Tut. Session (6)

Pb 3.1.3 p. 81 Textbook

A Markov chain $X_{\rm 0},~X_{\rm 1},~X_{\rm 2},\ldots$ has the transition probability matrix

$$\mathbf{P} = \begin{array}{cccc} 0 & 1 & 2 \\ 0 & 0.6 & 0.3 & 0.1 \\ 0.3 & 0.3 & 0.4 \\ 2 & 0.4 & 0.1 & 0.5 \end{array}$$

If it is known that the process starts in state $X_0=1$, determine the probability $pr\{X_0=1,X_1=0,X_2=2\}$ Ans:

$$\therefore pr\{X_0 = 1, X_1 = 0, X_2 = 2\} = p_1 P_{10} P_{02} , \quad p_1 = pr\{X_0 = 1\} = 1$$
$$= 1(0.3)(0.1)$$
$$\therefore pr\{X_0 = 1, X_1 = 0, X_2 = 2\} = 0.03$$

Pb 3.1.4 p. 82 Textbook

A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0.1 & 0.1 & 0.8 \\ 0.2 & 0.2 & 0.6 \\ 2 & 0.3 & 0.3 & 0.4 \end{bmatrix}$$

Determine the conditional probabilities

 $\Pr\left\{X_1 = 1, \ X_2 = 1 \middle| X_0 = 0\right\} \text{ and } \Pr\left\{X_2 = 1, \ X_3 = 1 \middle| X_1 = 0\right\}.$ Ans:

First, to find
$$\Pr \{ X_1 = 1, X_2 = 1 | X_0 = 0 \}$$

 $\Pr \{ X_1 = 1, X_2 = 1 | X_0 = 0 \}$
 $= \Pr \{ X_2 = 1 | X_1 = 1, X_0 = 0 \} \cdot \Pr \{ X_1 = 1 | X_0 = 0 \}$ Conditional Prob. Property
 $= \Pr \{ X_2 = 1 | X_1 = 1 \} \cdot \Pr \{ X_1 = 1 | X_0 = 0 \} = \Pr_{11} \Pr_{01}$ Markov definition
 $= 0.2(0.1)$
 $= 0.02$

Second, to find $\Pr \{X_2 = 1, X_3 = 1 | X_1 = 0\}$ $\Pr \{X_2 = 1, X_3 = 1 | X_1 = 0\}$ $= \Pr \{X_3 = 1 | X_2 = 1, X_1 = 0\}.\Pr \{X_2 = 1 | X_1 = 0\}$ Conditional Prob. Property $= \Pr \{X_3 = 1 | X_2 = 1\}.\Pr \{X_2 = 1 | X_1 = 0\} = \Pr_{11} \Pr_{01}$ Markov definition = 0.2(0.1)= 0.02

Pb 3.1.5 p. 82 Textbook

A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

		0	1	2
	0	0.3	0.2 0.1 0.2	0.5
P=	1	0.5	0.1	0.4
	2	0.5	0.2	0.3

and initial distribution $p_0=0.5$ and $p_1=0.5$. Determine the probabilities

 $pr\{X_0 = 1, X_1 = 1, X_2 = 0\} \text{ and } pr\{X_1 = 1, X_2 = 1, X_3 = 0\}.$

Ans:

i)
$$\operatorname{pr} \{X_0 = 1, X_1 = 1, X_2 = 0\} = p_1 P_{11} P_{10}, p_1 = \operatorname{pr} \{X_0 = 1\} = 0.5$$

=0.5(0.1)(0.5)
=0.025
ii) $\operatorname{pr} \{X_1 = 1, X_2 = 1, X_3 = 0\} = p_1 P_{11} P_{10}, p_1 = \operatorname{pr} \{X_1 = 1\} = ?$
 $\therefore \operatorname{pr} \{X_1 = 1\} = \operatorname{Pr}(X_1 = 1 | X_0 = 0) \operatorname{Pr}(X_0 = 0) + \operatorname{Pr}(X_1 = 1 | X_0 = 1) \operatorname{Pr}(X_0 = 1) + \operatorname{Pr}(X_1 = 1 | X_0 = 2) \operatorname{Pr}(X_0 = 2)$
 $= P_{01} p_0 + P_{11} p_1 + P_{21} p_2$
 $\therefore \operatorname{pr} \{X_1 = 1\} = 0.2(0.5) + 0.1(0.5) + 0.2(0) = 0.15$
 $\therefore \operatorname{pr} \{X_1 = 1, X_2 = 1, X_3 = 0\} = 0.15(0.1)(0.5) = 0.0075$

