Chapter \# 4 Part \#1

1) A tractor scraper hauls its rated payload $4000 \mathrm{ft} \mathrm{up} \mathrm{a} 5 \%$ grade from the cut to fill and returns empty over the same route. The rolling resistance factor for the haul road is 120 $\mathrm{lb} /$ ton. Estimate the scraper travel time.

Solution:

At hauling, scraper is loaded
Grade $=+5 \%$, rolling resistance factor $=120 \mathrm{lb} /$ ton
Effective Grade $\%=$ Grade $\%+($ Rolling Resistance factor lb/ton) / 20
Effective Grade $\%=5 \%+120 / 20=11 \%$
From figure 4-4;
Hauling time $=5.2 \mathrm{~min}$.
At retaining, scraper is empty
Grade $=-5 \%$, rolling resistance factor $=120 \mathrm{lb} /$ ton
Effective Grade \% $=-5 \%+120 / 20=1 \%$
From figure 4-5;
Retuning time $=1.6 \mathrm{~min}$.
Scraper travel time $=$ hauling time + retuning time
Scraper travel time $=5.2+1.6=6.8 \mathrm{~min}$.
2) A power shift crawler tractor is excavating loose common earth and pushing it a distance of 120 ft . Maximum reverse speeds are: first range, 3 mph ; second range, 5 mph ; and third range, 8 mph . Rated blade capacity is 11 LCY . Estimate dozer production if the job efficiency factor is 0.75 .

Solution:

Production $=($ Rated Blade Capacity $/$ Cycle Time $) \times$ Job Efficiency
Cycle Time $=$ Fixed Time + Dozing Time + Retuning Time

- Fixed time:

From table 4-4; fixed time $=0.05 \mathrm{~min}$

- Dozing time:

Pushing distance $=120 \mathrm{ft}$.
From table 4-5, dozing speed $=2.5 \mathrm{mph}$
Dozing time $=\frac{\text { Pushing Distance }}{\text { Dozing Speed }}=\frac{120 \mathrm{ft}}{2.5 \mathrm{mph} \times 88 \frac{\mathrm{ft} / \mathrm{min}}{m p h}}=0.55 \mathrm{~min}$

- Retuning time:

Retuning distance $=120 \mathrm{ft}$.
From table $4-5$, retuning speed $=8 \mathrm{mph}$
Dozing time $=\frac{\text { Retuning Distance }}{\text { Retuning Speed }}=\frac{120 \mathrm{ft}}{8 m p h \times 88 \frac{\mathrm{ft} / \mathrm{min}}{\mathrm{mp} h}}=0.17 \mathrm{~min}$
\rightarrow Cycle Time $=0.05+0.55+0.17=0.77 \mathrm{~min}$
\rightarrow Production $=(11 \mathrm{LCY} / 0.77) \times 0.75=10.71 \mathrm{LCY} / \mathrm{min}=642.86 \mathrm{LCY} / \mathrm{hr}$.
3) How many hours should it take an articulated wheel loader equipped with a 4 yd bucket to load 3000 cu yd of gravel from a stockpile into rail cars if the average haul distance is 300 ft one way? The area is level with a rolling resistance factor of $120 \mathrm{lb} /$ to. Job efficiency is estimated at $50 \mathrm{~min} / \mathrm{hr}$. bucket fill factor $=1$.

Solution:

Production $=($ Bucket Volume $/$ Cycle Time $) \times$ Job Efficiency
Bucket Volume $=4 \mathrm{LCY} \times 1=4 \mathrm{LCY}$.
Job Efficiency $=50(\mathrm{~min} / \mathrm{hr}) / 60(\mathrm{~min} / \mathrm{hr})=0.833=83.33 \%$
Cycle Time $=$ Basic time + Travel Time

- Basic Time:

From table $4-6$, basic time $=0.65 \mathrm{~min}$.

- Travel Time:

The area is level \rightarrow Grade $=0 \%$, rolling resistance factor $=120 \mathrm{lb} /$ ton
Effective Grade $\%=$ Grade $\%+($ Rolling Resistance factor lb/ton $) / 20$
Effective Grade \% = $0 \%+(120 \mathrm{lb} /$ ton $) / 20=6 \%$
From figure $4-14$, travel time $\approx 0.5 \mathrm{~min}$
\rightarrow Cycle Time $=0.65+0.5=1.15 \mathrm{~min}$
\rightarrow Production $=(4 \mathrm{LCY} / 1.15 \mathrm{~min}) \times 0.833=2.899 \mathrm{LCY} / \mathrm{min}=173.9 \mathrm{LCY} / \mathrm{hr}$
No. of hours $=$ Total Volume/ Production
No. of hours $=3000(\mathrm{LCY}) / 173.9(\mathrm{LCY} / \mathrm{hr})=17.25$ hours $=17$ hours and 15 minutes.

