergence of the sequence (fn)n
on R\{−2} and on any closed interval which does not contain neither −2
and 0.

4-1-6 Let un(x) = n2xe−nx, x ∈ [0, 1].

(a) Find the pointwise limit of the sequence of functions (un)n

(b) Find lim
n−→+∞

∫ 1

0

un(x)dx.

(c) The convergence of the sequence (un)n on [0, 1] is it uniform?

4-1-7 Let (fn)n be the sequence of functions defined on [0,+∞[ by: fn(x) =
nx

1 + nx
.

(a) Determine the pointwise limit f of the sequence (fn)n.

(b) The convergence of (fn)n to f is it uniform on [0, 1]? on [1,+∞[?
and on [0,+∞[?



(c) Let Fn be the function defined on [0,+∞[ by: Fn(x) =

∫ x

0

fn(t)dt.

i. Determine the pointwise limit F of the sequence (Fn)n.

ii. The convergence of (Fn)n to F on [0, 1] is it uniform?

4-1-8 Let (fn)n be the sequence of functions defined by: fn(x) =

√
x2 +

1

n2
,

for x ∈ R.

(a) Prove that the sequence (fn)n converges uniformly on R.
(b) Prove that the functions fn are differentiable on R and the limit of

the sequence (fn)n is not differentiable.

4-1-9 Define a sequence of functions (fn)n on R∗
+ by:

fn(x) = n| lnx|n.

(a) Determine the domain D of the pointwise convergence of the se-
quence (fn)n.

(b) Study the uniform convergence of the sequence (fn)n to f on D and
on the compacts of D.

4-1-10 Define the sequence of functions (fn)n on R+ by: fn(x) =
ne−x(x3 + x)

1 + nx
.

(a) Determine the limit f of the sequence (fn)n and deduce that the
sequence (fn)n is not uniformly convergent on R+.

(b) Prove that the sequence (fn)n converges uniformly on any closed
and bounded interval of ]0,+∞[ to f .

(c) Prove that the sequence (|fn − f |)n is bounded on [0, 1].

(d) Deduce that lim
n→+∞

∫ 1

0

fn(t)dt =

∫ 1

0

f(t)dt.

4-1-11 Define the sequence (fn)n of functions defined on R+ by: fn(x) = e−nxn

.

(a) Determine the domain D of pointwise convergence of the sequence
(fn)n.

(b) Prove that the sequence (fn)n converges uniformly on [1,+∞[.

(c) Prove that the sequence (fn)n is not uniformly convergent on [0, 1[.

(d) Study the uniform convergence of the sequence (fn)n on the compact
subsets of [0, 1[?

Let gn = f ′n.



(e) Determine the domain of pointwise convergence of the sequence
(gn)n.

(f) Study the convergence of the sequence

(
gn(

n− 1

n2
)

1
n

)
n

.

(g) Study the uniform convergence of the sequence (gn)n on the follow-
ing intervals, [0,+∞[, [0, 1[ and [1,+∞[.

4-1-12 Define the sequence of functions (fn)n on R∗
+ by:

fn(x) = (−1)nxn
β

ln(
x2 + x+ n

n+ x
).

(a) Prove that |fn(x)| ≈
n→+∞

x2+nβ

n .

(b) Determine, eventually according to the values of β the domain Dβ

of the pointwise convergence of the sequence (fn)n.

(c) Study the uniform convergence on Dβ , and on the compacts of Dβ .

4-1-13 Let f be a continuous function on R. Assume that there exists a sequence
(Pn)n of polynomials which converges uniformly on R to f .

(a) Prove that there exists n0 ∈ N such that ∀n ≥ n0, Pn − Pn0
is

bounded on R.
(b) Deduce that f is a polynomial function.

4-1-14 Study the pointwise and uniform convergence of the following sequence
of functions (fn)n.

(a) fn(x) =

x
2nlnx if x ∈]0, 1]

0 if x = 0

(b) fn(x) =

nx
nlnx if x ∈]0, 1]

0 if x = 0

(c) fn(x) =


sin2 nx

n sinx
if x ∈]0, 1]

0 if x = 0

(d) fn(x) = 4n
(
x2

n+1 − x2
n)
.

(e) fn(x) =
2nx

1 + n2nx2
and compute lim

n→+∞

∫ 1

0

fn(t)dt and

∫ 1

0

lim
n→+∞

fn(t)dt.



4-1-15 Let (fn)n be the sequence of functions defined by: fn(x) = x2 sin
1

nx
if

x ̸= 0 and fn(0) = 0

(a) Prove that the sequence (fn)n converges uniformly on any interval
[a, b] ⊂ R.

(b) The convergence is it uniform on R?
(c) The sequence (f ′n)n is it uniformly convergent on R.

4-1-16 For x ∈ [0, 1] and n ∈ N, define fn(x) =
n∑

k=1

(−1)k−1xk

k
− ln(1 + x)

(a) Prove that the sequence (fn)n converges uniformly to 0 on [0, 1].
(We can compute f ′n(x)).

(b) Prove that lim
n→∞

n∑
k=1

(−1)k−1

k
(

n

n+ 1
)k = ln 2.

4-1-17 Let (fn)n be the sequence defined on [0, 1] by:

f1(x) =

 n2x if x ∈ [0, 1
n ]

−nx2 + 2x if x ∈ [ 1n ,
2
n ]

0 if x ∈ [ 2n , 1]

(a) Study the pointwise and the uniform convergence of the sequence
(fn)n.

(b) Compare lim
n→∞

∫ 1

0

fn(x)dx and

∫ 1

0

lim
n→∞

fn(x)dx.

2 Series of Functions

Definition 2.1

Let (fn)n be a sequence of functions defined on a subset A of R.

1. The series of functions
∑
n≥1

fn is called pointwise convergent on A

if the sequence
(
Sn =

n∑
k=1

fk

)
n
is pointwise convergent on A.

2. The series
∑
n≥1

fn is called uniformly convergent on A if the se-



quence
(
Sn =

n∑
k=1

fk

)
n
converges uniformly on A.

Remark 15 :

1. If the series
∑
n≥0

fn is pointwise convergent to a function f on an interval

I, then lim
n→+∞

fn(x) = 0, for all x ∈ I.

2. A series
∑
n≥0

fn is pointwise convergent on J , if and only if, the series∑
n≥0

fn(x) fulfills the Cauchy criterion, i.e.

∀x ∈ I, ∀ε > 0,∃N ; |
n+p∑
k=n

fk(x)| < ε, ∀n ≥ N, p ∈ N.

Examples 15 :

1. Let (fn)n be a sequence of functions defined by: fn(x) = xn, the series∑
n≥0

fn(x) is pointwise convergent on the interval ]0, 1[ to the function

f(x) =
1

1− x
. If |x| ≥ 1, |fn(x)| ≥ 1, then the series

∑
n≥0

fn(z) is diver-

gent on R\]0, 1[.

2. For x ≥ 0, we set fn(x) =
sin x

n

n+ x
.

For all fixed x > 0 we have: sin
x

n
=
x

n
− x3

6n3
+O(

1

n3
), then

fn(x) =
x

n(x+ n)
− x3

6n3(x+ n)
+O(

1

n3
).

Then the series
∑
n≥1

fn is pointwise convergent on R+.

Also, the series
∑
n≥1

fn is pointwise convergent on R \ Z−.

Remark 16 :



1. If the series
∑
n≥0

fn is uniformly convergent to f on I, then the series∑
n≥0

fn is pointwise convergent to f on I.

2. A series
∑
n≥0

fn is uniformly convergent on I, if and only if, it fulfills the

Cauchy criterion for the uniform convergence i.e.

∀ε > 0,∃N ∈ N sup
x∈I

∥
n+p∑
k=n

Uk(x)∥ < ε, ∀n ≥ N, p ∈ N.

Example 16 :

The series
∑
n≥0

xn is pointwise convergent on ]−1, 1[ to the function f(x) = 1
1−x ,

but the convergence is not uniform because sup
x∈]−1,1[

fn(x) = 1.

Definition 2.2

A series
∑
n≥0

fn is called normally convergent on I, if the series∑
n≥0

sup
x∈I

∥fn(x)∥ is convergent.

Proposition 2.3

If the series
∑
n≥0

fn is normally convergent on I, then it is uniformly

convergent on I.

For the proof we use the Cauchy criterion.

Corollary 2.4

If sup
x∈I

|fn(x)| ≤ an and the series

+∞∑
n=0

an is convergent, then the series



∑
n≥0

fn is normally converge on I.

Examples 17 :

1. Let fn(x) = einx

nα , (α > 1). |fn(x)| ≤ 1

nα
, then the series converges

normally on R.

2. For x ∈]0,+∞[, we have: xe−x ≤ 1, then fn(x) =
e−nx

n
≤ 1

x.n2
≤ 1

h.n2

for all x ∈ [h,+∞[. It results that the series
∑
n≥1

fn converges uniformly

on [h,+∞[,∀h > 0.

3. Let fn(z) =
1

n(x+n) defined on R \ Z∗
−. |fn(x)| ≤ 1

n|x+n| ≤
1

n|n−|x|| . Let

K be any compact of R \Z∗
−, there exists R > 0 such that K ⊂]−R,R[.

Let n0 ∈ N such that R < n0, we have: |fn(x)| ≤ 1
n(n−R) , ∀n ≥ n0,

∀x ∈ K. Then the series
∑
n≥1

fn converges uniformly on K.

2.1 Abel’s Criterion for the Uniform Convergence



Theorem 2.5

Let (fn)n be a sequence of functions defined on a subset X ⊂ R and let
(gn)n be a sequence of functions defined on a subset Y ⊂ R. The series∑
n≥1

fn(x)gn(y) is uniformly convergent on X × Y under any one of the

following conditions.

1. The series
∑
n≥1

fn is uniformly convergent on X and the sequence

(gn)n is bounded and monotone on Y .

2. The partial sums of the series
∑
n≥1

fn are uniformly bounded on X

and the sequence (gn)n is monotone and uniformly convergent to
0 on Y .

3. The series
∑
n≥1

fn is uniformly convergent on X and the series

|g0|+
∑
n≥1

|gn − gn+1| is bounded on Y .

Proof .

1. We set Sn(x) =

n∑
p=1

fp(x) and S(x) =

+∞∑
n=1

fn(x). Assume that the se-

quence (Sn)n is uniformly convergent to S on X and the sequence (gn)n
is decreasing and bounded on Y . Then

∀ ε > 0, ∃ N ∈ N, ∀ n ≥ N sup
x∈X

|Sn(x)− S(x)| ≤ ε.

Let M > 0 such that |gn(y)| ≤ M for every n ∈ N and every y ∈ Y . If
p ≥ N + 1 and q > p, then

q∑
n=p

fn(x)gn(y) =

q−1∑
n=p

(Sn(x)− S(x)) (gn(y)− gn+1(y))

+ (Sq(x)− S(x)) gq(y)− (Sp−1(x)− S(x)) gp(y).

Then



sup
x∈X,y∈Y

|
q∑

n=p

fn(x)gn(y)| ≤ ε sup
y∈Y

q−1∑
n=p

[gn(y)− gn+1(y)]

+ε sup
y∈Y

(|gq(y)|+ |gp(y)|) ≤ 2εM.

It follows that the series
∑
n≥1

fn(x)fn(y) converges uniformly on X × Y .

2. Let M > 0 such that |Sn(x)| ≤ M , ∀ x ∈ X and ∀n ∈ N. Assume that
the sequence (gn)n is decreasing:

q∑
n=p

fn(x)gn(y) =

q−1∑
n=p

Sn(x)(gn(y)−gn+1(y))+Sq(x)gq(y)−Sp−1(x)gp(y)

We have: ∀ ε > 0, ∃ N ∈ N such that ∀ n ≥ N , sup
y∈Y

|gn(y)| ≤ ε.

For p ≥ N + 1 and q > p

sup
x∈X,y∈Y

|
q∑

n=p

fn(x)gn(y)| ≤ sup
y∈Y

[
M(gp(y)−gq(y))+Mgq(y)+Mgp(y)

]
≤ 2Mε.

3. Let M > 0 be such that

|g0(y)|+
+∞∑
n=0

|gn(y)− gn+1(y)| ≤M , ∀ y ∈ Y.

Let n ≥ N ,

gn(y) =

n−1∑
p=1

(gp+1(y)− gp(y)) + g0(y).

It follows that |gn(y)| ≤M , ∀ n ∈ N and ∀ y ∈ Y .

q∑
n=p

fn(x)gn(y) =

q−1∑
n=p

(Sn(x)− S(x))(gn(y)− gn+1(y))

+(Sq(x)− S(x))gq(y)−
(
Sp−1(x)− S(x)

)
gp(y).

Thus

sup
x∈X,y∈Y

|
q∑

n=p

fn(x)gn(y)| ≤ ε sup
y∈Y

(

q∑
n=p

|gn(y)− gn+1(y)|+ 2M) ≤ 3εM.



Examples 18 :

1. Let (an)n be a sequence of non negative decreasing real numbers and

convergent to 0. The series
∑
n≥0

ane
inx is uniformly convergent on any

compact subset of R \ 2πZ.

2. Consider the series
∑
n≥0

einx

n+ x
and K a compact of R \ Z∗

−, ∃R > 0 such

that K ⊂ [−R,R]. The sequence gn(x) = 1
n+x is decreasing positive

∀n ≥ n0, (n0 > R). The series is pointwise convergent on R \ Z∗
− and it

is uniformly convergent on any compact subset K ⊂ R \ (Z− ∪ 2πZ). In
particular this series converges uniformly on any interval [δ, 2π−δ]; ∀δ >
0.

Proposition 2.6

Let
(
fn : I −→ R

)
n
be a sequence on continuous functions at a point

a ∈ I. Assume that the series
∑

n≥0 fn is uniformly convergent on I to
a function f . Then f is continuous at a.

Proof .
We apply the theorem (1.2) of the previous section.

Proposition 2.7

Let I be an open set in R and
(
fn : I −→ R

)
n
a sequence of continuous

functions. Assume that the series
∑
n≥0

fn is uniformly convergent on any

compact of I to a function f . Then f is continuous on I.

Theorem 2.8

Let
(
fn : [a, b] −→ R

)
n
be a sequence of Riemann integrable functions.

Assume that the series
∑
n≥0

fn is uniformly convergent on [a, b] to a

function f . Then f is Riemann integrable and we have:



+∞∑
n=0

∫ b

a

fn(x)dx =

∫ b

a

+∞∑
n=0

fn(x)dx.

Proposition 2.9

Let
(
fn : [a, b] −→ R

)
n
be a sequence of continuously differentiable func-

tions (C1 functions). Assume that

1. the series
∑
n≥0

fn is pointwite convergent on [a, b] to a function f .

2. the series
∑
n≥0

f ′n converge uniformly on [a, b].

Then f is continuously differentiable on [a, b] and we have:

f ′(x) =

+∞∑
n=0

f ′n(x), ∀x ∈ [a, b].

Moreover the series
∑
n≥0

fn converges uniformly on [a, b] to f .

Corollary 2.10

Let I be an interval of R and let
(
fn : I −→ R

)
n

be a sequence of
continuously differentiable functions. Assume

1. the series
∑

n≥0 fn is pointwise convergent on I to f ,

2. the series
∑

n≥0 f
′
n converges uniformly on any compact of I.

Then f is continuously differentiable and we have:

f ′(x) =

+∞∑
n=0

f ′n(x), ∀x ∈ I.



2.2 Exercises

4-2-1 Study the pointwise, absolute, normally and uniform convergence of the
following series of general term:

1)
∑
n≥1

sin(n2x)

n2
, x ∈ R,

2)
∑
n≥1

1

n
tan−1 x

n
, x ∈ R,

3)
∑
n≥1

xn
2

sin(nπx), x ∈ [0, a],

0 < a < 1.

4)
∑
n≥1

x

(1 + x2)n
, x ∈ R.

5)
∑
n≥1

xe−nx2

, x ∈ R,

6)
∑
n≥1

x2e−x
√
n, x ∈ R+,

7)
∑
n≥1

nx2

1 + n3x
, x ∈ R+,

8)
∑
n≥1

(−1)n

nx
, x ∈ R,

9)
∑
n≥1

x2n

1 + x2n
, x ∈ R,

10)
∑
n≥1

(−1)n

x2 + n
, x ∈ R,

11)
∑
n≥1

x

(1 + nx2)n
, x ∈ R,

12)
∑
n≥1

(−1)nx

(1 + x2)n
, x ∈ R,

13)
∑
n≥1

x

nα(1 + nx2)
, α > 0.

4-2-2 (a) Study the pointwise convergence of the series
∑
n≥1

(−1)n ln
(
1 +

x

n

)
on R+.

(b) Study the uniform and normal convergence of this series on any
closed bounded interval in R+.

4-2-3 Find the domain of definition and the domain of continuity of the func-

tion: f(x) =

+∞∑
n=0

(−1)ne−nx

n+ 1
.

4-2-4 (a) Find the domain of definitionD of the function g(x) =

+∞∑
n=0

(−1)ne−nx

n2 + 1
.

(b) Prove that g is of class C1 on D.

4-2-5 (a) Prove that the series
∑
n≥0

(−1)n
x2n+1

2n+ 1
is uniformly convergent on

[−1, 1].

Let f(x) =

+∞∑
n=0

(−1)n
x2n+1

2n+ 1
, for x ∈ [−1, 1].



(b) Prove that f is differentiable on ]− 1, 1[ and compute f ′.

(c) Deduce the expression of f(x), for −1 ≤ x ≤ 1.

(d) Compute

∫ 1

0

tan−1 xdx and deduce the value the of the following

sum
+∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2)
.

4-2-6 Consider the series of functions
∑
n≥1

fn defined on R+ by: fn(x) = xn −

xn−
1
2 .

(a) Prove that the series
∑
n≥1

fn is pointwise convergent on [0, 1].

Denote f(x) =

+∞∑
n=1

fn(x), for x ∈ [0, 1].

(b) Prove that the remains Rn(x) =

+∞∑
p=n+1

up(x) = xnf(x).

(c) Prove that the series
∑
n≥1

fn is not uniformly convergent on [0, 1].

(d) Prove that there exists M ∈ R+ such that :∣∣∣∣∫ 1

0

Rn(x)dx

∣∣∣∣ ≤ M

n+ 1

(e) Deduce that the series
∑
n≥1

gn, where gn =

∫ 1

0

fn(x)dx is convergent

and its sum is

∫ 1

0

f(x)dx.

(f) Compute

∫ 1

0

f(x)dx and deduce the value of the following sum

+∞∑
n=1

(−1)n

n
.

4-2-7 Define the series of functions
∑
n≥0

fn, where fn is defined by: f0(x) = 0

and fn(x) =
sinn2x

n2
, for n ≥ 1.

(a) Prove that the series
∑
n≥0

fn is uniformly convergent on R.



(b) Study the convergence of the series
∑
n≥0

f ′n.

4-2-8 Let f(x) =

+∞∑
n=1

fn(x); with fn(x) =
(−1)n−1

√
n2 + x2

.

(a) Prove that f is continuous on R.

(b) Study the uniform convergence of the series
∑
n≥1

f ′n and deduce that

f is of class C1.

4-2-9 (a) Find the set of definition D of the function f(x) =

+∞∑
n=1

(−1)n+1

nx
and

prove that f is of class C∞ on D.

(b) For x > 1; express f(x) in term of

∞∑
n=1

1

nx
.

4-2-10 (a) Prove that the series
∑
n≥1

x sinnx

2
√
n+ cosx

is pointwise convergent on

]0, 2π[

(b) Prove that the convergence of the series is uniform on any interval
of the form: [α, 2π − α] ∀0 < α < 2π.

4-2-11 Let α ∈ R and fn(x) =
1

nα
ln(1 + nαx2), for n ≥ 1 and x ∈ R.

(a) Prove that the series
∑
n≥1

fn(x) is pointwise convergent on R if and

only if α > 1.

(b) Assume that α > 1.

i. The series
∑
n≥1

fn(x) is it uniformly convergent on R?

ii. Prove that the function f(x) =

+∞∑
n=1

fn(x) is continuous on R.

(c) Prove that if α > 2; f is differentiable on R∗.

(d) Assume 1 < α ≤ 2.

i. Prove that f is differentiable on R∗.

ii. Prove that ∀n ≥ 1; f(n
−α
2 ) ≥ ln 2.

∞∑
k=n

1

kα
.



Deduce that ∀n ≥ 1;

n
α
2 f(n

−α
2 ) >

ln 2

α− 1
.

f is it differentiable at 0?

4-2-12 Define fn(x) =
x

(1 + x2)n
, for x ∈ R.

Prove that

(a) The series
∑
n≥0

fn and
∑
n≥0

(−1)nfn converge and compute their sum.

(b) ∀a > 0, the series
∑
n≥0

fn converges uniformly on [a,+∞[;

(c) The series
∑
n≥0

(−1)nfn converges uniformly on R.

4-2-13 Let fn(x) =
ln(1 + nx)

nxn
, for x > 0. Prove that

(a) the domain of the pointwise convergence of the series
∑
n≥1

fn(x) is

]1,+∞[. Let f =

+∞∑
n=1

fn on ]1,+∞[.

