#### King Saud University

### **Department of Mathematics**

#### **Final Examination**

ACTU 461 - Mathematics of Finance (2)
(11/8/1440 H, Time 3H)
(3 pages)

### Exercise 1. [5]

A stock has current price  $S_0 = 50$ . The annual continuous interest rate is 3%. Semi-annual dividend of 1 will be paid in six month and one year. Suppose that the price of a prepaid forward contract on this stock is 48.

Describe an arbitrage opportunity and find the arbitrage profit.

### Exercise 2. [1+1+2]

Suppose the S&P 500 index futures price is currently 1135. You wish to purchase 6 futures contracts on margin.

- a) What is the notional value of your position?
- b) Assuming 10% initial margin, what is the value of the initial margin?
- c) Suppose that the maintenance margin is 90% of the initial margin and after one settlement day, the index price declines to 1125. The annual effective interest rate is 3%. Is there a margin call?

#### Exercise 3. [2+1+3]

You are given the following information on 6-month European calls and puts on a non-dividend paying stock:

| Strike | Call Premium | Put Premium |
|--------|--------------|-------------|
| 58     | 4.052        | 3.675       |
| 62     | 2.524        | 5.913       |

You enter long positions on two 58-strike put options and one 62-strike call.

- a) Draw the payoff and the profit diagram of your combined position.
- b) Calculate the maximum and minimum payoff.
- c) Calculate the profit if the stock price at expiration is 60.

#### Exercise 4. [5]

### You are given:

- The current price of a stock is 60. (i)
- The stock will pay a dividend of 4 dollars six month from now. (ii)
- The price of a 1-year European put option on the stock is 1.8 less than (iii) that of an otherwise identical call.
- The continuously compounded risk-free interest rate is 5%. (iv)

Calculate the strike price of the option.

## Exercise 5. [5]

- a) You short an index at  $S_0$  and write a put on this index. Give the name of your combined position, the reason to write a put with index and an equivalent strategy profit (with the proof).
- b) You short an index and you write a 6-months 100-strike put on this index. Suppose that 100-strike call on this index costs 4 and the risk-free effective interest rate is 2%. What is the profit of your combined position if the index price at expiration is 120?

# Exercise 6. [5]

The current price of a stock is 40. The continuously compounded risk-free rate and dividend rate are r=0.03 and  $\delta=0.01$ . The price of an at-the-money 3month call is 2.48. An investor buys the at-the-money 3-month call and put.

- a) Give the name of this combined position and the graph.
- b) What is the minimum profit?

#### Exercise 7. [6]

The current price for a stock index is 1,000. The following premiums exist for various options to buy or sell the stock index in six months from now:

| Strike price | Call Premium | Put Premium |
|--------------|--------------|-------------|
| 950          | 120.41       | 51.78       |
| 1,000        | 93.81        | 74.20       |
| 1,050        | 71.80        | 101.21      |
| 1,050        | , 1.00       |             |

Strategy 1 is to sell the 950-strike put and to buy 1,050-strike call

Strategy 2 is to buy the 950-strike put and to sell 1,050-strike call

Strategy 3 is to buy the 950-strike call and to sell 1,050-strike call

Strategy 4 is to buy 950-strike call, sell the 1,000 -strike call, sell the 950-strike put and buy the 1,000-strike put.

Determine which, if any, of these strategies will have greater payoffs in six months for higher prices of the stock index than for relatively lower prices.

### Exercise 8. [4]

The current price of a stock is 43. An investor buys the 1-year 43-strike call for 5.71 and sells the 1-year 43-strike put for 4.44. The stock pays no dividend. At the same time, she buys the 1-year 47-strike put for 6.96 and sells the 1-year 47 strike call for 4.08.

- a) What the investor creates by these positions? what is the reason?
- b) Find the annual effective risk-free interest rate (i.e. the risk-free rate of return).