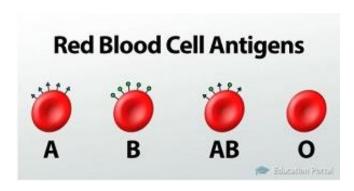

ABO Blood Grouping & Rh Groups

BCH 471



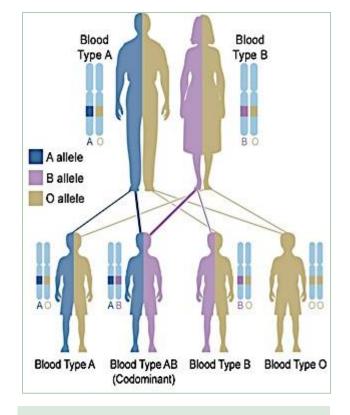
Blood Group Substances

- The differences in human blood are due to the presence or absence of certain molecules called <u>antigens</u> and <u>antibodies</u>.
- The <u>antigens</u> are located on <u>the surface of the red blood cells</u>
- Antigens are also found in a wide variety of tissues and biological fluids such as saliva, milk, seminal fluid, urine, and gastric juice.
- The <u>antibodies</u> are proteins in the <u>blood plasma</u> to attack foreign antigens, resulting in clumping (agglutination)

- The ABO blood type system is the major blood type classification system.
- The four blood types in the ABO system (A, B, AB, and O) refer to different versions of oligosaccharides which are present on the surface of RBCs.

People with:	Have:	
Type A blood	Type A carbohydrate molecules on their red blood cells	\Diamond
Type B blood	Type B carbohydrate molecules on their red blood cells	
Type AB blood	Both type A and type B carbohydrate molecules on their red blood cells	
Type O blood	Neither type A nor type B carbohydrate molecules on their red blood cells	

Importance of The ABO System


- Blood group antigens must be determined to secure a safe practice of **blood transfusion**.
- They are also useful in determining <u>familial relationships</u> in <u>forensic medicine</u>.

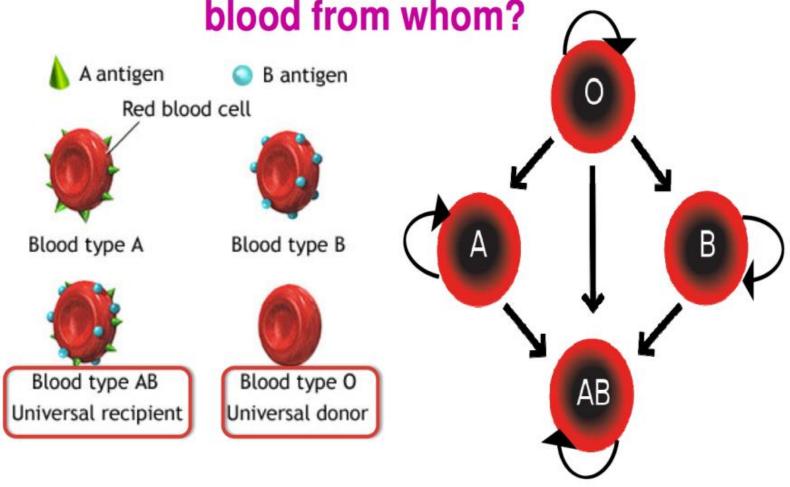
Genetics of Blood Types

- Your blood type is established before you are born, by specific GENES inherited from your parents.
 - You have two copies of this gene, one inherited from your **MOTHER** and the other inherited from your **FATHER**.

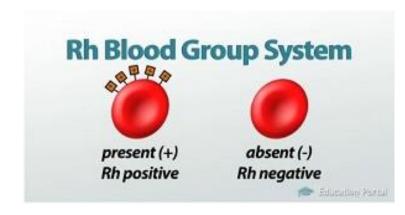
	r	nother	•	alleles blood typ
father	A	В	0	A+A = A
Α	AA	AB	AO	A+O = A
				A+B = AB
В	BA	BB	ВО	B+B = B
0	OA	ОВ	00	B+O = B
		OB		0+0 = 0

Codominance

is a condition in which the alleles of a gene pair in a heterozygote are fully expressed thereby resulting in offspring with a phenotype that is neither dominant nor recessive

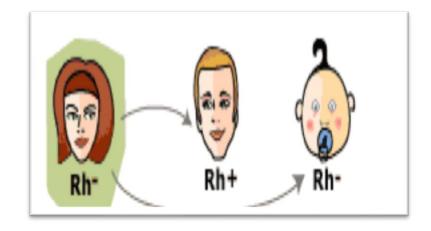

Blood Types

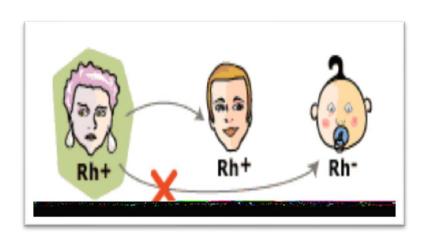
- There are **3 alleles or genes** for blood type: **A**, **B**, & **O**.
- Since we have 2 genes, there <u>are 6 possible combinations.</u>