(b) the series
∑
n≥1

fn is not uniformly convergent on ]1,+∞[ and nor-

mally convergent on [a,+∞[, for all a > 1.

(c) f is continuous on ]1,+∞[ and lim
x→1+

f(x) = +∞.

4-2-14 Define the sequence (fn)n by: fn(x) =
e−x

√
n

1 +
√
n3

.

(a) Determine the domain of convergence of the series
∑
n≥0

fn.

Denote f =

+∞∑
n=0

fn.

(b) Prove that f is continuous on R+.

(c) Prove that f is differentiable on R∗
+.



4-2-15 Let f : ]− 1,+∞[ defined by:

f(x) =

+∞∑
n=1

(−1)n

n+ x
.

Prove that f is continuous on ] − 1,+∞[ and compute lim
x→+∞

f(x) and

lim
x→(−1)+

f(x).

4-2-16 Study the pointwise and uniform convergence of the series of functions∑
n≥0

e−nx

1 + n2
. Let f(x) =

+∞∑
n=0

e−nx

1 + n2
.

Prove that f is of class C1 on R∗
+.

4-2-17 Define the series of functions
∑
n≥1

fn, where fn(x) =
sinnx sinn2x

n
.

Recall that 2 sin kx sin k2x = cos k(k − 1)x− cos k(k + 1)x.

Prove that the series
∑
n≥1

fn(x) converges uniformly on R.

4-2-18 Let fn(x) =
ln(1 + nβx2)

nα
; with α and β two positive numbers.

Under what conditions the series
∑
n≥1

fn(x) and
∑
n≥1

f ′n(x) are pointwise

convergent on R?

4-2-19 Define by induction the sequence of functions (fn(x))n on the interval
[0, 1] by:

f0(x) = 1 and fn(x) = 1 +

∫ x

0

fn−1(t− t2)dt.

(a) Prove that for each n ∈ N, the function fn is a polynomial and that
fn(x) + fn(1− x) is constant.

(b) Prove that for any n ∈ N and any x ∈ [0, 1]

0 ≤ fn(x)− fn−1(x) ≤
xn

n!
.

(c) Deduce that the sequence (fn)n converges uniformly on [0, 1] to a
function f of class C1 on [0, 1] and fulfills f ′(x) = f(x− x2).



4-2-20 Consider the sequence of functions (fn)n defined on ]0,+∞[ by: fn(x) =
1

(nx+ 1)2
.

(a) Prove that the series
∑
n≥0

fn,
∑
n≥0

f ′n and
∑
n≥0

f
′′

n are uniformly con-

vergent on [a,+∞[, with a > 0.

(b) Let F (x) =

+∞∑
n=1

fn(x). Recall that

+∞∑
n=1

1

n2
=
π2

6
. Compute F ( 12 ),

F (1) and F (2).

(c) Prove that F is C2 on ]0,+∞[ and give the sign of F ′ and F
′′
on

]0,+∞[.

(d) Determine lim
x→+∞

F (x) and lim
x→0+

F (x).

4-2-21 Consider the series
∑
n≥0

e−n2x and
∑
n≥0

xe−n2x and denote f(x) =

+∞∑
n=0

e−n2x

and g(x) =

+∞∑
n=0

xe−n2x in the domains of convergence respective Df

andDg.

(a) Determine Df and Dg

(b) i. Prove that f is decreasing on Df .

ii. Give lim
x→0+

f(x).

(c) The function f is it continuous on Df?

(d) i. Compute sup
x≥0

xe−n2x.

ii. The series

+∞∑
n≥0

xe−n2x is it uniformly convergent on Dg?

4-2-22 (a) Prove that the series
∑
n≥0

(−1)n
e−nx

n+ 1
defines a continuous function

on its domain of definition D.

(b) Prove that the series
∑
n≥0

(−1)n
e−nx

n2 + 1
defines a function g of class

C∞ on its domain of convergence.

4-2-23 Let (fn)n be the sequence of functions defined on R by: fn(x) = nxe−nx2

.



(a) Study the pointwise convergence of the series
∑
n≥0

fn.

(b) Prove that the series
∑
n≥0

fn is not normally convergent on R.

(c) Prove that it is normally convergent on [a,+∞[, for all a > 0.

(d) Let f(x) =

+∞∑
n=0

fn(x). Prove that f is the derivative of a well known

function. Deduce the expression of f .

4-2-24 Let fn(x) =
x

1 + n2x2
.

(a) Prove that the series
∑
n≥0

fn is pointwise convergent on R.

(b) For a > 0, prove that the series
∑
n≥0

f ′n converges normally on ] −

∞,−a] ∪ [a,+∞[.

(c) The series
∑
n≥0

f ′n is it uniformly convergent on R?

(d) Determine the set where the function F (x) =

+∞∑
n=0

fn(x) is differen-

tiable.

4-2-25 (a) Prove that ∀x, y ∈ R∗
+, x

ln(y) = yln(x).

(b) Let x ∈ R∗
+, we set : fn(x) = xln(n).

Prove that the series
∑
n≥1

fn(x) is convergent if and only if x <
1

e
.

(c) i. Let a, b such that 0 < a < b <
1

e
.

Prove that the series
∑
n≥1

fn is normally convergent on [a, b].

ii. Let f(x) be the sum of the series
∑
n≥1

fn(x). (f(x) =

+∞∑
n=1

fn(x))

Deduce that f is continuous on ]0,
1

e
[.

(d) Compare the function f the sum of the series
∑
n≥1

fn(x) with an

integral and prove that :



∀x ∈]0, 1
e
[,

−1

1 + ln(x)
≤ f(x) ≤ ln(x)

1 + ln(x)

The function f is it bounded on ]0,
1

e
[?

4-2-26 Consider the series of functions
∑
n≥0

fn, with fn(x) =
(−1)n

n!

1

x+ n
for

x ∈ R.

(a) Give the domain of definition of fn.

(b) Give the set D where the series
∑
n≥0

fn is convergent.

(c) Denote for x ∈ D, f(x) =

+∞∑
n=0

fn(x).

i. Compute f(1) in term of e =

+∞∑
n=0

1

n!
.

ii. Prove that for any x ∈ D, the function xf(x) − f(x + 1) is
constant. Give its value.

(d) Study the uniform convergence of the series
∑
n≥0

f ′n, and
∑
n≥0

f
′′

n and

deduce that f is two times differentiable on D.

4-2-27 Define the sequence (fn)n with fn : ]0,+∞[−→ R defined by: fn(x) =
(−1)n lnn

nx
and set

f(x) =

+∞∑
n=1

(−1)n lnn

nx

(a) i. Prove that the series
∑
n≥1

f ′n(x) converges normally on any closed

interval [a, b] ⊂]1,+∞[.

ii. Deduce that f is of class C1 on ]1,+∞[.

(b) i. Prove that the series
∑
n≥1

f ′n(x) converges uniformly on any in-

terval [α,+∞[, with α > 0.

ii. Deduce that f is of class C1 on ]0,+∞[.

(c) Prove by the same method that the function f is of class C∞ on
]0,+∞[.



4-2-28 (a) i. Prove that the series
∑
n≥1

e−2nx

4n2 − 1
converges uniformly on [0,+∞[.

We set f(x) =

+∞∑
n=1

e−2nx

4n2 − 1
.

ii. Prove that ∀x ∈]0,+∞[; |3e2xf(x)− 1| ≤ 3e−2x

+∞∑
n=2

1

4n2 − 1
.

iii. Deduce that f(x) ≈
+∞

1

3
e−2x.

(b) Let g(x) =

+∞∑
n=1

e−(2n+1)x

2n− 1
.

i. Prove that the series
∑
n≥2

e−(2n+1)x

2n− 1
is pointwise convergent on

]0,+∞[ and uniformly convergent on [a,+∞[ for any a > 0.

ii. Let a > 0. Prove that :

∀x ∈ [a,+∞[ |e3xg(x)− 1| ≤ e−x
+∞∑
n=2

e−(2n−3)a

2n− 1
.

iii. Deduce that g(x) ≈
+∞

e−3x.

(c) Let u(x) =

+∞∑
n=1

e−(2n−1)x.

i. Prove that the series
∑
n≥1

e−(2n−1)x is pointwise convergent on

]0,+∞[ and uniformly convergent on [a,+∞[, ∀a > 0.

ii. Prove that ∀x ∈]0,+∞[, u(x) =
1

2 sinhx
.

(d) Let F (x) = e−xf(x) and G(x) = e2xg(x).

i. Prove that F and G are differentiable on ]0,+∞[ and F ′(x) =
−g(x) and G′(x) = −u(x).

ii. Let x ∈]0,+∞[. Compute the integral :

∫ +∞

x

dt

sinh t
and∫ +∞

x

1

t3
ln

(
et − 1

et + 1

)
dt.

(e) Deduce the values of g(x) and f(x).

4-2-29 Let f be a continuous function on [0, 1]. Define the sequence of polyno-
mials (Bn)n called Bernstein polynomials associated to f ,

Bn(x) =

n∑
k=0

Ck
nf(

k

n
)xk(1− x)n−k.



(a) Let φn(x, t) =

n∑
k=0

Ck
ne

kt
n xk(1− x)n−k =

n∑
k=0

Ck
n

(
e

t
nx
)k

(1− x)n−k.

i. Compute
∂φn

∂t
(x, t) and

∂2φn

∂t2
(x, t).

ii. Prove that
n∑

k=0

Ck
nx

k(1− x)n−k = 1,

n∑
k=0

kCk
nx

k(1− x)n−k = nx

and

n∑
k=0

k2Ck
nx

k(1− x)n−k = nx+ n(n− 1)x2.

(b) Deduce that all 0 < α < 1,

∑
|x− k

n |≥α

Ck
nx

k(1−x)n−k ≤ 1

α2

n∑
k=0

Ck
nx

k(1−x)n−k(x− k

n
)2 ≤ 1

4nα2
.

(c) Using the uniform continuity of f , prove that the sequence (Bn)n
converges uniformly to f .

(d) Deduce that any continuous function on a interval [a, b] is uniform
limit of a sequence of polynomials.

3 Approximation Theorems

In this section, we prove the Weierstrass theorem on the density of the space
of polynomials on the space of continuous functions on the interval [a, b].

Definition 3.1

A function f : [a, b] −→ R is called a step function if there exist a par-
tition σ = (aj)0≤j≤n of [a, b] such that f is constant on any interval
]aj−1, aj [, for all 1 ≤ j ≤ n.
A function f : [a, b] −→ R is called piecewise continuous function, if
there exist a partition σ = (aj)0≤j≤n of [a, b] such that f is continuous
on any interval ]aj−1, aj [, for all 1 ≤ j ≤ n and f has a finite limit at
the right on any point of [a, b[ and a finite limit at the left on any point



of ]a, b].

Theorem 3.2

Let f : [a, b] −→ R be a piecewise continuous function, then there exist
a sequence of step functions on [a, b] which converges uniformly to f . (A
regulated function f is a uniform limit of a sequence of step function.)

Proof .
If f is continuous, it is uniformly continuous on [a, b], then ∀ ε > 0, ∃α > 0
such that if |x − x′| < α, |f(x) − f(x′)| ≤ ε. For all n ∈ N, we consider the
uniform partition σn = (a0, . . . , an), with ak = a+ k b−a

n for all 0 ≤ k ≤ n and
we consider the step functions fn defined by: fn(x) = f(ak), if x ∈ [ak, ak+1[
and f(an) = f(b). If n ≥ b−a

α , we have:

||fn − f ||∞ = max
0≤j≤n−1

(
sup

x∈[aj ,aj+1[

|fn(x)− f(x)|
)
≤ ε.

If f is piecewise continuous and σ = (a0, . . . , an) a partition associated to f ,
i.e. f is continuous on ]aj , aj+1[ for all 0 ≤ j ≤ n− 1. Let fj be a continuous
function on [aj , aj+1] such that fj = f on ]aj , aj+1[. For every fj there exist a
sequence of step functions (fn,j)n which converges uniformly to f on ]aj , aj+1[.
Then the sequence (fn)n defined by: fn(aj) = f(aj) and fn(x) = fn,j(x) for
x ∈]aj , aj+1[, converges uniformly to f on [a, b].

Theorem 3.3

[Weierstrass Theorem]
Let f be a continuous function on an interval [a, b]. There exists a
sequence of polynomials (Pn)n which converges uniformly to f on [a, b].
(i.e. R[X] is dense in C([a, b]) for the norm of uniform convergence.)

Proof .
Without loss of generality, we can assume that [a, b] = [0, 1].
Since f is continuous on [0, 1], it is uniformly continuous. Then ∀ε > 0, ∃α >
0; if |x− y| ≤ α, |f(x)− f(y)| ≤ ε.
We consider the Bernstein polynomials sequence (Bn)n defined by:



Bn(x) =

n∑
k=0

Ck
nf(

k

n
)xk(1− x)n−k.

|f(x)−Bn(x) =
∣∣∣ n∑
k=0

Ck
n(f(x)− f(

k

n
))xk(1− x)n−k

∣∣∣
≤

n∑
k=0

Ck
n

∣∣∣f(x)− f(
k

n
)
∣∣∣xk(1− x)n−k

=
∑

|x− k
n |<α

Ck
n

∣∣∣f(x)− f(
k

n
)
∣∣∣xk(1− x)n−k

+
∑

|x− k
n |≥α

Ck
n|f(x)− f(

k

n
)|xk(1− x)n−k

≤ ε+ 2||f ||∞
∑

|x− k
n |≥α

Ck
nx

k(1− x)n−k

∑
|x− k

n |≥α

Ck
nx

k(1− x)n−k ≤ 1

α2

n∑
k=0

Ck
nx

k(1− x)n−k(x− k

n
)2.

n∑
k=0

Ck
nx

k(1−x)n−k(x−k
n
)2 = x2−2x

n

n∑
k=0

Ck
nkx

k(1−x)n−k+
1

n2

n∑
k=0

Ck
nk

2xk(1−x)n−k.

Since

n∑
k=0

Ck
nx

k(1 − x)n−k = 1, then by derivative with respect to x and if we

set h(x) =

n∑
k=0

Ck
nkx

k(1−x)n−k, we have: h(x) = nx. We iterate this process,

we find:

n∑
k=0

Ck
nx

k(1− x)n−k(x− k

n
)2 =

x(1− x)

n
.

Then

1

α2

n∑
k=0

Ck
nx

k(1− x)n−k(x− k

n
)2 ≤ 1

4nα2
.

The sequence (Bn)n converge uniformly to f on [0, 1].
We give another proof of this theorem in the chapter of Fourier series. We give
now another proof.



Theorem 3.4

Weierstrass Theorem
Let f be a continuous function on an interval I, there exist a sequence
(fn)n of polynomials which converges uniformly on any interval compact
of I to f .

Proof .
Assume in the first case that f is continuous on R and equal to 0 on the
complement of the interval [− 1

2 ,
1
2 ]. We set

Pn(x) = cn(1− x2)n,

with cn a constant such that

∫ 1

−1

Pn(x)dx = 1. We define the sequence

fn(x) =

∫ +∞

−∞
f(y)Pn(x− y)dy =

∫ +∞

−∞
f(x− y)Pn(y)dy. (3.3)

Lemma 3.5

The functions fn are polynomials and the sequence (fn)n converges
uniformly to f on the interval [− 1

2 ,
1
2 ].

Proof .
By the left side of (3.3), f is a polynomial and by the right side of (3.3) we
have for |x| ≤ 1

2 :

f(x)− fn(x) =

∫ 1

−1

(f(x)− f(x− y))Pn(y)dy. (3.4)

Let ε > 0, M the maximum of f on R and δ > 0 such that |f(x)−f(x−y)| < ε
if |y| < δ. It results from the formula (3.4) that

|f(x)− fn(x)| ≤
∫
|y|<δ

εPn(y)dy +

∫
δ≤|y|≤1

M Pn(y)dy.

We have to prove now that

∫
δ≤|y|≤1

Pn(y)dy tends to 0 when n tends to infinity.

Let 0 < r < 1.

1

cn
=

∫ 1

−1

(1− x2)ndx ≥
∫ r

−r

(1− r2)ndx = 2r(1− r2)n.



Then cn ≤ 1

2r(1− r2)n
. Thus

∫
δ≤|y|≤1

Pn(y)dy ≤ 1

2r(1− r2)n

∫ 1

−1

(1− δ2)ndy =
(1− δ2)n

r(1− r2)n
.

The result is deduced if we take r < δ and we tends n to infinity.

Proof of theorem (3) .
If f is zeros on the complement of the interval [−s, s], the function F (x) =
f(2sx) is zeros on the complement of the interval [− 1

2 ,
1
2 ]. By the previous

lemma there exist a sequence (fn)n of polynomials which converges uniformly
to F on the interval [− 1

2 ,
1
2 ]. The sequence of polynomials gn(x) = fn(

x
2s )

converges uniformly to f on the interval [−s, s].
If now f is continuous on the interval I = (a, b). For all n ∈ N such that

n >
2

b− a
, there exists a function φn continuous on I such that φn = 1 on

[a+ 1
n , b−

1
n ] and zeros on the complement of the interval [a+ 1

2n , b−
1
2n ]. There

exists a polynomial fn such that |fn(x)− φn(x)f(x)| <
1

n
on I. The sequence

(fn)n is a solution to the problem.

Corollary 3.6

If f is a continuous function on the interval [a, b] such that∫ b

a

f(x)xndx = 0, for all n ∈ N, then f = 0.

Proof .

It results that for all polynomial P ,

∫ b

a

f(x)P (x)dx = 0. Since f is a uniform

limit of sequence of polynomial (Pn)n, then∫ b

a

f2(x)dx = lim
n→+∞

∫ b

a

f(x)Pn(x)dx = 0.

Remark 17 :
The previous result is wrong for the continuous functions on an unbounded

interval. For example, let f be the function defined by: f(x) = e−x
1
4 sin(x

1
4 ),

for x ∈ [0,+∞[. Prove that

∫ +∞

0

xnf(x)dx = 0, for all n ∈ N.



Corollary 3.7

Let f : [a, b] −→ C be a continuous function. There exist a sequence
(Qn)n ∈ R[X] such that (Qn)n converges uniformly to f on [a, b].





CHAPTER V

POWER SERIES

1 Power Series

1.1 Abel’s Lemma

Definition 1.1

Let (an)n be a sequence of real or complex numbers. The series∑
n≥0

an(x− x0)
n is called a power series centered at x0.

Let
∑
n≥0

an(x − x0)
n be a power series, we look for its domain of convergence.

The series converges at least for x = x0. In which follows, we consider the
series centered at 0.

Proposition 1.2

(Abel’s lemma)

If the power series
∑
n≥0

anx
n
0 is convergent for x0 ̸= 0, then

1. the series
∑
n≥0

anx
n is absolutely convergent on the interval ] −

|x0|, |x0|[,
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2. for every r < |x0|, the power series
∑
n≥0

anx
n is uniformly conver-

gent on [−r, r].

Proof .

1. Let x ∈] − |x0|, |x0|[,
+∞∑
n=0

|anxn| ≤
+∞∑
n=0

|anxn0 ||
x

x0
|n. Since the series∑

n≥0

anx
n
0 is convergent, the sequence (anx

n
0 )n is bounded. Moreover the

series
∑
n≥0

| x
x0

|n is convergent, then the series
∑
n≥0

anx
n is absolutely con-

vergent on ]− |x0|, |x0|[.

2. Let r < |x0| and x ∈ [−r, r], |anxn| ≤ |an|rn and

+∞∑
n=0

|an|rn < +∞, thus

the series
∑
n≥0

anx
n is uniformly convergent on [−r, r].

Corollary 1.3

If the power series
∑
n≥0

anx
n
0 is divergent then it is divergent for every x

such that |x| > |x0|.

1.2 Radius of Convergence of Power Series

Theorem 1.4

For every power series
∑
n≥0

anx
n, there exists a unique R ∈ [0,+∞] such

that :

1. For every |x| < R, the series
∑
n≥0

anx
n is absolutely convergent.

2. For every |x| > R, the sequence (anx
n)n is not bounded and then



the series
∑
n≥0

anx
n is divergent.

The number R is called the radius of convergence of the power
series and ]−R,R[= {x ∈ R; |x| < R} is called the open interval
of convergence of the power series.

Proof .
The uniqueness results from Abel’s lemma. We set

R = sup{r ≥ 1;

+∞∑
n=0

|an|rn < +∞}.

If |x| < R, the series
∑
n≥0

anx
n is absolutely convergent.

If there exists |x| > R such that the series
∑
n≥0

|an|rn is convergent. Then the

series
∑
n≥0

|an|rn is convergent for every R < r < |x| which is absurd.

Remark 18 :
From the proof of the theorem (1.2), we deduce that if R is the radius of

convergence of the series
∑
n≥0

anx
n, then the series is uniformly convergent on

any interval [−r, r] with 0 < r < R.

Theorem 1.5

(Cauchy 1821, used by Hadamard) (Cauchy-Hadamard Rule) Let∑
n≥0

anx
n be a power series with R its radius of convergence. Then

1. R = sup{r ≥ 0;

+∞∑
n=0

|an|rn < +∞} = sup{r ≥

0; the sequence (anr
n)nis bounded }.

