PRODUCTS OF TWO VECTORS

THE SCALAR PRODUCT OF TWO VECTORS

- The scalar (or dot) product of two vectors is defined by the following relation:

$$
\vec{a} \cdot \vec{b}=a b \cos \varphi
$$

- In unit-vector rotation it is defined as follows:
- $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ vectors is commutative:

(a)

(b)

THE VECTOR PRODUCT OF TWO VECTORS

- The vector (or product) of two vectors is written as:

$$
\vec{a} \times \vec{b}
$$

- The magnitude of this vector is given by:

(a)

$$
c=a b \sin \varphi
$$

- In unit-vector notation the vector product is given by:

PROPERTIES OF SCALAR PRODUCT OF TWO VECTORS

- In the special case where $\mathbf{a}=\mathbf{b}$ we have:

$$
\mathbf{a} \cdot \mathbf{a}=a_{x} a_{x}+a_{y} a_{y}+a_{z} a_{z}=\|\mathbf{a}\|^{2}
$$

- From which we can write:

$$
\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}
$$

PROPERTIES OF SCALAR PRODUCT OF TWO VECTORS

- For three vectors \mathbf{u}, \mathbf{v} and \mathbf{w} we have the following properties:
a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$ (symmetry property)
b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$ (distributive property)
c) $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v} \quad$ (homogeneity property)
d) $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v}=0$ if and only if $\mathbf{v}=0$ (positivity property)

CAUCHY-SCHWARTZ INEQUALITY AND SCALAR PRODUCT-a

- From the definition of the scalar product it is easy to see that:

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot\|\mathbf{v}\|}\right)
$$

- It is straightforward that

$$
-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \cdot\|\mathbf{v}\|} \leq 1
$$

CAUCHY-SCHWARTZ INEQUALITY AND SCALAR PRODUCT-b

- From the above relations it is easy to derive the famous Cauch-Schwartz inequality:

$$
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\|
$$

