PRODUCTS OF TWO VECTORS



THE SCALAR PRODUCT OF TWO
VECTORS

The scalar (or dot) product of
two vectors is defined by the
following relation:
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THE VECTOR PRODUCT OF TWO
VECTORS

The vector (or product) of
two vectors is written as:
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The magnitude of this vector
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In unit-vector notation the

vector product is given by:
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PROPERTIES OF SCALAR PRODUCT
OF TWO VECTORS

 In the special case where a = b we have:
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e From which we can write:
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PROPERTIES OF SCALAR PRODUCT
OF TWO VECTORS

e For three vectors u, v and w we have the
following properties:

a) u-v=v-u (symmetry property)

b)u- (V + W) =u-v+u-w (distributive property)

C) k(u : V) = (ku) v (homogeneity property)

d)v-v=0 andv-v=0 1fand only if v=0 (positivity property)



CAUCHY-SCHWARTZ INEQUALITY
AND SCALAR PRODUCT-a

* From the definition of the scalar product 1t
1s easy to see that:
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e It 1s straightforward that
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CAUCHY-SCHWARTZ INEQUALITY
AND SCALAR PRODUCT-b

* From the above relations it 1s easy to derive
the famous Cauch-Schwartz inequality:
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