2. If lim
n→+∞

| an
an+1

| = β ∈ [0,+∞], then R = β.

3. R =
1

limn→+∞
n
√
|an|

. (With R = +∞ if limn→+∞
n
√

|an| = 0 and

R = 0 if limn→+∞
n
√
|an| = +∞.)



Theorem 1.6

Let
∑
n≥0

anx
n be a power series with radius of convergence R > 0. Define

f(x) =

+∞∑
n=0

anx
n. Then the power series

∑
n≥1

nanx
n−1 has R as radius

of convergence and the function f is differentiable on ] − R,R[ and

f ′(x) = g(x) =

+∞∑
n=1

nanx
n−1.

For the proof, we need the following lemma:

Lemma 1.7

Let x ∈ R and h ∈ R such that 0 < |h| ≤ r, then for any n ∈ N

|(x+ h)n − xn − nhxn−1| ≤ |h|2

r2
(|x|+ r)n (1.1)

and

n|x|n−1 ≤ 1

r

(
2(|x|+ r)n + |x|n

)
. (1.2)

Proof .
From the inequality (3.4)

∣∣(x+ h)n − xn − nhxn−1
∣∣ =

∣∣∣∣∣
n∑

k=0

Ck
nh

kxn−k − xn − nhxn−1

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=2

Ck
nh

kxn−k

∣∣∣∣∣
≤ |h|2

n∑
k=2

Ck
n|x|n−k|h|k−2 ≤ |h|2

r2

n∑
k=2

Ck
n|x|n−krk

≤ |h|2

r2
(|x|+ r)n.

We have: |(x+ h)n − xn − nhxn−1| ≥ nr|x|n−1 − |x|n − (|x|+ r)n. From
the relation (3.4), we deduce :

nr|x|n−1 ≤ |x|n + (|x|+ r)n + |(x+ r)n − xn − nrxn−1| ≤ |x|n + 2(|x|+ r)n.



Proof of the theorem (1.2) .

We denote R′ the radius of convergence of the power series
∑
n≥1

nanx
n−1. It is

obvious that R′ ≤ R. Let r > 0 such that |x|+ r < R. From the lemma (1.2);

we have: |nanxn−1| ≤ 1

r

(
2|an|(|x| + r)n + |an||x|n

)
and thus

∑
n≥1

nanx
n−1 is

absolutely convergent on ]−R,R[. Thus the radius of convergence of the series
defining g is greater than R. Thus R = R′.
From the inequality (3.4) we have:

|f(x+ h)− f(x)

h
− g(x)| ≤ |h| +∞∑

n=1

|an|(|x|+ r)n.

This proves that when h tends to 0; f ′(x) = g(x); for any x ∈]−R,R[.

Corollary 1.8

If f(x) =

+∞∑
n=0

anx
n, then f is infinitely continuously differentiable on

]−R,R[ if R > 0, an =
f (n)(0)

n!
and f(x) =

+∞∑
n=0

f (n)(0)

n!
xn. (This series

is called the Taylor’s series of f at 0 or the Mac-Laurent series of F .)

Example 19 :

1. For x ∈ R,

ex =

+∞∑
n=0

xn

n!
e−x =

+∞∑
n=0

(−1)nxn

n!
,

coshx =

+∞∑
n=0

x2n

(2n)!
sinhx =

+∞∑
n=0

x2n+1

(2n+ 1)!
.

cosx =

+∞∑
n=0

(−1)n
x2n

(2n)!
, sinx =

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

2. For |x| < 1,

1

1− x
=

+∞∑
n=0

xn, ln(1 + x) =

+∞∑
n=0

(−1)n
xn+1

(n+ 1)
,



1

1 + x2
=

+∞∑
n=0

(−1)nx2n and tan−1 x =

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)
,

tanh−1 x =
1

2
ln

1 + x

1− x
=

+∞∑
n=0

x2n+1

(2n+ 1)
.

3. Let α be a real number, α ̸∈ N and f(x) = (1 + x)α for x ∈] − 1, 1[.
f ′(x) = α(1 + x)α−1, then f satisfies the following differential equation

(1 + x)y′ − αy = 0. (1.3)

We look for a power series
∑
n≥0

anx
n solution of the differential equation

(1.3).

If S =

+∞∑
n=0

anx
n is a solution, we have:

(1 + x)

+∞∑
n=0

nanx
n−1 − α

+∞∑
n=0

anx
n = 0,

then (n + 1)an+1 + nan − αan = 0 ⇐⇒ an+1 = α−n
n+1 an ∀n ≥ 0, which

yields that

an =
α(α− 1) . . . (α− n)

2.3 . . . (n+ 1)
a0.

Then

S(x) = a0(1 +

+∞∑
n=1

α(α− 1) . . . (α− n+ 1)

n!
xn).

By the uniqueness of the solution of the differential equation

(1− x)α =

+∞∑
n=0

anx
n, for |x| < 1,

where an =
α(α− 1) . . . (α− n)

2.3 . . . (n+ 1)
.

For α = −1
2 , we have:



1√
1− x

=

+∞∑
n=0

Cn
2n

4n
xn,

√
1 + x = 1 +

1

2

+∞∑
n=0

(−1)nCn
2n

4n
xn+1

n+ 1
.

1√
1− x2

=

+∞∑
n=0

Cn
2n

4n
x2n, sin−1 x =

+∞∑
n=0

Cn
2n

4n
x2n+1

2n+ 1
.

cos−1 x =
π

2
−

+∞∑
n=0

Cn
2n

4n
x2n+1

2n+ 1
, sinh−1 x =

+∞∑
n=0

(−1)nCn
2n

4n
x2n+1

2n+ 1
.



1.3 Exercises

5-1-1 Find the sums of the following series and compute their radius of conver-
gence :

1)

+∞∑
n=0

xn

2n− 1
,

2)

+∞∑
n=1

n2xn,

3)

+∞∑
n=0

n2 + 1

n!
xn,

4)

+∞∑
n=0

xn

(n+ 1)(n+ 3)
,

5)

+∞∑
n=0

(−1)nx2n+1

4n2 − 1
,

6)

+∞∑
n=1

xn

n
cosh(na), a > 0

7)

+∞∑
n=1

xn sinnθ

2n
,

8)

+∞∑
n=1

xn cosnθ

n2n
,

9)

+∞∑
n=1

nxn sin2(nθ)

2n
,

10)

+∞∑
n=0

n2 + 1

n+ 1
xn,

11)

+∞∑
n=0

xn

(2n)!
,

12)

+∞∑
n=0

sin2(nθ)

n!
x2n,

13)
∑
n≥0

(2n+ 1)xn,

14)

+∞∑
n=0

x3n

(3n)!
,

15)

+∞∑
n=0

(n2 + 1)
xn

n!
,

16)

+∞∑
n=0

nxn

3n(n+ 1)
,

17)

+∞∑
n=0

(−1)n
(n2 + 1)xn

n!
,

18)

+∞∑
n=0

nxn

3n(n+ 1)
,

19)

+∞∑
n=1

(−1)nxn

3n+ 1
.

5-1-2 (a) Define the sequences (un)n≥0 and (vn)n≥0 by:{
u0 = 1
v0 = 0

and

{
un+1 = un + 2vn
vn+1 = un + vn.

Determine the radius of convergence and the sum of the power series∑
n≥0

unx
n.

(b) Determine the radius of convergence of the power series :∑
n≥0

anx
n; with a2n = 0 and a2n+1 =

(−1)n

(2n− 1)(2n+ 1)
.



Let f(x) =

+∞∑
n=1

anx
n, give a simple expression of the derivative f ′(x)

in term of x and tan−1 x.

Deduce f(x).

5-1-3 Say if the following affirmations are true or false.

(a) The series
∑
n≥0

anx
n and

∑
n≥0

(−1)nanx
n have the same radius of con-

vergence.

(b) The series
∑
n≥0

anx
n and

∑
n≥0

|an|xn have the same radius of conver-

gence.

(c) The series
∑
n≥0

anx
n and

∑
n≥0

(−1)nanx
n have the same domain of

convergence.

(d) If the radius of convergence of the power series
∑
n≥0

anx
n is infinite,

then the series is uniformly convergent on R.

(e) If the radius of convergence of the power series
∑
n≥0

anx
n is infinite

and if an are positives, then for any integer p, lim
x→+∞

f(x)

xp
= +∞,

with f(x) =

+∞∑
n=0

anx
n.

5-1-4 Give the expansion in power series in a neighborhood of 0 of the following
functions

(a) x 7−→ ln(1 + x)

1 + x
.

(b) f(x) = (sin−1x)2. (We will be able to show that f fulfills a differ-
ential equation of order 2.)

(c)
sin−1 √x√
x(1− x)

.

(d) ln(1− 2x cosα+ x2).

(e) e2x cosx.

5-1-5 Give the expansion in power series of the function f(x) =
x

1− x− x2
.

5-1-6 Give the expansion in power series of the following functions in a neigh-
borhood of 0 and determine the corresponding radius of convergence :



1)
1

(1− x)2
,

2)
1

(x− 2)(x− 3)
,

3) ln(1 + x+ x2)

4) sin3 x,

5) sinh3 x,

6) (x− 1) ln(x2 − 5x+ 6),

7) x ln(x+
√
x2 + 1),

8)
x− 2

x3 − x2 − x+ 1
,

9)
1

1 + x− 2x3
,

10)
1− x

(1 + 2x− x2)2
,

11) tan−1(x+ 1),

12) tan−1(x+
√
3 ),

13)

∫ x

0

ln(t2 − 5
2 t+ 1)

t
dt,

14)
( (1 + x) sinx

x

)2
,

15)

∫ 2x

x

e−t2 dt,

16) e−2x2

∫ x

0

e2t
2

dt,

17)
ex

1− x
,

18)
ex

2

1− x
,

19)

∫ x

0

cos t− 1

t2
dt,

20) ln

(
1 + x

2− x

)
21) ln

√
1− 2x cosh a+ x2,

5-1-7 Define f(x) =
sin−1 x√
1− x2

.

(a) Prove that f has an expansion in power series in a neighborhood of
0 and precise the radius of convergence.

(b) Prove that f fulfills a differential equation.

Deduce the coefficients of the expansion in power series of f .

(c) Give the expansion in power series of (sin−1)2(x).

5-1-8 Give the expansion in power series the following functions at the corre-
sponding point x0.

(a) f(x) = cosx, (x0 =
π

4
),

(b) f(x) = (1− x3)−
1
2 , (x0 = 0),

5-1-9 Assume that the power series
∑
n≥0

a2nx
n and

∑
n≥0

a2n+1x
n have radius of

convergence R and R′ respectively.

Determine the radius of convergence of the power series
∑
n≥0

anx
n.



5-1-10 Let (an)n be a decreasing sequence and lim
n→+∞

an = 0 and the series∑
n≥0

an diverges.

(a) Prove that the radius of convergence of the power series
∑
n≥0

anx
n is

1.

(b) Study the convergence for |x| = 1.

5-1-11 (a) Let (an)n be a sequence of real numbers such that the series
∑
n≥0

an

is convergent.

We claim to prove that the power series
∑
n≥0

anx
n is uniformly con-

vergent on [0, 1].

Define Rn =

+∞∑
k=n+1

ak and Sn =

n∑
k=0

akx
k.

i. Prove that for p > n; Sp(x) − Sn(x) = Rnx
n+1 − Rpx

p +
p−1∑

k=n+1

(xk+1 − xk)Rk.

ii. Deduce that the series
∑
n≥0

anx
n fulfills the Cauchy criterion for

the uniform convergence on [0, 1].

(b) Let
∑
n≥0

bnx
n be a power series of radius of convergence R and let

f(x) its sum. Let x0 ∈ R such that |x0| = R ̸= 0. Assume that the

series
∑
n≥0

bnx
n
0 is convergent.

i. Prove that lim
x7−→x0

x∈[0,x0]

f(x) =

+∞∑
n=0

bnx
n
0 ([0, x0] = {tx0, t ∈ [0, 1]}).

ii. Deduce the value of the following sum

+∞∑
n=1

(−1)n

n
.

5-1-12 For each of the following power series, determine the interval of conver-
gence of this series and prove that its sum is a solution of the suitable
differential equation.

f(x) =

∞∑
n=0

x4n

(4n)!
, y(4) = y



f(x) =

∞∑
n=0

xn

(n!)2
, xy

′′
+ y′ − y = 0

f(x) =

+∞∑
n=0

(−1)n22nx2n

(2n)!
, y

′′
+ 4y = 0

5-1-13 (a) Prove that there exists a solution as power series of the following
differential equation

x(x− 1)y
′′
+ 3xy′ + y = 0.

(b) Determine the radius of convergence of the obtained series.

5-1-14 For any λ ∈ R, consider the following differential equation

y
′′
(x)− 2xy′(x) + 2λy(x) = 0 (1.4)

(a) Prove that the equation (1.6) has a unique even solution Pλ as a
power series on R and fulfills Pλ(0) = 1.

(b) Prove that (1.6) has a unique odd solution Qλ as a power series on
R and fulfills Q′

λ(0) = 1.

(c) Determine all the values of λ for that the equation (1.6) has a non
vanishing polynomial solution.

5-1-15 (a) Find the solutions as power series of the following differential equa-
tions :

i. y′ − 2xy = 0; y(0) = 1

ii. y
′′
+ xy′ + y = 0

iii. 4xy
′′
+ 2y′ − y = 0, x > 0

(b) Give the expansion in power series the function f(x) = e
−x2

2

∫ x

0

e
t2

2 dt.

5-1-16 Define un(x) = (−1)n
xn

n(n− 1)
, for n ≥ 2.

(a) Determine the interval of convergence of the series
∑
n≥2

(−1)n
xn

n(n− 1)

and study this series to the endpoints of this interval.

(b) Study the series
∑
n≥2

u′n(x) and the series
∑
n≥2

u
′′

n(x).

(c) Deduce the sum of the series
∑
n≥2

un(x).



5-1-17 (a) Consider the sequence (an) defined by: a0 = 1, a1 = 2, an+2 −
7an+1 + 12an = 0.

i. Compute F (x) =

+∞∑
n=0

anx
n.

ii. Deduce the expression of an.

(b) Consider the sequence (an) defined by: a0 = 1, a1 = 2, an+2 −
7an+1 + 12an = n.

Compute the expression of an.

(c) Consider the sequence (an)n defined by: a0 = 1, a1 = 2, an+2 −
8an+1 + 16an = 0.

Find the expression of an.

5-1-18 Let (an)n ∈ R∗ be a convergent sequence of real numbers and let a =
lim

n→+∞
an.

(a) Find the radius of convergence of the power series
∑
n≥0

anx
n

n!
.

Define f(t) =

+∞∑
n=0

an
n!
tn, for t ∈ R.

(b) Compute lim
t 7−→+∞

e−tf(t).

5-1-19 Prove that the equation 3xy′ + (2 − 5x)y = x has a solution as a power
series in a neighborhood of 0 and give its radius of convergence.

5-1-20 Consider the following differential equation

x2y
′′
+ xy′ − (x2 + x+ 1)y = 0. (1.5)

(a) Find a solution of the equation (1.1) φ(x) =

+∞∑
n=0

anx
n with a1 = 1.

(b) Prove that, for n ≥ 1, |an| ≤
1

(n− 1)!
and deduce the radius of

convergence of the power series
∑
n≥0

anx
n.

(c) Solve the equation (1.1) in putting y =
e−x

x
z.

5-1-21 We claim to prove that the following differential equation



x2y′(x) = y(x)− x2 (1.6)

has no solution as sum of a power series.

Assume that this equation has a solution y =

+∞∑
n=0

anx
n.

(a) Give the values of a0, a1 and a2?

(b) Give the relation between an+1 and an for n ≥ 2.

(c) Prove that the relations stated in 1) and 2) give the uniqueness of

the power series
∑
n≥0

anx
n. Compute its coefficients and prove that

it diverges.



CHAPTER VI

FOURIER SERIES

In this chapter, we consider the locally Riemann integrable functions. The
reader can always take the piecewise continuous functions.
The aim of this chapter is the study the expansion of function (in physics we
said a signal) of one real variable then of the synthase or reconstitution of this
function has from of the its composite elements.

1 Fourier Series Expansion

1.1 Preliminary

1. Let f : R −→ C be a locally Riemann-integrable function and T−periodic
with T > 0, then

∫ a+T

a

f(t)dt =

∫ T

0

f(t)dt ∀a ∈ R.

Indeed,

∫ a+T

a

f(t)dt =

∫ 0

a

f(t)dt+

∫ T

0

f(t)dt+

∫ a+T

T

f(t)dt. Taking the

change of variable u = t− T in the last integral, we get the result. This
means that the integral of a T−periodic function on an interval of length
T does not depends of the chosen interval.

2. For n,m ∈ Z,

1

2π

∫ 2π

0

eint dt =

{
0 if n ̸= 0
1 if n = 0

,
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1

π

∫ 2π

0

sin(mt) cos(nt) dt = 0,

1

π

∫ 2π

0

cos(mt) cos(nt) dt =

{
0 if n ̸= m
1 if n = m ̸= 0

,

1

π

∫ 2π

0

sin(mt) sin(nt) dt =

0 if n ̸= m
1 if n = m ̸= 0
0 if n = m = 0

Definition 1.1

We consider the space E of continuous functions 2π-periodic defined
on R with complex values. The map defined on E × E by:

⟨f, g⟩ = 1

2π

∫ π

−π

f(t)g(t)dt =
1

2π

∫ a+π

a−π

f(t)g(t)dt

is a inner product. It defines a norm called the Euclidean norm denoted
by ∥ ∥2.

Remark 19 :
The system {1, cos(nt), sin(nt), n ∈ N} is an orthogonal system. Also the
system {eint, n ∈ Z} is orthogonal.

1.2 Bessel Inequality

Definition 1.2

1. A trigonometric polynomial of degree ≤ N is a complex linear
combination of {1, cos(kx), sin(kx), 1 ≤ k ≤ N}, i.e. a trigono-
metric polynomial P of degree ≤ N has the form

P (x) =
a0
2

+

N∑
n=1

(an cos(nx) + bn sin(nx)), (1.1)

with an, bn ∈ C. In particular a trigonometric polynomial is a
function of class C∞ and 2π-periodic.



2. A trigonometric series is a series of functions in the form

a0
2

+
∑
n≥1

(an cos(nx) + bn sin(nx)),

with an and bn ∈ C.

Remark 20 :

Let P (x) =
a0
2

+

N∑
n=1

(an cos(nx) + bn sin(nx)) a trigonometric polynomial of

degree ≤ N , then

P (x) =
a0
2

+

N∑
n=1

einx(
an
2

− i
bn
2
) +

N∑
n=1

e−inx(
an
2

+ i
bn
2
) =

N∑
n=−N

Cne
inx, (1.2)

with

Cn = (
an
2

− i
bn
2
), C−n = (

an
2

+ i
bn
2
)

for n ≥ 1 and C0 = a0

2 . This form is called the exponential form of P , and the
form (1.1) is called trigonometric form of P .
If P is a trigonometric polynomial of degree ≤ N in the form (1.1) or (1.1),
then

Cn =
1

2π

∫ 2π

0

P (t)e−int dt, ∀n ∈ Z,

an =
1

π

∫ 2π

0

P (t) cos(nt) dt, ∀n ∈ N ∪ {0},

bn =
1

π

∫ 2π

0

P (t) sin(nt) dt, ∀n ∈ N.

Theorem 1.3

Let f : [0, 2π] −→ C be a Riemann-integrable function. define

Cn =
1

2π

∫ 2π

0

f(t)e−int dt, n ∈ Z



SN (x) =

N∑
n=−N

Cne
inx, N ∈ N ∪ {0}.

Then:

1. For any trigonometric polynomial P of degree ≤ N ,

∫ 2π

0

|f(t)− SN (t)|2 dt ≤
∫ 2π

0

|f(t)− P (t)|2 dt. (1.3)

2. The series
∑
n∈Z

|Cn|2 is convergent and

+∞∑
n=−∞

|Cn|2 ≤ 1

2π

∫ 2π

0

|f(t)|2 dt (Bessel Inequality). (1.4)

The property (1.3) shows that SN realized the best approximation in quadratic
mean of f by a trigonometric polynomial of degree ≤ N .

Proof .

1. Let P (x) =

N∑
n=−N

dne
inx,

1

2π

∫ 2π

0

|f(t)− P (t)|2 dt =
1

2π

∫ 2π

0

|f(t)|2 dt− 1

2π

∫ 2π

0

f(t)P̄ (t)dt

− 1

2π

∫ 2π

0

P (t)f̄(t)dt+
1

2π

∫ 2π

0

|P (t)|2dt.

1

2π

∫ 2π

0

f(t)P (t)dt =

N∑
n=−N

d̄n
1

2π

∫ 2π

0

f(t)e−int dt =

N∑
n=−N

d̄nCn.

