## Chapter \# 2 Part \# 2

1 ) Estimate the actual volume of common earth in bank measured carried by a hydraulic excavator bucket whose heaped capacity is 2.5 cu yd.

Solution:
From table $3-2$, Bucket fill factor $=\frac{0.8+1.10}{2}=0.95$
Bucket load $=2.5 \mathrm{LCY} \times 0.95=2.38 \mathrm{LCY}$
From table $2-5$, load factor $=0.8$
Bucket load $=2.38 \mathrm{LCY} \times 0.8=1.9 \mathrm{BCY}$
2) A 3.5 yd hydraulic shovel with bottom dump bucket is excavating tough clay. The swing angle is $120^{\circ}$ and job efficiency is $75 \%$. Estimate the shovel's hourly production in bank measure.

Solution:
Shovel's hourly production (LCY/hr) $=C \times S \times V \times B \times E$
From table $3-6, \mathrm{C}=\mathrm{Cycles} / \mathrm{hr}=150$ cycles $/ \mathrm{hr}$.
From table $3-6, S=$ Swing factor $=0.94$
$\mathrm{V}=$ Heaped bucket volume in $\mathrm{LCY}=3.5 \mathrm{LCY}$.
From table 3-2, B = bucket fill factor $=\frac{0.65+.95}{2}=0.8$
$\mathrm{E}=\mathrm{Job}$ efficiency $=75 \%=0.75$
Shovel's hourly production $(\mathrm{LCY} / \mathrm{hr})=150 \times 0.94 \times 3.5 \times 0.8 \times 0.75=296.1 \mathrm{LCY} / \mathrm{hr}$
From table 2-5, load factor $=0.77$
Shovel's hourly production $(\mathrm{BCY} / \mathrm{hr})=296.1 \mathrm{LCY} / \mathrm{hr} \times 0.77=228 \mathrm{BCY} / \mathrm{hr}$
3) A hydraulic excavator is excavating the basement of a building. Heaped bucket capacity is 1.5 cu yd. The material is common earth with a bucket fill factor of 0.9 . Job efficiency is estimated to be $50 \mathrm{~min} / \mathrm{hr}$. The machine's maximum depth of cut is 24 ft and the average digging depth is 13 ft . Average swing angle is $90^{\circ}$. Estimate the hourly production in bank measure.

Solution:
Backhoe's hourly production (LCY/hr) $=C \times S \times V \times B \times E$
From table $3-3$, C = Cycles/hr $=160$ cycles $/ \mathrm{hr}$.
$\mathrm{S}=$ Swing factor
Depth of cut $(\%$ of maximum $)=\frac{\text { actual dept } h}{\text { optimum dept } h} \times 100=\frac{13 \mathrm{ft}}{24 \mathrm{ft}} \times 100=54 \%$
From table 3-4,
@ $50 \%$ of maximum, $\mathrm{S}=1.1$
@ $70 \%$ of maximum, $\mathrm{S}=1.0$
$\rightarrow \mathrm{S} @ 54 \%$ of maximum $=1.1-\frac{1.1+1.0}{0.7-0.5} \times(0.7-0.54) \approx 1.02$
$\mathrm{V}=$ Heaped bucket volume in $\mathrm{LCY}=1.5 \mathrm{LCY}$.
From table 3-2, B = bucket fill factor $=\frac{0.8+1.10}{2}=0.95$
$\mathrm{E}=\mathrm{Job}$ efficiency $=\frac{50 \mathrm{~min} / \mathrm{hr}}{60 \mathrm{~min} / \mathrm{hr}}=83 \%=0.83$
Backhoe's hourly production $(\mathrm{LCY} / \mathrm{hr})=160 \times 1.02 \times 1.5 \times 0.95 \times 0.83=193 \mathrm{LCY} / \mathrm{hr}$
From table 2-5, load factor $=0.8$
Backhoe's hourly production $(\mathrm{BCY} / \mathrm{hr})=193 \mathrm{LCY} / \mathrm{hr} \times 0.8=154.4 \mathrm{BCY} / \mathrm{hr}$
4) A small hydraulic excavator is used to dig a trench in hard clay. The minimum trench size is 26 in wide by 4.8 ft deep. The excavator bucket available is 30 in . wide and has a heaped capacity of .75 cu . The maximum digging depth of the excavator is 16 ft . The average swing angle is expected to be $85^{\circ}$. Estimate the hourly trench production in linear feet if job efficiency is $70 \%$.

## Solution:

From table $3-3$, C = Cycles/hr $=160$ cycles/hr.
$\mathrm{S}=$ Swing factor
Depth of cut $(\%$ of maximum $)=\frac{\text { actual dept } h}{\text { optimum dept } h} \times 100=\frac{4.8 \mathrm{ft}}{16 \mathrm{ft}} \times 100=30 \%$
From table $3-4, S$ @ angle of swing of $85^{\circ}$ by interpolation $\approx 1.17$
$\mathrm{V}=$ Heaped bucket volume in $\mathrm{LCY}=0.75 \mathrm{LCY}$.
From table 3-2, B = bucket fill factor $=\frac{0.65+0.95}{2}=0.8$
$\mathrm{E}=\mathrm{Job}$ efficiency $=70 \%=0.7$
Backhoe's hourly production $(\mathrm{LCY} / \mathrm{hr})=160 \times 1.17 \times 0.75 \times 0.8 \times 0.7=78.6 \mathrm{LCY} / \mathrm{hr}$
From table 2-5, load factor $=0.77$
Backhoe's hourly production $(\mathrm{BCY} / \mathrm{hr})=78.6 \mathrm{LCY} / \mathrm{hr} \times 0.77=60.5 \mathrm{BCY} / \mathrm{hr}$
From table 3-5, Adjustment factor for trench production $=\frac{0.95+1.0}{2}=0.98$
Backhoe's hourly trench production $(\mathrm{BCY} / \mathrm{hr})=60.5 \mathrm{BCY} / \mathrm{hr} \times 0.98=59.3 \mathrm{BCY} / \mathrm{hr}$
Depth of trench $=$ minimum trench width $\times \mathrm{S}=26 \mathrm{in} . \times 1.17=30.4 \mathrm{in}$.
Cross section area $=\frac{30.4 \text { in }}{12 \text { in } / f t} \times 5 \mathrm{ft}=12.675 \mathrm{ft}^{2}$
Linear production $=\frac{\text { Production }}{\text { area }}=\frac{59.3 \mathrm{BCY} / \mathrm{hr} \times 27 \mathrm{cu} \mathrm{ft} / \mathrm{cu} \mathrm{yd}}{12.675 \mathrm{ft}^{2}}=126.32 \mathrm{ft} / \mathrm{hr}$

Homework: Chapter \#3, Problems: 5, 6 and 9.