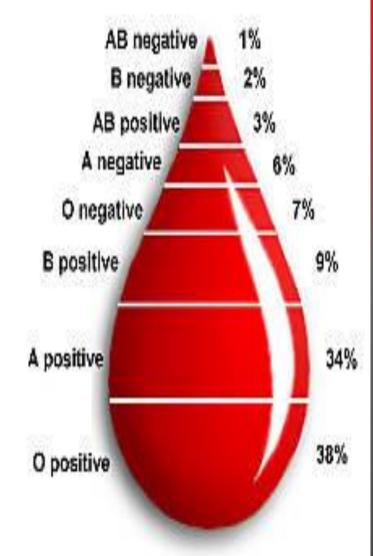

The ABO Blood System

Blood Type (genotype)	Type A (AA, AO)	Type B (BB, BO)	Type AB (AB)	Type 0 (00)
Red Blood Cell Surface Proteins (phenotype)	A agglutinogens only	B agglutinogens only	A and B agglutinogens	No agglutinogens
Plasma Antibodies (phenotype)	b agglutinin only	a agglutinin only	NONE. No agglutinin	a and b agglutinin

Blood transfusions – who can receive blood from whom?

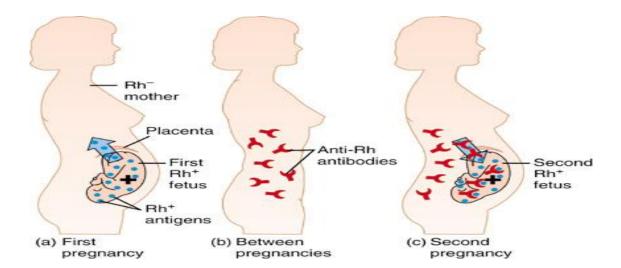

Rhesus Blood Group



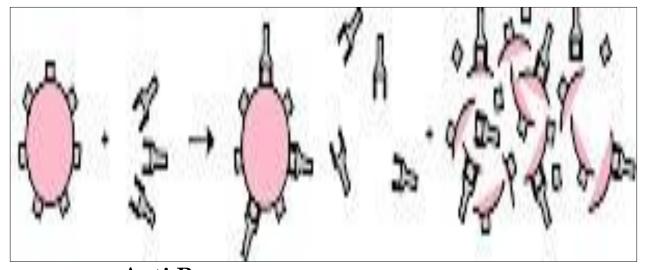

- First studied in rhesus monkeys.
- Is the second most significant blood group system in human transfusion.
- The **D** antigen (RhD) is the most important.
- If it is <u>present on RBCs' surface</u>, the blood is **RhD positive** (~80% of the population), if not it's **RhD negative**.
- So, for example, some people in group A will have it, and will therefore be classed as A+ (or A positive), while the ones that don't, are A- (or A negative) and so it goes for groups B, AB and O.

Rh Blood Group Transfusion

- A person with Rh+ blood can receive blood from a person with Rh- blood without any problems
- A person with Rh- blood can develop Rh antibodies in the blood plasma if he or she receives blood from a person with Rh+ blood, whose Rh antigens can trigger the production of Rh antibodies



RED BLOOD CELL COMPATIBILITY TABLE **Donor** Recipient 0-AB- AB+ B-B+ Α-Α+ X X X X 0-X X X 0+ X X X X Α-X X X A+ X X X X X B-X X B+ X X AB-AB+


Hemolytic Disease of The Newborn (HDN)

- Also called, Erythroblastosis Fetalis
- Mother is Blood type Rh-, Father and fetus are Rh+
- First pregnancy = sensitization at delivery due to hemorrhage
- Second pregnancy = <u>Mother produce anti-Rh</u> IgG antibodies that cross placenta to <u>attack fetal RBCs</u> leading to hemolysis

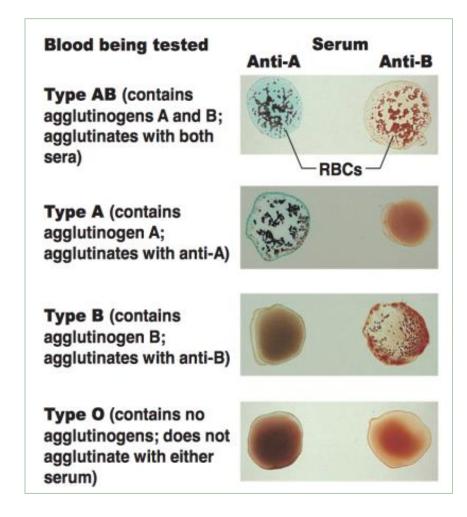
Principle Of Test

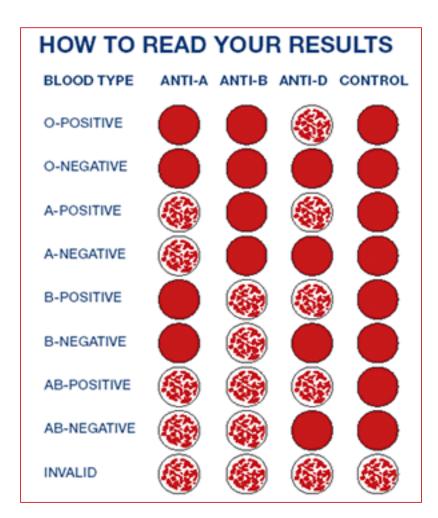
Type B Anti B blood gp antibodies

Agglutination

Hemolysis

Seen as the picture


Practical Part


Objectives

•To determine the blood group according to the ABO system.

•To test for the availability of the Rh factor (D antigen).

RESULTS