Thus

1

2π

∫ 2π

0

f̄(t)P (t) dt =

N∑
n=−N

dnC̄n,
1

2π

∫ 2π

0

|P (t)|2 dt =
N∑

n=−N

|dn|2.

Then



1

2π

∫ 2π

0

|f(t)−P (t)|2 dt = 1

2π

∫ 2π

0

|f(t)|2 dt−
N∑

n=−N

|Cn|2+
N∑

n=−N

|dn−Cn|2.

If the polynomial P is the polynomial SN , we have:

1

2π

∫ 2π

0

|f(t)− SN (t)|2 dt = 1

2π

∫ 2π

0

|f(t)|2 dt−
N∑

n=−N

|Cn|2,

this yields the result.

2.
1

2π

∫ 2π

0

|f(t)− P (t)|2 dt = 1

2π

∫ 2π

0

|f(t)|2 dt−
N∑

n=−N

|Cn|2, thus

N∑
n=−N

|Cn|2 ≤ 1

2π

∫ 2π

0

|f(t)|2 dt and we take the limit when N −→ +∞.

Corollary 1.4

If f : [0, 2π] −→ C is a Riemann-integrable function, then

lim
n→+∞

∫ 2π

0

f(t) cos(nt) dt = 0 and lim
n→+∞

∫ 2π

0

f(t) sin(nt) dt = 0.

Proof .

As the series
∑
n∈Z

|Cn|2 converges, then lim
n→∞

|Cn|2 = 0. If we set an =
1

π

∫ 2π

0

f(t) cos(nt) dt

and bn =
1

π

∫ 2π

0

f(t) sin(nt) dt, for n ∈ N we have: an = Cn + C−n and

bn = i(Cn − C−n), and we have the result.

Theorem 1.5

(Riemam-Lebesgue Lemma)
Let f : [a, b] −→ C be a Riemann-integrable function, then



lim
λ→+∞

∫ b

a

f(t) cos(λt) dt = 0 and lim
λ→+∞

∫ b

a

f(t) sin(λt) dt = 0.

Proof .

As

∫ b

a

f(t) cos(λt) dt =

∫ b

a

Re f(t) cos(λt) dt +

∫ b

a

Im f(t) cos(λt) dt, it

suffices to prove the theorem for f real .
• If f = χ[α,β] is the characteristic function of an interval [α, β], we have:

∫ b

a

f(t) cos(λt) dt =

∫ β

α

cos(λt) dt =
sin(λα)

λ
− sin(λβ)

λ
−→

λ→+∞
0.

• If f is a step function on [a, b], there exists a partition σ = {x0 = a < x1 <
. . . < xn = b} of [a, b] such that f = cj on ]xj , xj+1[. In this case∫ b

a

f(t) cos(λt)dt =

n−1∑
j=0

cj

∫ xj+1

xj

cos(λt)dt.

Thus

∣∣∣∫ b

a

f(t) cos(λt)dt
∣∣∣ ≤ 2

λ

n−1∑
j=0

|cj | −→
λ→+∞

0.

In the general case : as f is Riemann-integrable on [a, b], for ε > 0, there exists

a step function fε such that fε ≤ f and

∫ b

a

(f(t)− fε(t)) dt < ε. Then

∫ b

a

f(t) cos(λt) dt =

∫ b

a

(f(t)− fε(t)) cos(λt) dt+

∫ b

a

fε(t) cos(λt) dt.

We deduce that

∣∣∣∫ b

a

f(t) cos(λt) dt
∣∣∣ ≤ ∣∣∣∫ b

a

(f(t)− fε(t)) dt
∣∣∣+ ∣∣∣∫ b

a

fε(t) cos(λt) dt
∣∣∣.

As fε is a step function, lim
λ→+∞

|
∫ b

a

fε(t) cos(λt) dt| = 0 and the result is

deduced.



1.3 Fourier Series

1. Let f be a complex 2π−periodic function, Riemann-integrable on [0, 2π].
We set

Cn =
1

2π

∫ 2π

0

f(t)e−int dt, n ∈ Z,

an =
1

π

∫ 2π

0

f(t) cos(nt) dt, n ∈ N0,

bn =
1

π

∫ 2π

0

f(t) sin(nt) dt, n ∈ N

The coefficients (Cn)n will be called the exponential Fourier coefficients
of f and an and bn will be called the trigonometric Fourier coefficients of
f . We recall that :

a0 = 2C0, an = Cn + C−n, bn = i(Cn − C−n), ∀n ≥ 1.

SN (x) =
a0
2

+

N∑
n=1

(an cos(nx) + bn sin(nx)) =

N∑
n=−N

Cne
inx.

lim
n→+∞

SN (x) =
a0
2

+

+∞∑
n=1

(an cos(nx) + bn sin(nx)) =

+∞∑
n=−∞

Cne
inx

The series
∑
n∈Z

Cne
inx =

a0
2

+
∑
n≥1

(an cos(nx) + bn sin(nx)) will be called

the Fourier series of f . We will denote formally f̃(x) the sum of this
series.

We say that the Fourier series of f converges at x0 ∈ R if the sequence

(SN )N , SN (x) =

N∑
n=−N

Cne
inx converges at x0.

2. If f is T−periodic, the function g(x) = f(Tx
2π ) is 2π-periodic on R. More-

over the function f is locally Riemann integrable on R, we associate to f
the Fourier coefficients defined from the Fourier coefficients of g by:

Cn =
1

T

∫ T

0

f(t)e−in 2π
T t dt, ∀n ∈ Z,



an =
2

T

∫ T

0

f(t) cos
2π

T
nt dt, ∀n ∈ N0,

bn =
2

T

∫ T

0

f(t) sin
2π

T
nt dt, n ∈ N.

The exponential Fourier series of f is∑
n∈Z

Cne
−in 2π

T t

and the trigonometric Fourier series is

a0
2

+
∑
n≥1

(an cos
2π

T
nx+ bn sin

2π

T
nx).

Definition 1.6

Let f : R −→ C be a 2π−periodic function and Riemann-integrable on
[0, 2π]. Develop f in Fourier series, means that find Fourier trigonomet-
ric or exponential series of f , study the convergence of the series f̃ of f
and give its value.

Examples 20 :

1. f(x) = |x| if |x| ≤ π and f 2π−periodic. The curve of f on [−2π, 2π] has
the following form:

x

y

π−π 2π−2π

We have:

a0 =
1

π

∫ π

−π

|t| dt = π, an =
1

π

∫ π

−π

|t| cos(nt) dt = 2

n2π
((−1)n−1), n ≥ 1.



As f is even bn = 0. The Fourier series of f converges uniformly on R.

2. Let f(x) = sinx, for x ∈ [0, π] even and 2π-periodic. Thus bn = 0 and

an =
2

π

∫ π

0

sinx cos(nx) dx. a2n+1 = 0 and a2n =
−4

π(4n2 − 1)
. The

Fourier series of f converges uniformly on R.

3. Let α ∈ C \ (iZ), f(x) = eα.x on ]− π, π[ and 2π−periodic.

Cn =
(−1)n sinhαπ

π(α− in)
, f̃(x) =

sinhπα

π

+∞∑
−∞

(−1)n
einx

α− in
.

4. Let f(z) =

+∞∑
n=0

anz
n be a power series (z ∈ C) of radius of convergence

R > 0. For r ∈ [0, R[, the map θ
F7−→ f(reiθ) is 2π−periodic and we

have:

f(reiθ) =

+∞∑
n=0

(anr
n)einθ (1.5)

and the trigonometric series converges uniformly on R.

Thus
1

2π

∫ 2π

0

f(reiθ)e−ipθdθ =

+∞∑
n=0

(anr
n)

∫ 2π

0

ei(n−p)θdθ.

The series (1.5) is the Fourier series of f . Moreover ap =
1

2π

∫ 2π

0

f(reiθ)e−ipθdθ,

then |ap| ≤
M(r)

rp
, with M(r) = sup|z|=r |f(z)|.

If we take the function f(z) = 1
1−z , we know that for |z| < 1,

1

1− z
=

+∞∑
n=0

zn. Thus for any θ ∈ R and any r ∈ [0, 1[,
1

1− reiθ
=

+∞∑
n=0

rneinθ and

in taking the real part of each member we get :

1− r cos θ

1 + r2 − 2r cos θ
=

+∞∑
n=0

rn cos(nθ).

1.4 The Dirichlet Theorem

The natural question in Fourier analysis is : ”In what condition the Fourier
series of a function f is convergent and the relation between the limit and the
function f .



Definition 1.7

[Dirichlet Kernel]
The Dirichlet kernel of degree N ∈ N0 is the trigonometric polynomial
DN defined by:

DN (x) =

N∑
n=−N

einx =
sin(N + 1

2 )x

sin x
2

.

The function DN is even and
1

2π

∫ 2π

0

DN (t)dt = 1.

Theorem 1.8

(Dirichlet Theorem)
Let f : R −→ C be a 2π-periodic function and Riemann-integrable on
[0, 2π]. Let x ∈ R such that f(x+) = lim

t→x, t>x
f(t) and f(x−) =

lim
t→x, t<x

f(t) exist in C. We assume also that there exists δx > 0 (de-

pends of x) and Mx ≥ 0 (depends of x) such that : ∀t, 0 < |t| < δx, :

|f(x+ t) + f(x− t)− f(x+)− f(x−)|
|t|

≤Mx (1.6)

then the Fourier series of f at x converges to
f(x+) + f(x−)

2
, i.e.

lim
N→+∞

a0
2

+

N∑
n=1

(an cos(nx) + bn sin(nx)) =
f(x+) + f(x−)

2
. (1.7)

The condition (1.6) is called the Dirichlet condition at x.

Proof .
Let Cn be the Fourier exponential coefficients of f , with n ∈ Z.

SN (x) =

N∑
n=−N

Cne
inx =

N∑
n=−N

1

2π

∫ 2π

0

f(t)e−inteinxdt

=
1

2π

∫ 2π

0

f(t)DN (t− x) dt.

u=t−x
=

1

2π

∫ 2π

0

f(u+ x)DN (u) du.



If we denote y =
f(x+) + f(x−)

2
we have:

SN (x)− y =
1

2π

∫ π

0

(f(x− u) + f(x+ u)− 2y)DN (u)du

=
1

2π

∫ π

0

f(x− u)+f(x+u)− f(x+)− f(x−)

u

u

sin u
2

sin(
(2N+1)u

2
)du.

The function φ defined on ]0, π[ by:

φ(u) =
f(x− u) + f(x+ u)− f(x+)− f(x−)

u

u

sin u
2

is Riemann-integrable on ]0, π]. Moreover ∀ u ∈]0, δx[, we have: φ(u)| ≤Mxπ.

(
2

π
≤ sin t

t
≤ 1, ∀t ∈ [0, π2 ]) and by the Riemman-Lebesgue lemma (1.2),

lim
N→+∞

∫ π

0

φ(u) sin(N +
1

2
)u du = 0. Thus lim

N→+∞
SN (x) =

f(x+) + f(x−)

2
.

Theorem 1.9

1. Let x ∈ R such that f(x+), f(x−), f ′(x+) =

lim
t→0, t>0

f(x+ t)− f(x+)

t
and f ′(x−) =

lim
t→0, t>0

f(x− t)− f(x−)

t
, exist in C. Then the Dirichlet

condition is realized at x and the Fourier series of f at x

converges to f(x+)+f(x−)
2 .

2. If f is also continuous at x, then the Fourier series of f at x
converges to f(x).

3. If f is 2π−periodic and of class piecewise continuously differen-
tiable [0, 2π], then ∀x ∈ R

f(x) =
a0
2

+

+∞∑
n=1

(an cos(nx) + bn sin(nx)) =

+∞∑
n=−∞

Cne
inx.

Examples 21 :



1. Let f be the function defined by: f(x) = |x| if x ∈ [−π, π] and 2π−periodic.
f is continuous at the left of π and at the right of −π, by parity and pe-
riodicity, f is continuous at π and at −π. f is continuously differentiable
on [−π, π], thus by Dirichlet theorem, the Fourier series of f coincides
with f at any point x ∈ R. Thus for |x| ≤ π, we have:

|x| = π

2
− 4

π

+∞∑
k=0

cos(2k + 1)x

(2k + 1)2
.

For x = 0, we have:

π2

8
=

+∞∑
k=0

1

(2k + 1)2
.

The Fourier series of f converges uniformly to f on R.

2. Let f be the function defined by: f(x) = x on ]−π, π[ and 2π−periodic.
(we associate an arbitrary value at π). f is continuously differentiable on
]− π, π[ and has a derivative at the left and at the right at any point on
R. By Dirichlet theorem, we have for any x ∈ R \ {(2k + 1)π, k ∈ Z},

f(x) = 2

+∞∑
n=1

(−1)n+1

n
sin(nx).

In particular for x = π
2

π

4
=

+∞∑
p=0

(−1)p

2p+ 1
.

1.5 The Parseval Theorem

Definition 1.10

(The Cesaro Summation)
Let (Un)n be a sequence of complex numbers. We define the sequence

SN =

N∑
k=0

Uk. We say that the series
∑

n≥0 Un is Cesaro summable if

the sequence TN =
S0 + . . . SN

N + 1
converges in C.

Examples 22 :



1. If Un = (−1)n, S2p = 1 and S2p+1 = 0, T2n = n
2n+1 and T2n+1 = n

2n+2 ,

thus the series
∑
n≥0

Un is Cesaro summable and has 1
2 as sum, but the

series
∑
n≥0

Un diverges.

2. If the series
∑
n≥0

Un converges to ℓ, then it is Cesaro summable and has ℓ

as sum.

Definition 1.11

[Fejer Kernel]

For N ∈ N0, we set FN (x) =

N∑
n=0

DN (x), x ∈ R, with DN the Dirichlet

kernel. FN is a polynomial trigonometric called the Fejer kernel of
degree N .

FN is even function and
1

2π

∫ 2π

0

FN (t)dt = N + 1.

Notations
Let f : R −→ R be a Riemann-integrable function on [0, 2π] and 2π−periodic.
Let (an)n and (bn)n its trigonometric Fourier coefficients. We define for all
N ∈ N0

SN (x) =
a0
2

+

N∑
n=1

(an cos(nx) + bn sin(nx)),

and

ΛN (f, x) =
S0(x) + . . . SN (x)

N + 1
,

then as in the proof of Dirichlet theorem, we have:

SN (x) =
1

2π

∫ 2π

0

f(x+ u)DN (u) du =
1

2π

∫ 2π

0

f(x− u)DN (u) du.

ΛN (f, x) =
1

2π(N + 1)

∫ 2π

0

f(x+u)FN (u) du =
1

2π(N + 1)

∫ 2π

0

f(x−u)FN (u) du.

The real expression of FN is



FN (x) =
sin2 N+1

2 x

sin2 x
2

.

Theorem 1.12

Let f : R −→ C be a Riemann-integrable function on [0, 2π] and
2π−periodic.

1. Let x ∈ R such that f(x+) and f(x−) exist, then

lim
N→+∞

ΛN (f, x) =
f(x+) + f(x−)

2
.

2. The sequence (ΛN )N converges uniformly on any compact K on
which f is continuous.

Proof .

1. We know that ΛN (f, x) =
1

2π(N + 1)

∫ 2π

0

f(x+ u)FN (u) du.

Let y be a constant, as
1

2π(N + 1)

∫ 2π

0

FN (u) du = 1, we have:

ΛN (f, x)− y =
1

2π(N + 1)

∫ 2π

0

(f(x+ u)− y)FN (u) du

=
1

2π(N + 1)

∫ π

0

(f(x+ u) + f(x− u)− 2y)FN (u) du.

We take y = f(x+)+f(x−)
2 . Let ε > 0, ∃δx > 0 such that ∀u ∈]0, δx[,

|f(x+ u)− f(x+)| < ε

2
and |f(x− u)− f(x−)| < ε

2
. There it results

that

|ΛN (f, x)− y| ≤ (
ε

2
+
ε

2
)

1

2π(N + 1)

∫ δx

0

FN (u) du

+
1

2π(N + 1)

∫ π

δx

|f(x+ u) + f(x− u)− 2y|FN (u) du

≤ ε+
1

2π(N + 1) sin2 δx/2

∫ π

0

|f(x+ u) + f(x− u)− 2y| du.



f is bounded on R, then there exists N0 ∈ N0 such that for any N ≥ N0

1

2π(N + 1) sin2 δx/2

∫ π

0

|f(x+ u) + f(x− u)− 2y| du ≤ ε.

2. We take δ > 0 which does not depends on x ∈ K. (This is possibly,
because f is uniformly continuous on K.)

Corollary 1.13

Let f : R −→ C be a continuous function and 2π−periodic. If the
sequence (SN )N converges, then its limit is f .

Proof .
Let g = lim

N→+∞
SN . The sequence (ΛN )N converges uniformly to f , then g = f .

Corollary 1.14

Let f : R −→ C be a continuous function and 2π−periodic, then ∀ε > 0,
there exists a trigonometric polynomial Pε such that

sup
x∈R

|f(x)− Pε(x)| < ε.

Otherwise a continuous function 2π−periodic is limit uniform of trigonometric
polynomials.

1.6 The Parseval Identity

Let f be a 2π−periodic function, Riemann-integrable on [0, 2π]. If

Cn =
1

2π

∫ 2π

0

f(t)e−int dt, for n ∈ Z.

For N ∈ N0,we posed

SN (x) =

N∑
n=−N

Cne
inx, and ΛN (f, x) =

S0 + . . .+ SN (x)

N + 1
=

N∑
k=−N

γke
ikx.



γ0 = C0, γ1 = N
N+1C1, γ−1 = N

N+1C−1, γp = N−p+1
N+1 Cp and γ−p = N−p+1

N+1 C−p,
∀ p ≥ 2. Then

ΛN (f, x) =

N∑
k=−N

(1− |k|
N + 1

)Cke
ikx.

Theorem 1.15

(Parseval Identity)
Let f be a 2π−periodic function and piecewise continuous on [0, 2π],
then:

+∞∑
−∞

|Cn|2 =
1

2π

∫ 2π

0

|f(t)|2 dt = |a0|2

4
+

1

2

+∞∑
n=1

(|an|2 + |bn|2).

Lemma 1.16

With the same notations

lim
N→+∞

∫ 2π

0

|ΛN (f, x)|2 dx =

∫ 2π

0

|f(t)|2 dt.

Proof .
Let x0 = 0 < x1 < . . . < xs = 2π such that f is continuous on ]xi, xi+1[ ∀i ∈
{0, . . . , s−1}, thus (ΛN (f))N converges uniformly to f on Iη = [xi+η, xi+1−η],
for any η > 0, η ∈]0, (xi+1 − xi)/2[.

For any x ∈ R, |ΛN (f, x)| ≤ 1

2π(N + 1)

∫ π

−π

|f(x + u)|FN (u) du ≤ M , with

M = sup
x∈[0,2π]

|f(x)|, where (|ΛN (f, .)|2)N converges uniformly to |f |2 on Iη and

then

lim
N→+∞

∫ xi+1

xi

|ΛN (f, x)|2 dx =

∫ xi+1

xi

|f(x)|2 dx because for ε > 0,



∫ xi+1

xi

||ΛN (f, x)|2 − |f(x)|2| dx =

∫ xi+ε

xi

||ΛN (f, x)|2 − |f(x)|2| dx

+

∫ xi+1−ε

xi+ε

||ΛN (f, x)|2 − |f(x)|2| dx

+

∫ xi+1

xi+1−ε

||ΛN (f, x)|2 − |f(x)|2| dx

≤ 4εM2 +

∫ xi+1−ε

xi+ε

| |ΛN (f, x)|2 − |f(x)|2| dx

lim
N→+∞

∫ xi+1−ε

xi+ε

||ΛN (f, x)|2 − |f(x)|2| dx = 0.

Proof of the theoreme (1.6) .

1

2π

∫ 2π

0

|ΛN (f, x)|2 dx =

N∑
k=−N

(1− |k|
N + 1

)|Ck|2 ≤
N∑

k=−N

|Ck|2,

1

2π

∫ 2π

0

|ΛN (f, x)|2 dx ≤
+∞∑

k=−∞

|Ck|2 and the Bessel inequality yields that

1

2π

∫ 2π

0

|ΛN (f, x)|2 dx ≤
+∞∑

k=−∞

|Ck|2 ≤ 1

2π

∫
0

|f(x)|2dx.

Corollary 1.17

Let f be a piecewise continuous function on R and 2π−periodic. We
assume that

⟨f, einx⟩ = 1

2π

∫ π

−π

f(x)e−inxdx = 0, ∀n ∈ Z,

then f is zero at all its points of continuity and ||f ||2 = 0.

Remark 21 :
If f and g are two piecewise continuous functions and 2π−periodic. Let Cn

(respectively Dn) be the Fourier coefficients of f (respectively g). As the series



∑
n∈Z

|Cn|2 and
∑
n∈Z

|Dn|2 converge, then the series
∑
n∈Z

CnDn converges abso-

lutely. We consider the map h(x) =
1

2π

∫ π

−π

f(t)g(t+ x)dt. In using the Fubini

formula we prove
1

2π

∫ π

−π

h(x)e−inxdx = CnDn.