Pb 3.1.2 p. 82 Textbook

Consider the problem of sending a binary message, 0 or 1, through a signal channel consisting of several stages, where transmission through each stage is subject to a fixed probability of error α . Suppose that $X_0 = 0$ is the signal that is sent and let X_n be the signal that is received at the nth stage. Assume that $\{X_n\}$ is a Markov chain with transition probabilities $P_{00} = P_{11} = 1 - \alpha$ and $P_{01} = P_{10} = \alpha$, where $0 < \alpha < 1$.

(i) Determine $\Pr\{X_0 = 0, X_1 = 0, X_2 = 0\}$, the probability that no error occurs up to stage n = 2.

(ii) Determine the probability that a correct signal is received at stage 2. Ans:

The transition probability matrix can be written as

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 \\ \alpha & 1 - \alpha \end{bmatrix}$$

(i) The probability that no error occurs up to stage n = 2 is given as follows.

 $p_0 = pr(X_0 = 0) = 1$

$$\Pr \{ X_0 = 0, X_1 = 0, X_2 = 0 \} = p_0 P_{00} P_{00}$$
$$= 1 \times (1 - \alpha) \times (1 - \alpha)$$
$$= (1 - \alpha)^2$$

(ii) The probability that a correct signal is received at stage 2 is given as follows.

$$\Pr \{ X_0 = 0, X_1 = 0, X_2 = 0 \} + \Pr \{ X_0 = 0, X_1 = 1, X_2 = 0 \}$$
$$= p_0 P_{00} P_{00} + p_0 P_{01} P_{10}$$
$$= (1 - \alpha)^2 + \alpha^2$$
$$= 1 - 2\alpha + 2\alpha^2$$

Pb 3.1.4 p. 83 Textbook

The random variables ξ_1, ξ_2, \dots are independent and with the common probability mass function

k =	0	1	2	3
$\Pr\left\{\xi = k\right\} =$	0.1	0.3	0.2	0.4

Set $X_0 = 0$, and let $X_n = \max{\{\xi_1, ..., \xi_n\}}$ be the largest ξ observed to date. Determine the transition probability matrix for the Markov chain $\{X_n\}$. Ans:

For transition probability matrix of a Markov chain

The elements of first row are given by

$$P_{0,0} = \Pr \{ X_1 = 0 \} = p_0 = 0.1$$
$$P_{0,1} = \Pr \{ X_1 = 1 \} = p_1 = 0.3$$
$$P_{0,2} = \Pr \{ X_1 = 2 \} = p_2 = 0.2$$
$$P_{0,3} = \Pr \{ X_1 = 3 \} = p_3 = 0.4$$

The elements of second row are given by

$$P_{1,0} = 0 \text{ where } X_n \text{ cannot decrease}$$

$$P_{1,1} = \Pr\{X_n = 1 | X_{n-1} = 1\} = \Pr\{\xi \le 1\} = 0.1 + 0.3 = 0.4$$

$$P_{1,2} = \Pr\{X_n = 2 | X_{n-1} = 1\} = \Pr\{\xi = 2\} = 0.2$$

$$P_{1,3} = \Pr\{X_n = 3 | X_{n-1} = 1\} = \Pr\{\xi = 3\} = 0.4$$

The elements of third row are given by

$$P_{2,0} = P_{2,1} = 0 \text{ where } X_n \text{ cannot decrease}$$

$$P_{2,2} = \Pr\{X_n = 2 | X_{n-1} = 2\} = \Pr\{\xi \le 2\} = 0.1 + 0.3 + 0.2 = 0.6$$

$$P_{2,3} = \Pr\{X_n = 3 | X_{n-1} = 2\} = \Pr\{\xi = 3\} = 0.4$$

The elements of fourth row are given by

$$P_{3,0} = P_{3,1} = P_{3,2} = 0 \text{ where } X_n \text{ cannot decrease}$$
$$P_{3,3} = \Pr\{X_n = 3 | X_{n-1} = 3\} = \Pr\{\xi \le 3\} = 0.1 + 0.3 + 0.2 + 0.4 = 1$$

The transition probability matrix will be of the form