Pb. 4.1.1 p. 173

A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

$$\mathbf{P} = \begin{array}{cccc} 0 & 1 & 2 \\ 0 & 0.7 & 0.2 & 0.1 \\ 0 & 0.6 & 0.4 \\ 2 & 0.5 & 0 & 0.5 \end{array}$$

Determine the limiting distribution.

Answer

Let $\pi = (\pi_0, \pi_1, \pi_2)$ be the limiting distribution

$$\therefore \pi_{j} = \sum_{k=0}^{2} \pi_{k} P_{kj}, \ j = 0, 1, 2$$

and $\sum_{k=0}^{2} \pi_{k} = 1$

 \Rightarrow

$$\pi_{0} = 0.7\pi_{0} + 0.5\pi_{2}$$

$$\therefore \pi_{2} = 0.6\pi_{0} \qquad (1)$$

$$\pi_{1} = 0.2\pi_{0} + 0.6\pi_{1}$$

$$\therefore \pi_{1} = 0.5\pi_{0} \qquad (2)$$

$$\therefore \pi_{0} + \pi_{1} + \pi_{2} = 1 \qquad (3)$$

$$\therefore \text{ by substituting (1) and (2) in (3)}$$
we get $\pi_{0} + 0.5\pi_{0} + 0.6\pi_{0} = 1$

$$\therefore \pi_{0} = \frac{10}{21}$$

$$\therefore \pi_{1} = 0.5(\frac{10}{21}) = \frac{5}{21}, \ \pi_{2} = 0.6(\frac{10}{21}) = \frac{6}{21}$$

: The limiting distribution is $\pi = (\pi_0, \pi_1, \pi_2) = (10/21, 5/21, 6/21)$

Pb. 4.1.2 p. 173

A Markov chain $X_0, X_1, X_2, ...$ has the transition probability matrix

$$\mathbf{P} = \begin{array}{cccc} 0 & 1 & 2 \\ 0 & 0.6 & 0.3 & 0.1 \\ 0.3 & 0.3 & 0.4 \\ 2 & 0.4 & 0.1 & 0.5 \end{array}$$

Determine the limiting distribution.

Answer

Let $\pi = (\pi_0, \pi_1, \pi_2)$ be the limiting distribution

 \Rightarrow

$$\pi_0 = 0.6\pi_0 + 0.3\pi_1 + 0.4\pi_2$$
$$\pi_1 = 0.3\pi_0 + 0.3\pi_1 + 0.1\pi_2$$
$$\pi_2 = 0.1\pi_0 + 0.4\pi_1 + 0.5\pi_2$$
$$\pi_0 + \pi_1 + \pi_2 = 1$$

Solving the following equations

$$4\pi_0 - 3\pi_1 - 4\pi_2 = 0 (1) 3\pi_0 - 7\pi_1 + \pi_2 = 0 (2) \pi_0 + \pi_1 + \pi_2 = 1 (3)$$

By solving equations using Cramer's rule, we get

$$\Delta = \begin{vmatrix} 4 & -3 & -4 \\ 3 & -7 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -66, \ \Delta_0 = \begin{vmatrix} 0 & -3 & -4 \\ 0 & -7 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -31$$
$$\Delta_1 = \begin{vmatrix} 4 & 0 & -4 \\ 3 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -16, \ \Delta_2 = \begin{vmatrix} 4 & -3 & 0 \\ 3 & -7 & 0 \\ 1 & 1 & 1 \end{vmatrix} = -19$$
$$\therefore \ \pi_0 = \frac{\Delta_0}{\Delta} = \frac{31}{66}, \ \pi_1 = \frac{\Delta_1}{\Delta} = \frac{16}{66}, \ \pi_2 = \frac{\Delta_2}{\Delta} = \frac{19}{66}$$

: The limitting distribution is $\pi = (\pi_0, \pi_1, \pi_2) = (31/66, 16/66, 19/66)$

Pb. 4.1.8 p. 174

Suppose that the social classes of successive generations in a family follow a Markov chain with transition probability matrix given by

			Son's class	
		Lower	Middle	Upper
Father's class	Lower	0.7	0.2	0.1
	Lower Middle	0.2	0.6	0.2
	Upper	0.1	0.4	0.5

What fraction of families are upper class in the long run?

Answer

Let $\pi = (\pi_0, \pi_1, \pi_2)$ be the limiting distribution

$$\Rightarrow$$

$$\pi_0 = 0.7\pi_0 + 0.2\pi_1 + 0.1\pi_2$$

$$\pi_1 = 0.2\pi_0 + 0.6\pi_1 + 0.4\pi_2$$

$$\pi_2 = 0.1\pi_0 + 0.2\pi_1 + 0.5\pi_2$$

$$\pi_0 + \pi_1 + \pi_2 = 1$$

Solving the following equations

$3\pi_0 - 2\pi_1 - $	$\pi_2 = 0$	(1)
0 1	2	()

$$\pi_0 + 2\pi_1 - 5\pi_2 = 0 \tag{2}$$

$$\pi_0 + \pi_1 + \pi_2 = 1 \tag{3}$$

By solving equations using Cramer's rule, we get

$$\Delta = \begin{vmatrix} 3 & -2 & -1 \\ 1 & 2 & -5 \\ 1 & 1 & 1 \end{vmatrix} = 34, \ \Delta_0 = \begin{vmatrix} 0 & -2 & -1 \\ 0 & 2 & -5 \\ 1 & 1 & 1 \end{vmatrix} = 12$$

$$\Delta_{1} = \begin{vmatrix} 3 & 0 & -1 \\ 1 & 0 & -5 \\ 1 & 1 & 1 \end{vmatrix} = 14, \ \Delta_{2} = \begin{vmatrix} 3 & -2 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 8$$

$$\therefore \ \pi_{0} = \frac{\Delta_{0}}{\Delta} = \frac{6}{17}, \ \pi_{1} = \frac{\Delta_{1}}{\Delta} = \frac{7}{17}, \ \pi_{2} = \frac{\Delta_{2}}{\Delta} = \frac{4}{17}$$

 \therefore The limiting distribution is $\pi = (\pi_0, \pi_1, \pi_2) = (6/17, 7/17, 4/17)$

 \therefore In the long run, approximately 23.53% of families are upper class.