It results that the Fourier series of h converges uniformly and at any point x

of continuity of h, h(x) =

+∞∑
−∞

CnDne
inx.

1.7 Weierstrass Theorem

Proposition 1.18

Let f : [a, b] −→ C be a continuous function. There exists a sequence
of polynomials (Qn)n ∈ C[X] such that (Qn)n converges uniformly to
f on [a, b].

Proof .
First case: We assume that a = 0, b = 2π and f(0) = f(2π). In this case
f can be extended to a continuous function on R and 2π−periodic. From the
corollary (1.5) ∀ε > 0, there exists Pε a trigonometric polynomial such that

sup
x∈[0,2π]

|f(x)− Pε(x)| < ε.

Pε(x) =

N∑
n=−N

αne
inx.

Moreover, we know that the series
∑
n≥0

zn

n!
converges uniformly on any compact

to the function ez. Thus for any −N ≤ n ≤ N , there exists dn ≥ 0 such that

sup
x∈[0,2π]

|einx −
dn∑
p=0

(in)pxp

p!
| < ε∑N

n=−N |αn|
.

We set Rn(x) =

dn∑
p=0

(in)pxp

p!
and HN =

N∑
−N

αnRn(x). HN is a polynomial.

sup
x∈[0,2π]

|f(x)−HN (x)| ≤ sup
x∈[0,2π]

|f(x)− Pε(x)|+ sup
x∈[0,2π]

|Pε(x)−HN (x)|



sup
x∈[0,2π]

|Pε(x)−HN (x)| ≤
N∑

n=−N

sup
x∈[0,2π]

|αne
inx − αnRn(x)| < ε.

Thus sup
x∈[0,2π]

|f(x)−HN (x)| ≤ 2ε and the corollary is proved in this case.

General Case: A from of f one constructed a function which verifies the
conditions of the first case.

Define the continuous function g on [a, b] by: g(x) = f(x)−f(b)− f(a)

b− a
(x−

a), g(a) = f(a) = g(b) and let h be the function defined on [0, 2π] by: h(x) =
g(x. b−a

2π + a). h is continuous on [0, 2π] and h(0) = h(2π). Let ε > 0, by the
first case, there exists Kε ∈ C[x] such that sup

x∈[0,2π]

|h(x) − Kε(x)| < ε, thus

sup
x∈[a,b]

|g(y)−Kε(
2π

b− a
(y − a))| < ε.

We set Qε(y) = Kε(
2π
b−a (y − a)). This is a polynomial and gives an answer to

the corollary.

Other Proof

Theorem 1.19

(Weierstrass Theorem)
Let f be a continuous function on an interval I, there exists a se-
quence (fn)n of polynomials which converges uniformly on any closed
and bounded interval I to f .

Proof .
We assume in the first case that f is continuous on R and identically zero on
the complement of the interval [− 1

2 ,
1
2 ]. In this case we set

Pn(x) = cn(1− x2)n

where cn is chosen such that

∫ 1

−1

Pn(x)dx = 1. We define the sequence

fn(x) =

∫ +∞

−∞
f(y)Pn(x− y)dy =

∫ +∞

−∞
f(x− y)Pn(y)dy. (1.8)



Lemma 1.20

The functions fn are polynomials and converge uniformly to f on the
interval [− 1

2 ,
1
2 ].

Proof .
From the left side of the formula (1.8), f is a polynomial. From the right side
of the formula (1.8), we have for |x| ≤ 1

2

f(x)− fn(x) =

∫ 1

−1

f(x− y)Pn(y)dy (1.9)

Let ε > 0, M the maximum of f on R and δ > 0 such that |f(x)−f(x−y)| < ε
if |y| < δ. It results from the formula (1.9) that

|f(x)− fn(x)| ≤
∫
|y|<δ

εPn(y)dy +

∫
δ≤|y|≤1

M Pn(y)dy.

We intend to prove that

∫
δ≤|y|≤1

Pn(y)dy tends to 0 when n tends to infinity.

Let 0 < r < 1.

1

cn
=

∫ 1

−1

(1− x2)ndx ≥
∫ r

−r

(1− r2)ndx = 2r(1− r2)n.

Thus cn ≤ 1

2r(1− r2)n
and

∫
δ≤|y|≤1

Pn(y)dy ≤ 1

2r(1− r2)n

∫ 1

−1

(1− δ2)ndy =
(1− δ2)n

r(1− r2)n
.

The result is deduced if we take r < δ and tends n to infinity.
Proof of the theorem
If f is zero outside the interval [−s, s], the function F (x) = f(2sx) is zero
outside the interval [− 1

2 ,
1
2 ]. From the previous lemma there exists a sequence

(fn)n of polynomials which converges uniformly to F on the interval [− 1
2 ,

1
2 ].

The sequence of polynomials gn(x) = fn(
x
2s ) converges uniformly to f on the

interval [−s, s].
If f is continuous on the interval I = (a, b). For any n ∈ N0 and n >

2

b− a
,

there exists a continuous function φn on I such that φn = 1 on [a+ 1
n , b−

1
n ]

and zero outside [a + 1
2n , b −

1
2n ]. There exists a polynomial fn such that

|fn(x)− φn(x)f(x)| <
1

n
on I. The sequence (fn)n is a solution of the problem.



1.8 Exercises

6-1-1 Let t ∈ R \ Z and f(x) = cos tx, for −π ≤ x ≤ π and 2π−periodic.

(a) Give the Fourier series of f .

(b) Deduce that cos tx =
sin tπ

π

[
1

t
+

∞∑
n=1

(−1)n2t

t2 − n2
cos(nx)

]
, for x ∈

[−π, π].
(c) Show that

i.
π

sin tπ
=

1

t
+

∞∑
n=1

(−1)n2t

t2 − n2
, for t ̸∈ Z.

ii. πcotanπt =
1

t
+

∞∑
n=1

2t

t2 − n2
.

iii.
π2

sin2 πt
=

+∞∑
−∞

1

(t+ n)2
.

6-1-2 Let δ ∈]0, π2 ] and let f be the even function 2π-periodic defined by:

f(x) =

{
2π
δ (1− x

2δ ) if 0 ≤ x ≤ 2δ
0 if 2δ ≤ x ≤ π

(a) Give the Fourier series the function f and prove that this series
converges uniformly to f on R.

(b) Compute

+∞∑
n=1

sin2 nδ

n2
and

+∞∑
n=1

sin4 nδ

n4
.

6-1-3 Let f be a continuous function on R and 2π−periodic.

Prove that if the Fourier series of f is convergent, then f is the sum of
its Fourier series.

6-1-4 (a) Prove the following formulas which gives an expansion in trigono-
metric series of the function f(x) = x in divers intervals, in looking
in each case, the periodic function φ(x) whose expansion in Fourier
series yields the given result.

x = π − 2

+∞∑
n=1

sin(nx)

n
pour 0 < x < 2π.

x = −2

+∞∑
n=1

(−1)n sin(nx)

n
pour − π < x < π.



x =
π

2
− 4

π

+∞∑
n=0

cos(2n+ 1)x

(2n+ 1)2
pour 0 ≤ x ≤ π.

x =
4

π

+∞∑
n=0

(−1)n sin(2n+ 1)x

(2n+ 1)2
for

−π
2

≤ x ≤ π

2
.

x =
π

4
− 2

π

+∞∑
n=0

cos(2n+ 1)x

(2n+ 1)2
+

+∞∑
n=1

(−1)n+1 sin(nx)

n
for 0 ≤ x < π.

(b) Deduce
+∞∑
n=0

(−1)n

2n+ 1
=
π

4
;

+∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

+∞∑
n=1

1

n2
=
π2

6
;

+∞∑
n=0

1

(2n+ 1)4
=
π4

96
.

(c) i. In use of the formulas of the question 1) to compute the sum

g(x) of the trigonometric series
∑
n≥0

sin(2n+ 1)πx

(2n+ 1)3
.

ii. Verify the result in compute the Fourier coefficients of g.

6-1-5 Let f be the even function, 2π periodic defined by: f(x) =

 1 if x ∈
[
0,
π

2

[
−1 if x ∈

[π
2
, π
[

(a) Determine the Fourier coefficients of f .

(b) Deduce the value of the sum

+∞∑
n=0

(−1)n

2n+ 1
.

6-1-6 (a) Does there exists a locally Riemann integrable function f such that

its Fourier series is
∑
n≥1

sin(nx)√
n

?

(b) Same question for the series
∑
n≥1

sin(nx)

n3
.

6-1-7 (a) Determine, for a > 0 the expansion in Fourier series of the function

f(x) =
1

cosh(a)− cos(x)
.

(b) Deduce the value of

∫ 2π

0

dx

cosh(a)− cos(x)
.

6-1-8 (a) Compute the Fourier series of the following 2π-periodic functions on
R given by:



i. f(x) = π − x if 0 ≤ x < 2π.

ii. g(x) = π − x if 0 ≤ x < π, g even.

(b) Deduce that the Fourier series of the 2π−periodic odd function h

defined by: h(x) = x(π − x

2
) for 0 ≤ x ≤ π.

6-1-9 Let φ be the 2π-periodic function on R defined on ]−π, π] by φ(x) = ex.

(a) Compute its Fourier coefficients.

(b) Prove that :

∞∑
n=0

1

1 + n2
=
π coshπ + sinhπ

2 sinhπ
.

6-1-10 (a) Find the Fourier series of the 2π-periodic function

f(x) =

{
0 if −π < x ≤ 0
x2 if 0 ≤ x < π

(b) Use the first question to compute the following sums:

+∞∑
n=1

1

n2
,

+∞∑
n=1

(−1)n−1

n2
and

+∞∑
n=1

1

(2n− 1)2

6-1-11 Let g be the odd 2π-periodic function such that :

g(x) = x(π − x), for 0 ≤ x ≤ π.

(a) Give the Fourier series of g.

(b) Use the Parseval identity to compute

+∞∑
n=0

1

(2n+ 1)6
.

6-1-12 (a) Compute the sum of the following series
∑
n≥1

rn cosnθ, for 0 < r < 1.

(b) Deduce the following equality :

Qr(θ) =
1− r2

1− 2r cos θ + r2
= 1 + 2

+∞∑
n=1

rn cosnθ =

+∞∑
−∞

r|n|einθ.



(c) Using the theory of Fourier series, deduce the following value of the
integral :

In(r) =

∫ 2π

0

cosnθ

1− 2r cos θ + r2
dθ.

6-1-13 Let h be the function defined by:

h(x) =
x2 − 1

x2 − 4x+ 1
.

(a) i. Give the power series of h in a neighborhood of 0.

ii. Compute the radius of convergence of the obtained series.

Let a and z be two complex numbers, such that |a| ≠ |z| and az ̸= 0.
Recall that :

1

z − a
=


1

z

+∞∑
n=0

(
a

z
)n if |a| < |z|.

−1

a

+∞∑
n=0

(
z

a
)n if |a| > |z|

(b) Prove that there exists a sequence of real numbers (λn)n≤1, such
that ∀z ∈ C such that (|z| ∈]2−

√
3, 2 +

√
3[) :

h(z) =

+∞∑
n=1

λn
zn

−
+∞∑
n=1

λnz
n

Let f be the 2π-periodic function on R defined by: f(t) =
sin(t)

2− cos(t)
.

(c) Prove that h(eit) = −if(t) , ∀t ∈ R.
(d) Deduce the expansion of f in Fourier series.

(e) Deduce the value of the following integral

∫ 2π

0

sin2 x

2− cosx
dx.

Let F be the 2π-periodic function defined by: F (t) = ln(2− cos t).

(f) Say why F can has an expansion in Fourier series.

(g) Compute F ′(t) and deduce, without compute the Fourier coefficients
of F that the Fourier series of F converges normally to F .

(h) Deduce the value of the integral

∫ π

0

ln(2− cosx)dx.

6-1-14 Define the sequence (fn)n by: fn(x) =
1

a2 + (x+ 2nπ)2
and a > 0.



(a) Prove that the series
∑
n≥1

fn converges normally on any interval

[−A,A] ⊂ R.

(b) i. Prove that for any n ≥ 1 and any t ∈ R, |f ′n(t)| ≤
fn(t)

a
.

ii. Deduce that the series

+∞∑
n=1

f ′n converges normally on any interval

[−A,A] ⊂ R.
(c) Deduce that the function

f(x) =

+∞∑
n=−∞

1

a2 + (x+ 2nπ)2

is even, 2π-periodic and equal in each point to its Fourier series on
R.

(d) i. For any k ∈ Z compute the integral

Ik(a) =

∫ +∞

−∞

cos kx

a2 + x2
dx.

ii. Prove that

∫ 2π

0

f(x) cos kxdx = Ik(a).

iii. Give the expression of f .





CHAPTER VII

LEBESGUE INTEGRAL

In this chapter, we present the Lebesgue measure theory and compare it with
the Riemann integral.

1 Classes of Subsets of R

1.1 Algebra and σ−Algebra

Definition 1.1

1. A non empty collection of subsets A of R is called an algebra or
a field if:

(a) If A ∈ A, then Ac ∈ A,

(b) If A,B ∈ A, then A ∩B ∈ A.

2. An algebra A in P(R) is called a σ−algebra if every countable
intersection of a collection of elements of A is again in A . That
is if (Aj)j is a sequence in A then

⋂+∞
j=1 Aj ∈ A .

If A is a σ−algebra. The pair (R,A ) is called a measurable
space, and the elements of A are called measurable subsets.
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Properties 1.2

Let A be an algebra, then

1. ∅,R ∈ A;

2. A is closed under finite union and finite intersection.
(i.e. if A1, . . . , An ∈ A , then

⋂n
j=1Aj ∈ A and

⋃n
j=1Aj ∈ A ).

3. Let A be a σ−algebra then: if (Aj)j is a sequence in A , then
+∞⋃
j=1

Aj ∈ A .

Proof .

1. Since A is non empty there exists A ∈ A. So Ac ∈ A, hence ∅ = A∩Ac ∈
A and R = ∅c ∈ A.

2. Let A,B ∈ A, then Ac, Bc ∈ A and Ac ∩Bc ∈ A. Since (A∪B)c = Ac ∩
Bc ∈ A then A ∪B ∈ A. By induction we prove that if A1, . . . , An ∈ A

then

n⋃
j=1

Aj ∈ A and
⋂n

j=1Aj ∈ A.

3. We have Ac
j ∈ A and

+∞⋂
j=1

Ac
j ∈ A , hence

(⋂+∞
j=1 A

c
j

)c
=
⋃+∞

j=1 Aj ∈ A .

Example 23 :

1. A = {∅,R} is a σ−algebra in P(R).

2. The power set P(R) is a σ−algebra in P(R).

3. Let {A,B,C} be a partition of R. The set A = {∅,R, A,B,C,Ac, Bc, Cc}
is an algebra. (A ∪B = Cc, A ∪ C = Bc, B ∪ C = Ac.)

4. Let A be the collection of subsets A of R such that either A or Ac is
finite. A is an algebra. but not a σ-algebra.

5. Let A be the collection of subsets A of R such that either A or Ac is count-
able or ∅. A is a σ−algebra. Indeed: let (Aj)j be a sequence of elements
of A . If there exists p such that Ap is countable, then ∩+∞

j=1Aj ⊂ Ap is

countable and ∩+∞
j=1Aj ∈ A . If the sets Aj are all not countable, then the

sets Ac
j are countable. The set ∪+∞

j=1A
c
j is countable and ∩+∞

j=1Aj ∈ A .



Theorem 1.3

Any intersection of algebras (resp σ− algebra) is an algebra (resp σ−
algebra) i.e. if (Aj)j∈J is a family of algebras (resp σ− algebra) on R,
then

⋂
j∈J

Aj is an algebra (resp σ− algebra).

Proof .
Consider the case where Aj are algebra.

R ∈ Aj for all j ∈ J , then R ∈
⋂
j∈J

Aj .

If A ∈
⋂

j∈J Aj , as A ∈ Aj for all j ∈ J , then Ac ∈
⋂

j∈J Aj .

Let A1, . . . , An in
⋂
j∈J

Aj , then A1, . . . , An are in Aj for all j ∈ J . Thus⋂n
k=1Ak ∈

⋂
j∈J Aj .

Now, if Aj are σ− algebra.

If (An)n is a sequence in
⋂
j∈J

Aj , then (An)n ∈ Aj for all j ∈ J . Thus⋂+∞
n=1An ∈

⋂
j∈J Aj .

Theorem 1.4

Let (Aj)j∈J be a family of σ−algebras on R, then
⋂
j∈J

Aj is a σ− algebra.

Proof .⋂
j∈J

Aj is an algebra. Let (An)n be a sequence in
⋂
j∈J

Aj . Since each Aj is a

σ− algebra then

+∞⋂
n=1

An ∈ Aj for all j ∈ J . Thus

+∞⋂
n=1

An ∈
⋂
j∈J

Aj .

Definition 1.5

Let B ⊂ P(R). The intersection of the algebras (resp σ− algebra) on
R that contain B is the smallest algebra (resp σ− algebra) denoted by
A(B) (rep σ(B)) that contain B. This algebra (resp σ− algebra) is called
the algebra (resp the σ− algebra) generated by B.



Example 24 :
Let A be the σ− algebra of subsets A ⊂ R such that either A or Ac is countable.
A is the σ-algebra generated by the singleton sets S = {{x} : x ∈ R}.
It is evident that if A or Ac is countable then A ∈ σ(S). Then A ⊂ σ(S). The
other inclusion is evident.

Exercise 4 :
Let A and B two family of subsets of R.
Prove that

σ(A) = σ(B) ⇐⇒

∀A ∈ A, A ∈ σ(B)
&

∀B ∈ B, B ∈ σ(A)

Solution:
Il suffices to prove that σ(A) ⊂ σ(B) ⇐⇒ A ∈ σ(B), ∀A ∈ A.
Assume that σ(A) ⊂ σ(B). If A ∈ A, then A ∈ A ⊂ σ(A) ⊂ σ(B).
Assume that A ∈ σ(B), ∀A ∈ A. Then A ⊂ σ(B). Since σ(A) is the smallest
σ− algebra that contain A, then σ(A) ⊂ σ(B).

1.2 The Borelian σ−Algebra

Definition 1.6: [The Borelian σ−Algebra on R]

Let BR be the σ−algebra generated by the family {[a, b[: (a, b) ∈ R2}.
This σ−algebra is called the Borel σ−algebra on R. The elements of
BR are called Borel subsets of R.

We have the following theorem:

Theorem 1.7

1. The open and the closed subsets of R are Borel subsets;

2. BR is generated by the family of open subsets in R;

3. BR is generated by the family of closed subsets in R;

4. BR is generated by {]a,+∞[: a ∈ R};

5. BR is generated by {]−∞, a] : a ∈ R}.

Proof .
For the proof we use the exercises (1.1).



1. As any open subset of R is countable union of open intervals. It suffices
to prove that the open intervals are Borel sets. We have ]a, b[= ∪+∞

n=1[a+
1

n
, b[. Then ]a, b[∈ BR.

2. Since [a, b[= ∩+∞
n=1]a−

1

n
, b[, then BR is generated by the family of open

subsets in R;

3. Since [a, b[= ∪+∞
n=1[a, b−

1

n
] and [a, b] = ∩+∞

n=1[a, b+
1

n
[, then BR is gener-

ated by the family of closed subsets in R;

4. The σ−Algebra generated by the family {]a,+∞[: a ∈ R} is a subset of
the σ−Algebra generated by open sets. To prove that BR is generated
by {]a,+∞[: a ∈ R}, it suffices to prove that any open interval ]a, b[ is
in the σ−Algebra generated by the family {]a,+∞[: a ∈ R}.
We have ]a, b] =]a,+∞[∩(]b,+∞[)c and ]a, b[= ∪+∞

n=1]a, b−
1

n
]. Then BR

is generated by {]a,+∞[: a ∈ R}.

5. With the same arguments as in the previous property, BR is generated
by {]−∞, a] : a ∈ R}.



1.3 Exercises

7-1-1 Find all σ−algebras that contain three elements in P(R).
Find all σ−algebras that contain four elements in P(R).

7-1-2 Let f : R −→ R be a function. Prove that the set A = {A ⊂ R :
f−1(f(A)) = A} is a σ−algebra in P(R).

7-1-3 Let f : R −→ R be a bijective function.
Prove that the set

A = {A ⊂ X : f(A) ⊂ A& f−1(A) ⊂ A}.

is a σ−algebra.

7-1-4 Let E be a non empty subset of R.
Find all the σ−algebras generated by the set C = {F : E ⊂ F ⊂ R}.

7-1-5 Let E be infinite subset of R and S = {{x} : x ∈ E}.
Find the σ−algebra generated by S. (Discuss the case of E countable
and not countable)

7-1-6 Let A be non-empty subset of R.

(a) Find the σ−algebra generated by the set C = {B ⊂ R : A ⊂ B}.
(b) In which case this σ−algebra is equal to P(R)?

