Determine the resultant force of the wind on the sign. Use an importance factor of 0.87 and $\mathrm{V}=40 \mathrm{~m} / \mathrm{s}$. The sign is located on a flat ground and the wind is acting alone.

Solution:

$F=q_{z} G C_{f} A_{f}$
$q_{z}=0.613 K_{z} K_{z t} K_{d} V^{2} I$
$Z=3.6-1.8 / 2=2.7 m \rightarrow$ from table $1-5, \mathrm{~K}_{\mathrm{z}}=0.85$
Flat ground $\rightarrow \mathrm{K}_{\mathrm{zt}}=1$
The wind is acting alone $\rightarrow K_{d}=1$
$q_{z}=0.613 \times 0.85 \times 1 \times 1 \times 40^{2} \times 0.87=725.3 \mathrm{~N} / \mathrm{m}^{2}$
Rigid Structure $\rightarrow \mathrm{G}=0.85$
$M / N=2.4 / 1.8=1.33$, from table 1-6 $\rightarrow C_{f}=1.2$
$F=725.3 \times 0.85 \times 1.2 \times(2.4 \times 1.8)=3195.96 N$

The shown concrete floor plan is subjected to a uniform vertical load equal to $5 \mathrm{kN} / \mathrm{m}^{2}$. The concrete density is $22 \mathrm{kN} / \mathrm{m}^{3}$, it is required to:

1- Draw the floor load distribution.
2- Determine reactions for the hashed beam.

Notes:
Beams are $0.25 \times 0.6 \mathrm{~m}$
Columns are $0.25 \times 0.25 \mathrm{~m}$
Slab thickness $=0.15 \mathrm{~m}$

For the slab:
Own weight per $\mathrm{m}^{2}=0.15 \mathrm{~m} \times 22 \mathrm{kN} / \mathrm{m}^{3}=3.3 \mathrm{kN} / \mathrm{m}^{2}$
Total weight per $\mathrm{m}^{2}=3.3+5=8.3 \mathrm{kN} / \mathrm{m}^{2}$
For the beam:
Own weight per $\mathrm{m}=0.25 \mathrm{~m} \times 0.6 \mathrm{~m} \times 22 \mathrm{kN} / \mathrm{m}^{3}=3.3 \mathrm{kN} / \mathrm{m}$

$Y=\frac{1}{2}\left[(3.3 \times 5)+\left(\frac{16.6 \times 2}{2} \times 2+16.6 \times 1\right)+\left(\frac{12.45 \times 1.5}{2} \times 2+12.45 \times 2\right)\right]$
$Y=93.875 \mathrm{kN}$

