Chapter \# 2 Part \# 1

1) What is your evaluation of the validity of the frequently used 50 working minutes per hour as average job performance?

Solution:
Job efficiency of 50 minute per hour $=\frac{50 \mathrm{~min} / \text { hour }}{60 \mathrm{~min} / \text { hour }} \times 100=83.3 \%$
From table 2-1, Excellent job conditions and Good management
2) A sample of gravel from a stockpile weighs 15 lb . after oven drying, the sample weighs 14.2 lb. calculate the moisture content of the sample.

Solution:

Moisture content $=\frac{\text { moistu re weig ht-dry weig ht }}{d r y \text { weight }} \times 100$

$$
=\frac{15 l b-14.2}{14.2} \times 100=5.6 \%
$$

3) Calculate the size of a conical spoil pile resulting from excavation of 500 BCY of dry common earth.

Solution:
From table 2-5, \quad load factor $=0.8$
From table 2-6,

$$
\mathrm{R}=32^{\circ}
$$

Volume $=500 \mathrm{BCY}=\frac{500 \mathrm{BCY}}{0.8}=625 \mathrm{LCY}$
$\mathrm{D}=\left(\frac{7.64 \times V}{\tan R}\right)^{1 / 3}=\left(\frac{7.64 \times 625 L C Y}{\tan 32}\right)^{1 / 3}=19.7 \mathrm{ft}$
$\mathrm{H}=\frac{D}{2} \times \tan R=\frac{19.7}{2} \times \tan 32=6.15 \mathrm{ft}$
4) A soil weighs $2500 \mathrm{lb} / \mathrm{cu}$ yd loose, $3100 \mathrm{lb} / \mathrm{cu}$ yd in its natural state, and $3650 \mathrm{lb} / \mathrm{cu} \mathrm{yd}$ compacted. Find this soil's load factor and shrinkage factor.

Solution:
Swell $\quad=\left(\frac{\text { weig ht "bank volume " }}{\text { weight "loose volume " }}-1\right) \times 100$

$$
=\left(\frac{3100 l b \text { "BCY" }}{2500 \text { "LCY" }}-1\right) \times 100=24 \%
$$

Load factor $=\frac{\text { weight "loose volume " }}{\text { weig ht "bank volume " }} \times 100$

$$
=\frac{2500 \text { "LCY" }}{3100 \mathrm{lb} " B C Y "} \times 100=80.6 \%
$$

Or
Load factor $=\frac{1}{1+\text { swell }} \times 100=\frac{1}{1+0.24} \times 100=80.6 \%$
Shrinkage $\quad=\left(1-\frac{\text { weight "bank volume " }}{\text { weight "compact volume " }}\right) \times 100$

$$
=\left(1-\frac{3100 l b " B C Y "}{3650 l b{ }^{" C C Y "}}\right) \times 100=15.06 \%
$$

Shrinkage factor $=1-$ Shrinkage $=1-0.1506=84.9 \%$
Or
Shrinkage factor $=\left(\frac{\text { weight "bank volume " }}{\text { weight "compact volume " }}\right) \times 100$
$=\left(\frac{3100 \mathrm{lb} \text { "BYC" }}{3650 \text { "CCY" }}\right) \times 100=84.9 \%$