2 The Lebesgue Measure on R

2.1 Lebesgue Outer Measure

Definition 2.1

A set function µ∗ : P(R) −→ [0,∞] is called an outer measure or exte-
rior measure on R if:

1. µ∗(∅) = 0;

2. µ∗ is increasing (i.e. µ∗(A) ≤ µ∗(B) if A ⊂ B);

3. µ∗(

+∞⋃
n=1

An) ≤
+∞∑
n=1

µ∗(An), for any sequence (An)n of subsets of R.

We give an example of an outer measure on R which helps us to construct
the Lebesgue measure on R.



Proposition 2.2

Let A ⊂ P(R) be a family of subsets of R such that ∅,R ∈ A. Consider
a function ρ : A −→ [0,+∞] such that ρ(∅) = 0. For all subset A ⊂ R,
define

µ∗(A) = inf{
+∞∑
n=1

ρ(An) : An ∈ A, A ⊂ ∪+∞
n=1An}. (2.1)

The function µ∗ is an outer measure on R.

Proof .
For each subset A ⊂ R, there exists a sequence (An)n ∈ A such that A ⊂
∪+∞
n=1An. (We can take An = R). So the function µ∗ is well-defined.

It is obvious that µ∗(∅) = 0 and that µ∗(A) ≤ µ∗(B) if it was A ⊂ B.
Let (An)n be a sequence in P(R) such that A ⊂ ∪+∞

n=1An.

If there exists An such that ρ(An) = +∞, then µ∗(A) ≤
+∞∑
k=1

µ∗(Ak) = +∞.

Now assume that ρ(An) < +∞ for every n ∈ N.
For ε > 0, and for each n ∈ N, there is a sequence (An,k)k in A such that
An ⊂ ∪+∞

k=1An,k and
+∞∑
k=1

ρ(An,k) ≤ µ∗(An) +
ε

2n
.

We have A ⊂ ∪+∞
n,k=1An,k and

+∞∑
n,k=1

ρ(An,k) ≤
+∞∑
n=1

µ∗(An) + ε.

Remark 22 :
If we take I is the family of open intervals in R and the function ρ(I) = L (I),
where L (I) is the length of I.
In this case, we denote the outer measure defined by this function by λ∗. It is
called a the Lebesgue outer measure.

λ∗(A) = inf{
+∞∑
n=1

L (In) : In ∈ I, A ⊂ ∪+∞
n=1In}.

This outer measure fulfills the following properties:

Lemma 2.3

For any interval I in R, λ∗(I) = L (I).



Proof .
The result is obvious if the interval is not bounded, and if the interval is
bounded I and a and b are its limits, then for any ε > 0, I ⊂]a − ε, b + ε[.
Then λ∗(I) ≤ L (I) + 2ε and λ∗(I) ≤ L (I).
Inversely if (Ik)k is open covering of I, then [a+ ε, b− ε] ⊂ ∪+∞

k=1Ik. As the in-
terval [a+ε, b−ε] is compact, there is a finite covering (Ik)1≤k≤n of [a+ε, b−ε].

Therefore b − a − 2ε ≤
n∑

k=1

L (Ik) ≤
+∞∑
k=1

L (Ik). Then b − a − 2ε ≤ λ∗(I) for

every ε > 0. Therefore λ∗(I) = L (I).

Lemma 2.4

Let Ω be an open subset of R and let (In)n the connected components
of Ω. Then

λ∗(Ω) =

+∞∑
n=1

L (In).

Proof .
Using the definition of the outer measure λ∗, we have λ∗(Ω) ≤

∑+∞
n=1 L (In).

Inversely, let (Jk)k be a covering of Ω by open intervals. As In = ∪+∞
k=1Jk ∩ In,

then
+∞∑
n=1

L (In) ≤
+∞∑
n=1

+∞∑
k=1

L (In ∩ Jk) =
+∞∑
k=1

+∞∑
n=1

L (In ∩ Jk).

On the other hand, since the intervals (In)n are disjoint, then

m⋃
n=1

(Jk ∩ In) ⊂

Jk for every m. Therefore

m∑
n=1

L (Jk ∩ In) ≤ L (Jk) and

+∞∑
n=1

L (In ∩ Jk) ≤

+∞∑
k=1

L (Jk). Hence

+∞∑
n=1

L (In) ≤ λ∗(Ω) and therefore λ∗(Ω) =
∑+∞

n=1 L (In).

Theorem 2.5

For any subset A ⊂ R, λ∗(A) = inf
O∈OA

λ∗(O), where OA the collection

of open sets that contain the subset A.

Proof .



Let (In)n be any countable covering of A ⊂ R formed by open intervals. If
ω =

⋃+∞
n=1 In, then λ

∗(A) ≤ λ∗(ω) ≤
∑+∞

n=1 L (In). Then λ
∗(A) ≤ inf

O∈OA

λ∗(O).

The converse inequality is evident if λ∗(A) = +∞.
Assume that λ∗(A) < +∞. For ε > 0, there exist a countable covering (In)n

of A by open intervals so that

+∞∑
n=1

L (In) ≤ λ∗(A) + ε. The open interval Ω =

∪+∞
n=1In contains A and λ∗(Ω) ≤

+∞∑
n=1

L (In) ≤ λ∗(A) + ε. Then inf
O∈OA

λ∗(O) ≤

λ∗(A).

Corollary 2.6

If A is countable subset of R, then λ∗(A) = 0.

As λ∗{a} = L ([a, a]) = 0, then if A = {an : n ∈ N}, λ∗(A) ≤
∑+∞

n=1 λ
∗{an} =

0.

Corollary 2.7

R and any interval [a, b] are not countable, for a ̸= b.

Theorem 2.8

Let A ⊂ R and r ∈ R, then λ∗(A+ r) = λ∗(A) and λ∗(rA) = |r|λ∗(A).

Proof .
If A = (a, b), then A+ r = (a+ r, b+ r) and if r ≥ 0, rA = (ra, rb) and if r ≤ 0,
rA = (rb, ra). Therefore λ∗(A+ r) = b− a = λ∗(A) and λ∗(rA) = |r|(b− a) =
|r|λ∗(A).
If A is an open subset, then A = ∪+∞

n=1(aj , bj) with (aj , bj) ∩ (ak, bk) = ∅ for
every j ̸= k and λ∗(A) = ∪+∞

n=1(bj − aj). Therefore λ∗(A + r) = λ∗(A) and
λ∗(rA) = |r|λ∗(A).
In the general case since, for any subset A ⊂ R, λ∗(A) = inf

O∈OA

λ∗(O), where

OA is the collection of open subsets that contain A, then λ∗(A + r) = λ∗(A)
and λ∗(rA) = |r|λ∗(A).



2.2 The Lebesgue σ−algebra

Definition 2.9

Let µ∗ be an outer measure on R. We say that a subset A of R is
measurable with respect to the outer measure µ∗ If

∀X ⊂ R : µ∗(X) = µ∗(X ∩A) + µ∗(X ∩Ac).

Theorem 2.10

The set B of measurable subsets in R with respect to the outer measure
µ∗ is a σ−Algebra.

Proof .

1. As µ∗(X ∩ ∅) + µ∗(X ∩ ∅c) = µ∗(∅) + µ∗(X) = µ∗(X) for any subset X
in R, then ∅ is measurable.

2. Let A ∈ B, the for any subset X in R, µ∗(X) = µ∗(X ∩A)+µ∗(X ∩Ac).
This definition is symmetric with respect to A and Ac. Then Ac is also
measurable.

3. Let A,B ∈ B and X a subset in R. As A is measurable

µ∗(X∩(A∪B)) = µ∗(X∩(A∪B)∩A)+µ∗(X∩(A∪B)∩Ac)

= µ∗(X∩A)+µ∗(X ∩B ∩Ac).

Then

µ∗(X∩(A∪B))+µ∗(X∩(A∪B)c) = µ∗(X∩A)+µ∗(X∩B∩Ac)

+µ∗(X∩Ac∩Bc)

= µ∗(X∩A) + µ∗(X∩Ac)

= µ∗(X).

We deduce that A ∪B is measurable.

4. Let A1, A2 be two disjoint measurable sets and X a subset in R. Let
B = X ∩ (A1 ∪A2). As B ∩ (A1 ∪A2)

c = ∅, then

µ∗(B) = µ∗(B ∩ (A1 ∪A2)) + µ∗(B ∩ (A1 ∪A2)
c)

= µ∗(B ∩A1) + µ∗(B ∩Ac
1)

= µ∗(X ∩A1) + µ∗(X ∩A2).



Therefore µ∗(X ∩ (A1 ∪A2)) = µ∗(X ∩A1) + µ∗(X ∩A2).
Let (An)n be disjoint sequence in B and X ⊂ R.

µ∗(X) = µ∗(X ∩
n⋃

j=1

Aj) + µ∗(X ∩ (

n⋃
j=1

Aj)
c)

≥ µ∗(X ∩
n⋃

j=1

Aj) + µ∗(X ∩ (

+∞⋃
j=1

Aj)
c)

≥
n∑

j=1

µ∗(X ∩Aj) + µ∗(X ∩ (

+∞⋃
j=1

Aj)
c).

Then

µ∗(X) ≥
+∞∑
n=1

µ∗(X ∩An) + µ∗(X ∩ (

+∞⋃
n=1

An)
c) (2.2)

≥ µ∗(X ∩
+∞⋃
n=1

An) + µ∗(X ∩ (

+∞⋃
n=1

An)
c).

The inverse inequality results from the outer measure property.

So that to complete the proof, consider a sequence (Bn)n in B. We

define the sequence (An)n as follows: A1 = B1, An = Bn \
n−1⋃
j=1

Bj . Hence

+∞⋃
n=1

An =

+∞⋃
n=1

Bn.

Since

+∞⋃
n=1

An ∈ B then

+∞⋃
n=1

Bn ∈ B Therefore B σ−algebra.

Theorem 2.11

The Borel sets are measurable with respect to the outer measure λ∗, i.e.
BR ⊂ B.

Proof .
It suffice to prove that ]a,+∞[∈ B for any a ∈ R.
Let X be a subset in R, We want to prove that:



λ∗(X) = λ∗(X∩]a,+∞[) + λ∗(X∩]−∞, a]).

As λ∗ is an outer measure

λ∗(X) ≤ λ∗(X∩]a,+∞[) + λ∗(X∩]−∞, a]).

For the inverse inequality, the result is evident if λ∗(X) = +∞.
Suppose that λ∗(X) < +∞. So for any ε > 0, there exists an open set Ωε such
that X ⊂ Ωε and λ∗(Ωε) ≤ λ∗(X) + ε.
Assume first that a /∈ Ωε.

λ∗(Ωε) =
∑
I∈C

L (I) =
∑

I∈C∩]a,+∞[

L (I)) +
∑

I∈C∩]−∞,a[

L (I),

where C is the set of component connected of Ωε. Then

λ∗(Ωε) = λ∗(Ωε ∩ [a,+∞[) + λ∗(Ωε∩]−∞, a[)

≥ λ∗(X ∩ [a,+∞[) + λ∗(X∩]−∞, a[).

Therefore λ∗(X) ≥ λ∗(X ∩ [a,+∞[) + λ∗(X∩]−∞, a]).
If a ∈ Ωε, we use the first case, by considering the open set Ω′

ε = Ωε \ {a}
instead of Ωε. (λ

∗(Ω′
ε) = λ∗(Ωε).)

Exercise 1 :
We say that a subset A ⊂ R is a zero set with respect to outer measure λ∗ if
there exists a measurable subset B so that A ⊂ B and λ∗(B) = 0.
Prove that each zero set is measurable.
Solution
If A is a zero set, there is B ∈ B such that A ⊂ B and λ∗(B) = 0. If X is a
subset of R, then λ∗(X ∩A) = 0 and

λ∗(X) ≥ λ∗(X ∩Ac) = λ∗(X ∩A) + λ∗(X ∩Ac).

The inverse inequality results from the definition of the outer measure λ∗. So
the set A is measurable.

2.3 The Lebesgue Measure

2.3.1 Measure Theory

Definition 2.12

Let A be a σ−algebra on R. We say that a function µ : A → [0,∞]
is a measure (positive measure) on A if the following conditions are
satisfied:



1. µ(∅) = 0,

2. For any disjoint sequence (An)n ∈ A , µ(∪+∞
n=1An) =

+∞∑
n=1

µ(An)

The set (R,A , µ) is called a measure space.

Examples 25 :

1. If A = P(R) and µ(A) = #A (number of elements of A if A is finite
and +∞ otherwise). The function µ is a measure on A . This measure is
called a the counting measure on R.

2. Let a ∈ R and δa(A) = 1 if a ∈ A and 0 if a ̸∈ A.
δa is a measure called a point measure at a or the Dirac measure at a.

3. Let µ be the function defined on P(R) as follows: µ(A) = 0 if the set A
is finite and µ(A) = +∞ if the set A is infinite.
The function µ is not a measure since N = ∪+∞

n=1{n}, but µ(N) = +∞ ≠
+∞∑
n=1

µ({n}) = 0.

Theorem 2.13

Let A be a σ−algebra on R and µ a measure on A . The measure µ
satisfies the following properties:

1. If A1, . . . , An ∈ A are disjoint, then

µ(∪n
j=1Aj) =

n∑
j=1

µ(Aj).

2. If A,B ∈ A and A ⊂ B, then µ(A) ≤ µ(B). (µ is increasing)

3. If (An)n ∈ A and A = ∪+∞
n=1An, then

µ(A) ≤
+∞∑
n=1

µ(An).

4. If (An)n is increasing sequence in A and A = ∪+∞
n=1An, then

µ(A) = lim
n→+∞

µ(An).



5. If A,B ∈ A and A ⊂ B and µ(B) < +∞, then µ(B \ A) =
µ(B)− µ(A) (The result remains true if µ(A) <∞).

6. If (An)n is a decreasing sequence in A and A = ∩+∞
n=1An =

lim
n→+∞

An. If µ(A1) <∞, then µ(A) = lim
n→+∞

µ(An).

Proof .

1. We prove this property by induction.

2. Since B = A ∪ (B \A), then µ(B) = µ(A) + µ(B \A) ≥ µ(A).

3. Let B1 = A1, and Bn = An \ ∪n−1
j=1Bj , for every n ≥ 2. The sets (Bn)n

are disjoint and A = ∪+∞
n=1Bn = ∪+∞

n=1An. Therefore

µ(A) =

+∞∑
n=1

µ(Bn) ≤
+∞∑
n=1

µ(An).

4. Let (Bn)n the sequence defined previously. As ∪n
j=1Aj = ∪n

j=1Bj , then

µ(A) = µ(∪+∞
n=1An) = µ(∪+∞

n=1Bn)

=

+∞∑
n=1

µ(Bn) = lim
n→∞

n∑
j=1

µ(Bj)

= lim
n→∞

µ(∪n
j=1Bj) = lim

n→∞
µ(∪n

j=1Aj) = lim
n→∞

µ(An).

5. µ(B \A) + µ(A) = µ(B). If µ(A) <∞, then µ(B \A) = µ(B)− µ(A).

6. We apply property (3) to the sequence (A1 \An)n.

Example 26 :
Let A be a σ−algebra on R and µ : A −→ [0,+∞] a function on A . µ is a
measure if and only if:

1. µ(∅) = 0

2. µ(A ∪B) = µ(A) + µ(B), if A ∩B = ∅.

3. If (An)n is an increasing sequence in A , then µ(∪+∞
n=1An) = lim

n→+∞
µ(An).



If µ is a measure, it fulfills the properties (1) and (2).
Let (An)n be an increasing sequence in A . Define B1 = A1 and Bn = An \
∪n−1
j=1Aj for every n ∈ N. The sequence (Bn)n is disjoint and ∪+∞

n=1An =

∪+∞
n=1Bn. Then

µ
(
∪+∞
n=1An

)
=

+∞∑
n=1

µ(Bn) = lim
n→+∞

n∑
j=1

µ(Bj)

= lim
n→+∞

µ(∪n
j=1Bj) = lim

n→+∞
µ(An)

Inversely, if µ is a function satisfying the properties (1), (2) and (3). If (An)n
is a disjoint sequence of measurable sets. So the sequence

(
Bn = ∪n

j=1Aj

)
n
is

increasing and ∪+∞
n=1An = ∪+∞

n=1Bn. Therefore

µ(∪+∞
n=1An) = lim

n→+∞
µ(Bn) = lim

n→+∞

n∑
j=1

µ(Aj) =

+∞∑
n=1

µ(An).

2.3.2 The Uniqueness Theorem

Theorem 2.14

Let µ and ν two measure on the measurable space (R,BR). Assume
that there exists a class C ⊂ BR that satisfies the following properties:

1. R ∈ C and if A,B ∈ C , then A ∩B ∈ C

2. C generates the σ−algebra BR. (σ(C ) = BR)

3. µ(C) = ν(C) < +∞ for every C ∈ C .

Then µ = ν.

Remarks 23 :
Let µ and ν two measures that fulfill the hypotheses of the theorem (2.3.2).
Define the family F = {A ∈ BR : µ(A) = ν(A)}. The class F verifies the
following properties:

1. If A ∈ F , then Ac ∈ F .
This is because µ(Ac) = µ(R)− µ(A) = ν(R)− ν(A) = ν(Ac).

2. If A,B ∈ F and A ⊂ B, then B ∩Ac ∈ F :
µ(B) = µ(A) + µ(B ∩ Ac) = ν(B) = ν(A) + ν(B ∩ Ac). Therefore
µ(B ∩Ac) = ν(B ∩Ac)



3. If (An)n is a monotone sequence in F , then lim
n→+∞

An ∈ F .

Theorem 2.15

Let A ∈ F , the set : Ã = {B ∈ BR : A ∪B,B ∩Ac, A ∩Bc ∈ F} is a
σ−algebra.

Proof .
We have ∅ ∈ Ã. Moreover from the definition of Ã, we have B ∈ Ã ⇐⇒ A ∈ B̃.
Also if A ∈ F and B ∈ Ã, then A ∩B ∈ F . Therefore Ã ⊂ F .
We want to prove first that R ∈ Ã. We have
µ(R∪A) = µ(R) = ν(R) = ν(R∪A), µ(R∩Ac) = µ(Ac) = ν(Ac) = ν(R∩Ac)
and µ(Rc ∩A) = µ(∅) = ν(∅) = 0 = ν(Rc ∩A). Then R ∈ Ã.
In this step we want to prove that Ac ∈ Ã.
µ(A ∪ Ac) = µ(R) = ν(R) = ν(A ∪ Ac), µ(A ∩ (Ac)c) = µ(A) = ν(A) =
ν(A ∩ (Ac)c), µ(Ac ∩Ac) = µ(Ac) = ν(Ac) = ν(Ac ∩Ac). Then Ac ∈ Ã.
Let B ∈ Ã. We want to prove that Bc ∈ Ã

µ(A ∪Bc) = µ ((A ∩B) ∪Bc) = µ(A ∩B) + µ(Bc)

= ν(A ∩B) + ν(Bc) = ν(A ∪Bc)

µ(Bc ∩ Ac) = µ(A ∪ B)c = ν(B ∪ A)c. Since B ∈ Ã, then A ∩ B ∈ F . Then
Bc ∈ Ã.
If (Bn)n is an increasing sequence in Ã and B = lim

n→+∞
Bn, the sequences

(Bn ∪A)n and (Bn ∩Ac)n are increasing, so A∪B and B ∩Ac are elements of
F . But the sequence (A ∩ Bc

n)n is decreasing and since µ(R) = ν(R) < +∞,
then A ∩Bc ∈ F .

Corollary 2.16

For every A ∈ C , Ã = BR.

Proof .
If A,B ∈ C , then A∩B ∈ C . Therefore µ(A∩B)=ν(A∩B). On the other hand,
since µ(A)=ν(A), then µ(A ∩Bc)=ν(A ∩Bc) and so µ(Ac ∩B)=ν(Ac ∩B).
Therefore µ(A ∪ B)= ν(A ∪ B). Since Ã is a σ−algebra and since it contains
C then Ã = BR.

Proof of the theorem (2.3.2) .



If A ∈ BR, then A ∈ R̃. Therefore A ∈ F .

Theorem 2.17

Let µ and ν be two measures on the measurable space (R,BR) and
suppose there is a class C of measurable sets verifying the following
properties:

1. If A,B ∈ C , then A ∩B ∈ C .

2. C generates the σ−algebra BR.

3. µ(C) = ν(C) < +∞ for every C ∈ C .

4. There is an increasing sequence (Xn)n in C such that R =
lim

n→+∞
Xn.

Then µ = ν.

Proof .
Define µn and νn the measures BR as follows: µn(A) = µ(A∩Xn) and νn(A) =
ν(A ∩ Xn). We deduce from the theorem (2.3.2) that µn = νn and since the
measures (µn)n and (νn)n are increasing, then µ = ν, where µ and ν are the
limits respectively of (µn)n and (νn)n.

2.3.3 The Lebesgue Measure

Theorem 2.18

The restriction of the outer measure λ∗ on the σ−algebra BR is a mea-
sure. We denote this measure by λ and called the Lebesgue measure on
R.
λ is the unique measure on BR which verifies the following properties:

1. λ([0, 1]) = 1

2. λ(A+ x) = λ(A), for all x ∈ R and for all A ∈ BR. (we say that
λ is invariant by translation)

Proof .
The restriction of the outer measure λ∗ on the σ−algebra BR is a measure
results from the inequality (2.2) if we take the set X = ∪+∞

n=1An.



