King Saud University

Department of Mathematics

Second Mid Term Exam

ACTU 361 - Mathematics of Finance (1)
 (22/7/1438 H, Time 1H30)

Exercise 1. [2+2+2]

We consider an annual annuity immediate with the following payments for n years:

$$
P, P+Q, P+2 Q, P+3 Q, \ldots, P+(n-1) Q
$$

1) Prove that the present value of this annuity is equal to:

$$
P V=P a_{\bar{n} / i}+Q\left(\frac{a_{\bar{n} / i}-n v^{n}}{i}\right)
$$

with i is the annual effective interest rate.
2) Deduce the present value of this annuity if it continuous infinitely.
3) Find the present value of a perpetuity immediate that make the following annual payments

$$
1,3,5,7, \ldots
$$

with an annual effective interest rate of 2%.

Exercise 2. [5]

A 20-year annuity pays 10 at the end of year 1 and increase by 10 each year until the payment is 100 at the end of year 10 . The payment remains constant for one year. Payments then decrease by 10 each year until a payment of 10 is paid at the end of year 20 . The annual effective rate is 4%.
Find the present value and the accumulated value of this annuity.

Exercise 3. [5]

An annuity due make payments at the beginning of every 2 years. It pays 5 now and each successive payment will increase by 3% during 10 years. Starting from year 10, the payments remain constant forever.

Find the present value of this perpetuity with an annual effective interest rate of 4%.

Exercise 4. [1+2+3]

1) Give the formula of the present value of a varying annual continuous annuity that pays a rate of $f(t)$ at a varying force of interest δ_{t} with $0 \leq t \leq n$.
2) We consider a continuous annuity paying $f(t)=3 t+5$ with a constant rate of interest equal to 7% p.a. and $0 \leq t \leq 10$.
Find the present and the accumulated value of this annuity.
3) We consider a continuous annuity paying $f(t)=t^{2}$ with a constant force of interest equal to 4% p.a. and $0 \leq t \leq 10$.
Find the present value of this annuity.

Exercise 5. [3]

Find the present value of a 3-year annuity that pays 3 at the end year 3 and each annual successive payment increase by 3% with an annual interest rate of 3%.