The uniqueness: Suppose there are two measures µ and ν on BR that they
achieve the proof.
As ν[0, 1

n [≤
1
n , then ν{0} = 0 and any finite or countable set is a zero set. Also

the intervals [a, b], ]a, b], [a, b[ and ]a, b[ has the same measure b− a.
Let C be set of finite union of intervals [a, b[, where a, b ∈ R.
The set C closed under finite intersection and R =

⋃+∞
n=1[−n, n[. Then µ = ν

on C and using the theorem (2.3.2), we have µ = ν on BR.

Remark 24 :
The Lebesgue measure λ can be defined on the σ−algebra B∗ = B∪N , where
N is the set null sets. We proved that BR ⊂ B ⊂ B∗.

2.4 Measurable Functions

In which follow, Ω is a measurable set in R.

Definition 2.19

We say that a function f : Ω −→ R is measurable if f−1(A) ∈ B for any
Borel set A, (A ∈ BR).
The of measurable functions on Ω will be denoted by M (Ω) and the set
of non negative measurable functions on Ω will be denoted by M+(Ω).

Theorem 2.20

Let f : Ω −→ R be a function. The following properties are equivalent:

1. The function f is measur-
able,

2. f−1[a,+∞[∈ B for every a ∈
R,

3. f−1] −∞, a[∈ B, for every
a∈ R,

4. f−1]−∞, a] ∈ B, for every
a∈R,

5. f−1]a, b[∈ B, for every a, b ∈
R,

6. f−1[a, b[∈ B, for every a, b ∈
R.

This theorem results from the definition of the Borel σ−algebra BR which
generated by any of the following family of sets:

1. {[a,+∞[: a ∈ R},

2. {]a,+∞[: a ∈ R},

3. {]−∞, a[: a ∈ R},

4. {]−∞, a] : a ∈ R},



5. {]a, b[: a, b ∈ R},

6. {[a, b[: a, b ∈ R},

7. {]a, b] : a, b ∈ R},

8. {[a, b] : a, b ∈ R}.

Remark 25 :
Let Ω be an open set. Any continuous function f : Ω −→ R is measurable.

Theorem 2.21

1. If f ∈ M (Ω), then the function |f | ∈ M (Ω).

2. If (fn)n is a sequence in M (Ω), then the following functions are
measurable

(a) g = sup
n∈N

fn, (b) h = limn→+∞fn,

(c) k = limn→+∞fn.

Proof .

1. If a < 0, then Ω = {x ∈ Ω : |f(x)| > a}
If ≥ 0, then

{x∈Ω : |f(x)|>a} = {x∈Ω : f(x)>a}∪{x∈Ω : f(x)<−a}
= f−1(]a,+∞]) ∪ f−1([−∞,−a[)∈B.

2. h(x) = inf
n∈N

(sup
j≥n

fj(x))

{x ∈ Ω : g(x) > a} =
⋃

n∈N{x ∈ Ω : fn(x) > a} ∈ BBB,

{x ∈ Ω : h(x) > a} =

+∞⋂
n=1

∞⋃
j=n

{x ∈ Ω : fj(x) > a} ∈ B

3. k(x) = sup
n∈N

( inf
j≥n

fj(x)).

{x ∈ Ω : k(x) > a} =

+∞⋃
n=1

∞⋂
j=n

{x ∈ Ω : fj(x) > a} ∈ B



Corollary 2.22

1. If f ∈ M (Ω), then the functions f+ = sup(f, 0) and f− = inf(f, 0)
are measurable.

2. If (fn)n is a pointwise convergent sequence of measurable func-
tions. The limit function f , is measurable.

3. Let (fn)n be a sequence of measurable functions. The set C of
points x ∈ Ω where the sequence (fn)n(x) has a limit in R is
measurable.

Proof .

1. The proof results from the theorem (2.4).

2. The function f = limn→+∞fn is measurable.

3. Let g = limn→+∞fn and h = limn→+∞fn. The set D = Cc = {x ∈ Ω :

limn→+∞fn(x) < limn→+∞fn(x)}. For every number r, the set

Dr = {x ∈ Ω : g(x) < r < h(x)} = {g(x) < r} ∩ {h(x) > r}

is measurable, so the set D =
⋃

r∈QDr is also measurable.



2.5 Exercises

7-2-1 Let µ be a measure on (R,BR). Prove that

µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B)

for every A,B ∈ BR.

7-2-2 Give an example of measure µ on (R,BR) and a decreasing sequence
(An)n such that lim

n→+∞
µ(An) ̸= µ( lim

n→+∞
An).

7-2-3 Let ε > 0. Give a dense open subset of R and its measure is less than ε.

7-2-4 Let A be a measurable set in R of finite measure.
Prove that the function f(x) = λ(A∩]−∞, x]) is continuous.

7-2-5 Prove that for each increasing function f : R −→ R is measurable.

7-2-6 Let f : R −→ R be a measurable function.
Prove that the set {x ∈ R : f(x) ̸= 0} is measurable.

7-2-7 Let (R,B, λ) be the measure space where λ is the Lebesgue measure and
B the Lebesgue σ−algebra.
For every measurable set A, we define the function µ as follows:

µ(A) =

∫
A

1

1 + x2
dλ(x).

Prove that µ is a measure.

7-2-8 Let f be an integrable function on the measure space (R,BR, λ).

Prove that the set {x ∈ R : f(x) = ±∞} is a null set.

7-2-9 Let f be an integrable function such that

∫
E

f(x)dµ(x) = 0 for all mea-

surable set E.
Prove that f = 0 a.e.

7-2-10 Prove that the two functions sin(x2) and cos(x2) are not integrable on
[0,+∞[.

3 The Lebesgue Integration

3.1 Simple Functions



Definition 3.1

A function f : Ω −→ R is called simple if it is measurable and takes a
infinite number of values.

If f : Ω −→ R̄ is a simple function and if {c1, . . . , cm} are the different values of

f , then f =

m∑
j=1

cjχAj
, where Aj = f−1{cj} and the function f is measurable

if and only if the sets Aj are measurable for each j = 1, . . . ,m.

Theorem 3.2

Let f : Ω −→ R

1. If f is a bounded measurable function, there exists a sequence of
simple functions which converges uniformly on Ω to f .

2. If f is a non-negative measurable function, there exists a sequence
of non-negative simple functions which increases to f .

Proof .

1. Let M > 0 such that |f(x)| < M for every x ∈ Ω. For (n, k) ∈ N0 × Z
and −2n ≤ k ≤ 2n − 1, consider the measurable subsets

An,k = {x ∈ Ω :
kM

2n
≤ f(x) <

(k + 1)M

2n
}

and the measurable functions fn =

2n−1∑
k=−2n

kM

2n
χAn,k

, where N0 = N∪{0}.

For any x0 ∈ Ω, there exists k0 such that x0 ∈ An,k0
. Then fn(x0) =

Mk0
2n

and |f(x0) − fn(x0)| <
M

2n
. Hence, the sequence (fn)n converges

uniformly on Ω to f .

2. For n ∈ N, the function gn = inf(f, n) − 1
n is bounded and measurable,

then from the first case there exists a sequence (fm)m of simple functions

such that ||fn − gn||∞ <
1

2n
. Therefore

lim
n→+∞

fn = lim
n→+∞

gn = lim
n→+∞

inf(f, n) = f.



fn ≤ gn+
1

2n
= inf(f, n)− 1

n
+

1

2n
≤ inf(f, n+1)− 1

n+ 1
+

1

2n+1
≤ fn+1.

(It suffices to prove that for n big enough − 1

n
+

1

2n
< − 1

n+ 1
+

1

2n+1
.)

So the sequence (fn)n increasing.

3.2 The Lebesgue Integration

To define the Lebesgue integral of measurable functions, we first define the
integral of non negative positive simple functions. Then we define the integral
of non-negative measurable functions using the increasing limit. For arbitrary
measurable functions f , we use the decomposition f = f+−f− as the difference
of two non-negative measurable functions and we extend the definition of the
integral to the measurable functions only if one of the integral of f+ or f− is
finite.

Definition 3.3

If f =

N∑
k=1

ckχ{f=ck} is a non negative simple function, we define the

integral of the function f as follows:∫
Ω

f(x)d λ(x) =

N∑
k=1

ckλ({f = ck}). (3.3)

If A = {x ∈ Ω : f(x) = 0} and λ(A) = +∞ or if A = {x ∈ Ω : f(x) =
+∞} and λ(A) = 0, we assume that 0.∞ = 0.

Theorem 3.4

Let E + be the set of non negative simple functions defined on Ω. The
integral defined on E + fulfills the following properties:

1.

∫
Ω

α f(x)d λ(x) = α

∫
Ω

f(x)d λ(x) for every α ∈ R+ and for each

f ∈ E +.

2.

∫
Ω

(f + g)(x)dλ(x)=

∫
Ω

f(x)d λ(x)+

∫
Ω

g(x)dλ(x) for every f, g∈

E +.



3.

∫
Ω

f(x)d λ(x) ≤
∫
Ω

g(x)d λ(x) for every f, g ∈ E + such that f ≤
g.

4. If (fn)n is an increasing sequence in E + and if lim
n→+∞

fn = f ∈ E +,

then

∫
Ω

f(x)d λ(x) = lim
n→+∞

∫
Ω

fn(x)d λ(x).

Proof .
It is obvious that if α ≥ 0 and f and g are in E + then αf ∈ E + and f+g ∈ E +.

1. The first property is evident.

2. Let f and g be two elements of E + and let F (resp G) be the set of values
of f (resp of g). We have:

f =
∑
a∈F

aχ{f=a}, g =
∑
b∈G

bχ{g=b}.

{f = a} =
⋃
b∈G

{f = a, g = b}, ∀ a ∈ F

{g = b} =
⋃
a∈F

{f = a, g = b}, ∀ b ∈ G

∫
Ω

f(x)d λ(x) =
∑
a∈F

aλ{f = a} =
∑

(a,b)∈F timesG

aλ{f = a, g = b}

∫
Ω

g(x)d λ(x) =
∑
b∈G

aλ{g = b} =
∑

(a,b)∈F timesG

bλ{f = a, g = b}

∫
Ω

f(x)d λ(x) +

∫
Ω

g(x)d λ(x) =
∑

(a,b)∈F×G

(a+ b)λ{f = a, g = b}

{f + g = u} =
⋃

(a,b)∈F×G,a+b=u{f = a, g = b}. Therefore

λ{f + g = u} =
∑

(a,b)∈F×G,a+b=u

λ{f = a, g = b}.



Then

∫
Ω

f(x)d λ(x) +

∫
Ω

g(x)d λ(x) =
∑
u

uλ{f + g = u}

=

∫
Ω

(f + g)(x)d λ(x).

3. If

∫
Ω

f(x)d λ(x) = +∞, then

∫
Ω

g(x)d λ(x) = +∞.

The result is evident if

∫
Ω

f(x)d λ(x) < +∞ and the

∫
Ω

g(x)d λ(x) = +∞
.

Suppose that

∫
Ω

f(x)d λ(x) < +∞ and

∫
Ω

g(x)d λ(x) < +∞.

So the sets {x ∈ Ω : f(x) = +∞} and {x ∈ Ω : g(x) = +∞} are
zero sets. Let {a1, . . . , an} and {b1, . . . , bm} the sets of finite values of
f respectively of g.

f̃ =

n∑
j=1

ajχ{x∈Ω: f(x)=aj} and g̃ =

m∑
j=1

bjχ{x∈Ω: g(x)=bj}. Therefore

∫
Ω

f(x)d λ(x) =∫
Ω

f̃(x)d λ(x) and

∫
Ω

g(x)d λ(x) =

∫
Ω

g̃(x)d λ(x) and h = g̃ − f̃ ∈ E +.

We deduce from 2. that∫
Ω

g(x)d λ(x) =

∫
Ω

f(x)d λ(x) +

∫
Ω

h(x)d λ(x) ≥
∫
Ω

f(x)d λ(x)).

Lemma 3.5

Let (fn)n be an increasing sequence in E +. if there exists g ∈ E + such

that g ≤ limn→+∞ fn, then

∫
Ω

g(x)d λ(x) ≤ lim
n→+∞

∫
Ω

fn(x)d λ(x).

Proof .
Let Ey = {x ∈ Ω : g(x) = y} for every y ∈ g(Ω). To prove the lemma it
therefore suffices to prove that for all y ∈ g(X)∫

Ω

g(x)χEy (x)d λ(x) = yλ(Ey) ≤ lim
n→+∞

∫
Ω

fn(x)χEy (x)d λ(x).

The result is obvious if y = 0.
Now suppose that y > 0, for every 0 < t < y, define the sets An = Ey ∩ {x ∈



Ω : fn(x) ≥ t}.
The sequence (An)n is increasing and measurable and Ey = lim

n→+∞
An because

for x ∈ Ey, fn(x) > t for every n big enough.

tλ{Ey ∩ {x ∈ Ω : fn(x) > t}} =

∫
Ω

tχEy∩{x∈Ω: fn(x)>t}(x)d λ(x)

≤
∫
Ω

fn(x)χEy
(x)d λ(x).

tλ(Ey) ≤ lim
n→+∞

∫
Ω

fn(x)χEy
(x)d λ(x).

This is for every 0 < t < y. Therefore

yλ(Ey) ≤ lim
n→+∞

∫
Ω

fn(x)χEy
(x)d λ(x).

To prove (4), we define the function g = lim
n→+∞

fn.

fn ≤ g, for n ∈ N and the sequence
(∫

Ω

fn(x)d λ(x)
)
n

is increasing and

bounded above by the number

∫
Ω

g(x).λ(x).

To prove the other inequality, we apply the lemma (3.2).

Definition 3.6

Let f be a non negative measurable function, we define the integral of
f by: ∫

Ω

f(x)d λ(x) = sup{
∫
Ω

g(x)d λ(x) : g ≤ f, g ∈ E +}.

This is a non negative real number or +∞.

Remark 26 :
If f is a non negative measurable function, by theorem (3.1) there exists an
increasing sequence (fn)n in E + which converges to f . We conclude from

which above that lim
n→+∞

∫
Ω

fn(x)d λ(x) ≤
∫
Ω

f(x)d λ(x). On the other hand,

according to the lemma (3.2) for any function g ∈ E + such that g ≤ f =

limn→+∞ fn, we have

∫
Ω

g(x)d λ(x) ≤ lim
n→+∞

∫
Ω

fn(x)d λ(x). So by definition



( 3.2)

∫
Ω

f(x)d λ(x) ≤ lim
n→+∞

∫
Ω

fn(x)dλ(x). Therefore∫
Ω

f(x)d λ(x) = lim
n→+∞

∫
Ω

fn(x)d λ(x).

. This result is not related to the sequence (fn)n in E + which converges to f .

Theorem 3.7

If f and g are in M+(Ω) and α ≥ 0, then

1.

∫
Ω

αf(x)d λ(x) = α

∫
Ω

f(x)d λ(x)

2.

∫
Ω

(f + g)(x)d λ(x) =

∫
Ω

f(x)d λ(x) +

∫
Ω

g(x))d λ(x)

3. If f ≤ g, then

∫
Ω

f(x)d λ(x) ≤
∫
Ω

g(x)d λ(x).

Proof .
For proof, it suffices to take two increasing sequences (fn)n and (gn)n in E +

which converge respectively to f and g, and we apply the theorem (3.2).

Definition 3.8

Let f, g two functions. We say that f = g outside a zero set or f = g
a.e. If the set {x ∈ Ω : f(x) ̸= g(x)} is a null set.
Let A be a measurable set. The function χA = 0 a.e. if and only if
λ(A) = 0.

Definition 3.9

We say that a function f is defined a.e. on Ω, if there exists a null set
N so that the function f is defined on Ω \N .



Definition 3.10

We say that sequence of functions (fn)n on Ω is convergent a.e. if there
exists a function f such that {x ∈ Ω : fn(x) ̸−→ f(x)} is a null set.

Theorem 3.11

Let f, g be two functions in M+(Ω).

1.

∫
Ω

f(x)d λ(x) = 0 If and only if f = 0 a.e.

2. If f = g a.e then

∫
Ω

f(x)d λ(x) =

∫
Ω

g(x).λ(x).

Proof .

1. Suppose that

∫
Ω

f(x)d λ(x) = 0. Then for every n ∈ N, the subsets

An = {x ∈ Ω : f(x) ≥ 1
n} are measurable and χAn

≤ nf . Then∫
Ω

χAn
(x)d λ(x) = λ(An) ≤ n

∫
Ω

f(x)d λ(x) = 0

and λ(An) = 0, for every n ∈ N. Therefore {x : f(x) ̸= 0} =
⋃+∞

n=1An is
a null set.

If f = 0 a.e, the set A = {x ∈ Ω : f(x) ̸= 0} is a null set and the

function g = ∞.χA is a simple and f ≤ g. As

∫
Ω

g(x)dλ(x) = 0, then∫
Ω

f(x)d λ(x) = 0.

2. suppose that f ≤ g. the function h = g − f is defined a.e and equal to 0
a.e.

If

∫
Ω

f(x)d λ(x) =

∫
Ω

g(x)d λ(x) = +∞, the result is correct.

If

∫
Ω

f(x)d λ(x) < +∞, and

∫
Ω

g(x)d λ(x) < +∞, then

0 =

∫
Ω

h(x)d λ(x) =

∫
Ω

g(x)d λ(x)−
∫
Ω

f(x)d λ(x).



The function h = inf(f, g) is non negative and measurable and h = f = g

a.e. As h ≤ f then

∫
Ω

f(x)d λ(x) =

∫
Ω

f(x)d λ(x). Also as h ≤ g,

then

∫
Ω

h(x)d λ(x) =

∫
Ω

g(x)d λ(x). We conclude that

∫
Ω

f(x)d λ(x) =∫
Ω

g(x)d λ(x).

Definition 3.12

We say that a function f : Ω −→ R̄ is integrable if the functions f+ and
f− are integrable, where f+ = sup(f, 0) and f− = sup(−f, 0). In this
case we define the integral of f as:∫

Ω

f(x)d λ(x) =

∫
Ω

f+(x)d λ(x)−
∫
Ω

f−(x)d λ(x).

Also if the function f is measurable and

∫
Ω

f+(x)d λ(x) < ∞ or∫
Ω

f−(x)d λ(x) < ∞ We define the integral of the function f on Ω

by: ∫
Ω

f(x)d λ(x) =

∫
Ω

f+(x)d λ(x)−
∫
Ω

f−(x)d λ(x).

The set of integrable functions on Ω is denoted by L1(Ω).

Theorem 3.13

The set L1(Ω) is a vector space on R and the map f 7−→
∫
Ω

f(x)d λ(x)

is linear on the space L1(Ω) and∣∣∣∫
Ω

f(x)d λ(x)
∣∣∣ ≤ ∫

Ω

∣∣f(x)∣∣d λ(x),
for every f ∈ L1(Ω).

Proof .



As
∣∣f + g

∣∣ ≤ |f |+ |g|, for every f, g ∈ M (Ω), then∫
Ω

∣∣f(x) + g(x)
∣∣d λ(x)| ≤ ∫

Ω

∣∣f(x)∣∣d λ(x) + ∫
Ω

∣∣g(x)∣∣ d λ(x).
If f + g ∈ L1(Ω).
f + g = (f + g)+ − (f + g)− = f+ − f− + g+ − g−.
Then (f + g)+ + f− + g− = (f + g)− + f+ + g+, and

∫
Ω

(f + g)+(x)d λ(x) +

∫
Ω

f−(x)d λ(x) +

∫
Ω

g−(x) d λ(x)

=

∫
Ω

(f + g)−(x)d λ(x) +

∫
Ω

f+(x) d λ(x)

+

∫
Ω

g+(x)d λ(x)

and

∫
Ω

(f + g)(x)d λ(x) =

∫
Ω

(f + g)+(x)d λ(x))−
∫
Ω

(f + g)−(x) d λ(x)

=

∫
Ω

f+(x)d λ(x)−
∫
Ω

f−(x) d λ(x)

+

∫
Ω

g+(x)d λ(x)−
∫
Ω

g−(x)d λ(x)

=

∫
Ω

f(x)d λ(x) +

∫
Ω

g(x)d λ(x).

The other properties are evident.

Corollary 3.14

1. If the function is f measurable and a ≤ f ≤ b and λ(Ω) < +∞,

then f ∈ L1(Ω) and aλ(Ω) ≤
∫
Ω

f(x) d λ(x) ≤ bλ(Ω).

2. If f ≤ g, where f ∈ M (Ω) and g ∈ L1(Ω), then

∫
Ω

f(x)d λ(x) ≤∫
Ω

g(x)d λ(x).

3. If E is a measurable null set,

∫
E

f(x)d λ(x) = 0 for every measur-



able function f .

Remarks 27 :

1. If f is an integrable function, then the set {x ∈ Ω : f(x) = ±∞} is a
null set.

2. We introduce the equivalence relation ∼ on L1(X,A , µ) by setting f ∼
g ⇐⇒ f = g a.e. Thus we may consider the quotient space L1(X,A , µ) =
L1(X,A , µ)/∼. This space is often abbreviated to L1(µ).

3.3 The Monotone Convergence Theorem

Theorem 3.15

[Monotone Convergence Theorem]
(The theorem is called also the Beppo-Levi’s Theorem)
Let (fn)n be an increasing sequence of non-negative measurable func-
tions on Ω, then∫

Ω

lim
n→+∞

fn(x)d λ(x) = lim
n→+∞

∫
Ω

fn(x)d λ(x).

Proof .
For every n ∈ N, there exists a non-negative increasing sequence (φn,j)j in E +

which converge to fn. For every j, define the function ψj = sup
1≤n≤j

φn,j . The

sequence (ψj)j ∈ E + is increasing because

ψj = sup
1≤n≤j

φn,j ≤ sup
1≤n≤j

φn,j+1 ≤ sup
1≤n≤j+1

φn,j+1 = ψj+1.

for every j ≥ n, φn,j ≤ ψj , therefore fn = lim
j→+∞

φn,j ≤ lim
j→+∞

ψj . Then

f = lim
n→+∞

fn ≤ lim
j→+∞

ψj . on the other side inequalities φn,j ≤ fn ≤ f prove

that ψj ≤ f and lim
j→+∞

ψj ≤ f . The sequence (ψj)j is increasing in E + with

limit f . Then

∫
Ω

f(x)d λ(x) = lim
j→+∞

∫
Ω

ψj(x)d λ(x). Moreover ψj ≤ fj , then

lim
j→+∞

∫
Ω

ψj(x)d λ(x) ≤ lim
j→+∞

∫
Ω

fj(x) d λ(x) ≤
∫
Ω

f(x)d λ(x).



Corollary 3.16

Let (fn)n ∈ M+(Ω) be a sequence, then∫
Ω

+∞∑
n=1

fn(x)d λ(x) =

+∞∑
n=1

∫
Ω

fn(x)d λ(x).

Corollary 3.17

Let f ∈ M+(Ω), then for every A ∈ BR, the function

µ(A) =

∫
Ω

f(x)χA(x)d λ(x)

is a measure on BR.

Proof .
Let (An)n be a disjoint sequence of measurable sets (Aj ∩ Ak = ∅ for every

j ̸= k). Then fχ∪nAn =

+∞∑
n=1

fχAn and

µ (
⋃
n

An) =

∫
Ω

f(x)χ∪nAn(x)d λ(x)

=

∫
Ω

+∞∑
n=1

f(x)χAn(x)d λ(x)

=

+∞∑
n=1

∫
Ω

f(x)χAn
(x)d λ(x).

The second part of the result is true if the function f is the characteristic
function of a measurable set, and therefore is true for every simple function. So
if f is a non negative measurable function, there exists an increasing sequence
of simple functions which increases to f . We get the result using the monotone
convergence theorem.



3.4 Fatou’s Lemma

Lemma 3.18

[Fatou’s Lemma]
If (fn)n ∈ M+(Ω), then∫

Ω

limn→+∞fn(x)d λ(x) ≤ limn→+ infty

∫
Ω

fn(x)d λ(x).

Proof .

limn→+∞fn = limn→+∞(infj≥n fj). Therefore

∫
Ω

inf
j≥n

fj(x) d λ(x) ≤ inf
j≥n

∫
Ω

fj(x)d λ(x)

and we get the result using the monotone convergence theorem.

Example 27 :

Let fn = n2χ[0, 1
n ],

∫
R
limn→+∞fn(x)dλ(x) = 0 and limn→+∞

∫
R
fn(x)dλ(x) =

+∞

3.5 Dominate Convergence Theorem

Theorem 3.19

[Dominate Convergence Theorem or Lebesgue’s theorem]
Let (fn)n ∈ M (Ω) such that

1. (fn)n converges a.e. to a function f defined a.e.

2. There exists a non negative integrable function g so that: |fn| ≤ g
a.e. for every n.
Then the sequence (fn)n and the function f is integrable and∫

Ω

f(x) d λ(x) = lim
n→+∞

∫
Ω

fn(x)d λ(x).

.

Theorem 3.20

Let (fn)n ∈ M (Ω). Assume that there is a non negative integrable
function g such that for every n, |fn| ≤ g a.e. Then



∫
Ω

limfn(x)d λ(x) ≤ lim

∫
Ω

fn(x)d λ(x) (3.4)

∫
Ω

limfnd λ(x) ≥ lim

∫
Ω

fn(x)d λ(x) (3.5)

If the sequence (fn)n converges a.e. on Ω and its limit is a measurable
function f defined a.e., then f ∈ L1(Ω) and∫

Ω

f(x)d λ(x) = lim
n→+∞

∫
Ω

fn(x)d λ(x). (3.6)

Proof .
As the function g is Integral, the set {x ∈ Ω : |f(x)| = +∞} is a null set.
So we can be substitute the function g by the function gχ{x: g(x)<+∞}. This
substitution does not change anything about the inequality: |fn| ≤ g a.e..
The sequence (fn)n can also be substituted by the sequence fnχ{|fn|≤g}. This

substitution does not change the value of the integral

∫
Ω

fn(x)d λ(x) and not in

the limit lim
n→+∞

fn a.e. So we can assume that |fn| ≤ g on Ω. So the functions

limfn and limfn are integrable on Ω. Using Fatou’s lemma on the sequence
fn + g, we get∫

Ω

lim(fn + g)(x)d λ(x) ≤ lim

∫
Ω

(fn + g)(x)d , λ(x).

As limn→+∞(fn + g) = (limn→+∞fn ) + g on Ω, then∫
Ω

limn→+∞fn(x)d λ(x) ≤ limn→+∞

∫
Ω

fn(x)d λ(x).

.
and using Fatou’s lemma on the sequence (−fn + g)n, we get∫

Ω

limn→+∞(−fn)(x)d λ(x) ≤ limn→+∞

∫
Ω

−fn(x)d λ(x).

Then ∫
Ω

limn→+∞fn(x)d λ(x) ≥ limn→+∞

∫
Ω

fn(x)d λ(x).

Example 28 :
Let f be an Integrable function on [0,+∞[. We want to prove that

lim
n→+∞

∫ +∞

0

e−n sin2 xf(x)dx = 0.



Consider the sequence (fn)n defined on [0,∞[ by: fn(x) = e−n sin2 xf(x).
Let A = {x : f(x) = ±∞} ∪ N0. For every x ̸∈ A, lim

n→+∞
fn(x) = 0 and

|fn| ≤ |f | and the function f is Integrable. Then

lim
n→+∞

∫ +∞

0

e−n sin2 xf(x)dx = 0.



3.6 Exercises

7-3-1 Find the following limits:

(a) lim
n−→+∞

∫ n

0

√
x lnx(1− x

n
)ndx,

(b) lim
n−→+∞

∫
R

| sinx| 2
n

1 + x2
dx,

(c) lim
n−→+∞

∫ +∞

0

dx

(1 + xp)n
, p > 0,

(d) lim
n−→+∞

∫ +∞

0

e−n sin2 xf(x) dx, f ∈ L1([0,+∞[),

(e) lim
h−→0+

∫ +∞

α

hf(x)

h2 + x2
dx, and lim

h−→0+

∫ +∞

0

hf(x)

h2 + x2
dx, Where f is an

integrable function on the interval [0,+∞[ and continuous at 0 and
α > 0.

(f) lim
n→+∞

∫ +∞

0

sin(ex)

1 + nx2
dx,

(g) lim
n→+∞

∫ n

0

(1 +
x

n
)−n cosxdx,

(h) lim
n→+∞

∫ n

0

(1 +
x

n
)ne−2xdx,

(i) lim
n→+∞

∫ n

0

(1− x

n
)−ne

x
2 dx,

(j) lim
n→+∞

∫ n

0

(1− x

n
)n

1 + nx

n+ x
cosxdx,

(k) lim
n→+∞

∫ +∞

0

(1 +
x

n
)n

2

e−nxdx.

7-3-2 Prove that ∫ +∞

0

e−2xdx

1 + ex
=

+∞∑
n=0

(−1)n

3 + n

and find the value of the series.

7-3-3 (a) Let f ∈ L1(R) and α > 0.

Prove that lim
n→+∞

f(nx)

nα
= 0 a.e. x ∈ R. (We can integrate the

series

+∞∑
n=1

f(nx)

nα
on R.)



(b) Let f : R −→ C be a measurable function and T−periodic and∫ T

0

|f(t)| dt < +∞.

i. Prove that lim
n→+∞

f(nx)

n2
= 0 a.e.

ii. Prove that lim
n→+∞

(| cosnx|) 1
n = 1 a.e. (We can use the function

(ln | cosx|)2.)

7-3-4 Consider the sequence (In)n defined on ]1,+∞[ as follows:

In(x) =

∫ +∞

x

dt

t2 lnn(t)
.

Prove that the sequence (In)n is well defined and find its limit.

7-3-5 Let f(x) =
xe−ax

1− e−bx
, with a > 0 and b > 0.

Prove that the function f is integrable on [0,+∞[ and

∫ +∞

0

f(x)dx =

+∞∑
n=0

1

(a+ nb)2
.

7-3-6 Consider the sequence (In)n where In =

∫ π
4

0

tann(x) dx.

Find the limit of the sequence (In)n and deduce the sum of the following

sequence: Un =
(−1)n

2n+ 1
and Un =

(−1)n

n
.

4 Riemann Integral and Lebesgue Integral

4.1 The Riemann and Lebesgue Integral

Let λ be the Lebesgue measure to on the σ−algebra B of measurable functions
on the interval [a, b].

If f : [a, b] −→ R is a Riemann integrable function, then

∫ b

a

f(x)dx symbolizes

the Riemann integral of f on the interval [a, b], and if the function is Lebesgue

integrable on [a, b], then

∫
[a,b]

f(x)d λ(x) symbolizes the Lebesgue integral of f

on the interval [a, b].



Theorem 4.1

Let f : [a, b] −→ R be a Riemann integrable function, then f Lebesgue
integrable on [a, b] and∫

[a,b]

f(x)d λ(x) =

∫ b

a

f(x)dx.

Proof .
As the function f is Riemann integrable on [a, b], there exists a sequence (σn =
{x0 = a, . . . , xpn

= b})n of partitions of [a, b] such that

U(f) = lim
n→+∞

U(σn, f) = L(f) = lim
n→+∞

L(σn, f).

We define two sequences (gn)n and (hn)n of simple functions as follows:

gn(x) =

{
mk = inft∈[xk,xk+1[ f(t) xk ≤ x < xk+1

gn(b) = f(b)

hn(x) =

{
Mk = supt∈[xk,xk+1[

f(t) xk ≤ x < xk+1

hn(b) = f(b)

The sequence (gn)n is increasing and the sequence (hn)n is decreasing. Let
g = lim

n→+∞
gn and h = lim

n→+∞
hn. Then

U(σn, f) =

∫ b

a

hn(x)dx =

∫
[a,b]

hn(x)d λ(x).

.

L(σn, f) =

∫ b

a

gn(x)dx =

∫
[a,b]

gn(x)d λ(x).

Since the functions g and h are measurable, using the monotone convergence
theorem, we get

lim
n→+∞

∫ b

a

gn(x)dx = L(f) =

∫
[a,b]

g(x)d λ(x) (4.7)

lim
n→+∞

∫ b

a

hn(x)dx = U(f) =

∫
[a,b]

h(x)d λ(x). (4.8)

De deduce from (4.7) and (4.8) that

∫
[a,b]

h(x)dλ(x) =

∫
[a,b]

g(x)dλ(x).

Then

∫
[a,b]

(h(x)− g(x))dλ(x) = 0. and since the function h− g is non negative



and integrable, then h = g a.e. and f = g a.e. So the function f is measurable
and ∫ b

a

f(x)dx =

∫
[a,b]

f(x)d λ(x).

Theorem 4.2

Let f be a bounded function on an interval [a, b].

1. The function f is Riemann integral on [a, b] if and only if the set
of points where the function f is not continuous is a null set.

2. Inversely, if the set of points where the function f is not continuous
is a null set, f is integrable and∫

[a,b]

f(x)d λ(x) =

∫ b

a

f(x)dx.

For the proof, we keep the same notations as in theorem (4.1) and we need the
following lemma:

Lemma 4.3

For every x ∈ [a, b] \

(
+∞⋃
n=1

σn

)
, g(x) = h(x) if and only if the function

f is continuous at x.

Proof .
Let x ∈ [a, b] \

(
∪+∞
n=1σn

)
and δn = ||σn||. If the function f is continuous at x,

for each ε > 0, there exists η > 0 such that |f(x)− f(t)| < ε for every t ∈ [a, b]
and |t − x| < η. Since the sequence (δn)n converges to 0, there exists n0 such
that δn0 < η for every n ≥ n0.
For each partition σn, with n > n0, there exists k ∈ {0, . . . , pn − 1} such that
xk < x < xk+1.
Then |f(x) − f(t)| < ε for every t ∈ [xk, xk+1]. Therefore hn(x) = Mk ≤
f(x) + ε, gn(x) = mk ≥ f(x) − ε and hn(x) − gn(x) ≤ ε. and since this is for
each n ≥ n0 then h(x)− g(x) ≤ ε for every ε > 0. Then g(x) = h(x).
Inversely: let x /∈ (

⋃∞
n=1 σn), where g(x) = h(x). as g(x)≤ f(x)≤ h(x), then

f(x) = g(x) = h(x). So the two sequences (gn(x))n and (hn(x))n converge and
have the same limit f(x).



Let ε > 0, there exists n0 ∈ N such that 0 ≤ f(x) − gn(x) < ε and 0 ≤
hn(x) − f(x) < ε, for every n ≥ n0. Since σn0 is a partition of the interval
[a, b], there exists k ∈ {0, . . . , pn0

− 1} such that x ∈ [xk, xk+1[ and

hn0
(x)− ε < f(x) < gn0

(x) + ε.

On the other hend hn0
(x) = sup

t∈[xk,xk+1]

f(t) and gn0
(x) = inf

t∈[xk,xk+1]
f(t). Then

f(t)−ε < f(x) < f(t)+ε for every t ∈]xk, xk+1[. So the function f is continuous
at x.

Proof of Theorem (4.1) .

1. The function f is Riemann integral if and only if U(f) = L(f) and this
is equivalent to h = g a.e and we deduce the result from the previous
lemma.

The function f is Riemann integral if and only if h = g a.e and this is
equivalent to the set {x : h(x) ̸= g(x)} ∪ (

⋃∞
n=1 σn) is a null set, which

is equivalent to the function f is continuous a.e on the interval [a, b].

2. If the set where f is not continuous is a null set, then lim
n→+∞

gn(x) =

lim
n→+∞

hn(x) = f(x) at each point of continuity of the function f . So the

function f is measurable and we can deduce the result from the dominated
convergence theorem.

lim
n→+∞

∫
[a,b]

gn(x)dλ(x) =

∫
[a,b]

f(x)dλ(x)

lim
n→+∞

∫
[a,b]

hn(x)dλ(x) =

∫
[a,b]

f(x)dλ(x).

So the function f is Riemann integrable and∫
[a,b]

f(x)d λ(x) =

∫ b

a

f(x)dx.

We now give another proof of the following theorem:

Theorem 4.4

Let f : [a, b] → R be a bounded function. The function f is Riemann
integral if and only if f is continuous a.e. on the interval [a, b].

Proof .



1. Assume that the function f is Riemann integral. For any x ∈ [a, b], define
the functions

g(x) = sup
δ>0

inf
y∈[a,b],|y−x|≤δ

f(y) = lim inf
y→x

f(y),

h(x) = inf
δ>0

sup
y∈[a,b],|y−x|≤δ

f(y) = lim sup
y→x

f(y).

The function f is continuous at x if and only if g(x) = h(x). We have
g ≤ f ≤ h. If σ is a partition of interval [a, b], then U(σ, g) ≤ U(σ, f) ≤
U(σ, h) and L(σ, g) ≤ s(σ, f) ≤ s( sigma, h). But U(σ, f) = U(σ, h) and
L(σ, g) = s(σ, f). Because for every open interval ]c, d[⊂ [a, b],

inf
x∈]c,d[

g(x) = inf
x∈]c,d[

f(x), sup
x∈]c,d[

f(x) = sup
x∈]c,d[

h(x).

Therefore

L(f) = L(g) ≤ U(g) ≤ U(f), L(f) ≤ L(h) ≤ U(h) = U(f).

As the function f is Riemann integrable, the two functions g and h are

Riemann integrable, and their integral is

∫ b

a

f(x)dx.

If the functions g and h are Lebesgue integrable and have the same inte-
gral. But g ≤ h, therefore g = h a.e. As the function f is continuous at
every point where the two functions g and h are equal, the function f is
continuous a.e.

2. Assume that the function f is continuous a.e.then for every n ∈ N, let σn
be the uniform partition of the interval [a, b] and the number of points of
σn is 2n.
Let

hn(x) = sup
y∈]c,d[

f(y), gn(x) = inf
y∈]c,d[

f(y).

If there is an open interval ]c, d[ of the partition σn and contains the point
x and hn(x) = gn(x) = f(x) if x ∈ σn. So the sequences (gn)n and (hn)n
are respectively increasing and decreasing and

L(σn, f) =

∫ b

a

gn(x)dx U(σn, f) =

∫ b

a

hn(x)dx.



limn→∞ gn(x) = limn→∞ hn(x) = f(x) at every point x where the func-
tion f is continuous, so

f = lim
n→∞

gn = lim
n→∞

hn a.e.

Using the dominated convergence theorem

lim
n→∞

∫ b

a

gn(x)dx =

∫ b

a

f(x)dx = lim
n→∞

∫
hn(x)dx.

and this proves that L(f) ≥
∫ b

a
f(x)dx ≥ U(f). So the function f is

Riemann integrable.

4.2 Improper Integral and Lebesgue Integral

Theorem 4.5

Let f : ]a, b[−→ R be a function Lebesgue integrable on every closed and
bounded interval of ]a, b[.
The function f is Lebesgue integrable on ]a, b[ if and only if the iproper

integral

∫ b

a

|f(x)|dx is convergent. In this case, the Lebesgue and the

Riemann integral of f are equal:∫ b

a

f(x)dx =

∫
]a,b[

f(x)d λ(x).

Proof .

Suppose that the integral

∫ b

a

|f(x)|dx is convergent. Let (an)n and (bn)n two

sequences in ]a, b[ so that the sequence (an)n is decreasing and tends to a and
the sequence (bn)n is increasing and tends to b. We define the sequence of
functions (Fn)n as follows:

Fn(x) = |f(x)|χ[an,bn].

. The sequence (Fn)n is increasing, measurable. Its limit isthe function |f |χ]a,b[.
So the function f is measurable and by using the dominate convergence theorem
we get:

lim
n→+∞

∫
R
Fn(x)d λ(x) =

∫
]a,b[

|f(x)|d λ(x).



On the other hand, using the previous theorem

∫
R
Fn(x)d λ(x) =

∫ bn

an

|f(x)|dx.

Using the previous definition, we get:

lim
n→+∞

∫
R
Fn(x)d λ(x) =

∫ b

a

|f(x)|dx.

So the function f is Lebesgue integrable. To prove that the two integrals are
equal, we define the sequence of functions (gn)n as follows: gn = fχ[an,bn]. The
sequence (gn)n is convergent and its limit is the function fχ]a,b[. The functions
gn are integrable and |gn| ≤ |f |χ[a,b]. Using the dominate convergence theorem

lim
n→+∞

∫
]a,b[

gn(x)d λ(x) =

∫
]a,b[

f(x) d λ(x).

Inversely: If the function f is Lebesgue integrable on the interval ]a, b[, the
the function |f | is also Lebesgue integrable on the interval ]a, b[.
Let (an)n and (bn)n two sequences in ]a, b[ as previous. Using the dominate
convergence theorem

lim
n→+∞

∫
]a,b[

Fn(x)d λ(x) =

∫
]a,b[

|f(x)|d λ(x) < +∞.

On the other hand

∫
]a,b[

Fn(x)d λ(x) =

∫ bn

an

|f(x)|dx, So the limit lim
n→+∞

∫ bn

an

|f(x)|dx

in R and

∫ b

a

|f(x)|dx < +∞.



4.3 Exercises

7-4-1 (a) Calculate the integral of the following functions on [0, 1].

f(x) =
1√
x
+ χQ(x) g(x) = sinx; x ∈ Q

g(x) = cosx; x ∈ R \Q

(b) Find whether the following functions are integrable on ]0,+∞[?

f(x) =
sinx

x

g(x) =
1

(1 + x2)
√

| sinx|

h(x) =
1

x(1 + | lnx|)2

7-4-2 Calculate the following integrals:

(a)

∫
[0,+∞[

e−[x]dλ(x), Where [x] is the entire part of the real number

x.

(b)

∫
[0,π]

f(x)dλ(x), where f(x) = sinx if x ∈ Q∩[0, π] and f(x) = cosx

Otherwise.

(c)

∫
[0,1]

χQ(x)dλ(x).
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