King Saud University
Academic Year (G) 2016-2017
College of Sciences
Mathematics Department

Academic Year (H) 1437-1438
Bachelor AFM: M. Eddahbi

First midterm QMF: Actu. 468 (25\%)
Sunday, November 6, 2016 / Rabi I 6, 1438 (1-2:30) pm

Exercise 1. (6 marks)

We specify below the basic elements of a financial market with T periods:

- A finite probability space $\Omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ with k elements.
- A probability measure P on Ω, such that $P(\omega)>0$ for all $\omega \in \Omega$.
- A riskless asset (a saving account) $S_{t}^{0}, t \in\{0,1,2, \ldots T\}$ such that $S_{0}^{0}=1$ with a constant interest rate r.
- A d-dimensional price process $S_{t}, t \in\{0,1,2, \ldots T\}$ where $S_{t}=\left(S_{t}^{0}, S_{t}^{1}, \ldots, S_{t}^{d}\right)$ and S_{t}^{i} stands for the price of the asset i at time t.

1. (1 mark) Give the definition of a portfolio in this market
2. (1 mark) Recall the self-financing property for this model
3. (1 mark) Give the definition of attainable payoffs for this model
4. (1 mark) Give the definition of a RNPM (risk neutral probability measure) in this setting.
5. (1 mark) Give the definition of a complete market
6. (1 mark) Give the definition of an incomplete market

Exercise 2. (6 marks)

Assume that $T=1$ and $k=2, r=\frac{1}{4}$. Let $\left(S_{t}^{1}\right)_{t \in\{0,1\}}$ be the price of a stock with initial price $S_{0}^{1}=100 \mathrm{SAR}$ and has two possible values a time $T=1$:

$$
S_{1}^{1}(\omega)=\left\{\begin{aligned}
200 \mathrm{SAR} & \text { if } \omega=\omega_{1} \\
75 \mathrm{SAR} & \text { if } \omega=\omega_{2} .
\end{aligned}\right.
$$

Denote by F the payoff of an European put option with strike price $K=150 S A R$.

1. (1 mark) Give the value of F at time $T=1$.
2. (1 mark) Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ arbitrage free.
3. (1 mark) Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ complete.
4. (1 mark) Compute the price of the put option at time 0 using the RNPM.
5. (1 mark) Is the option F attainable ?
6. (1 mark) If yes find its replicating portfolio.

Solution:

Exercise 3. (7 marks)

Now assume that $k=3, r=0, S_{0}^{1}=100 \mathrm{SAR}$ and assume that the price of the stock S_{1}^{1} is given by

$$
S_{1}^{1}(\omega)=\left\{\begin{aligned}
200 \mathrm{SAR} & \text { if } \omega=\omega_{1} \\
150 \mathrm{SAR} & \text { if } \omega=\omega_{2} \\
75 \mathrm{SAR} & \text { if } \omega=\omega_{3} .
\end{aligned}\right.
$$

1. (2 mark) Find RNPM if any for the model $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$?
2. (1 mark) Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ arbitrage free ?
3. (1 mark) Is the market $\left(S_{t}^{0}, S_{t}^{1}\right)_{t \in\{0,1\}}$ complete ?
4. (1 mark) Find the set of attainable contingent claims.
5. (1 mark) Show that the value at time zero of an attainable claim is the same for all RNPM.
6. (1 mark) Give an example of non attainable asset.

Exercise 4. (6 marks)

Assume that $k=3, r=0$ and consider now a financial market on which are negotiated two stocks with prices $\left(S_{t}^{1}\right)_{t \in\{0,1\}}$ and $\left(S_{t}^{2}\right)_{t \in\{0,1\}}$, their values at time 1 are given by:

$$
S_{0}^{1}=10 \quad \text { and } \quad S_{1}^{1}(\omega)= \begin{cases}20 \mathrm{SAR} & \text { if } \omega=\omega_{1} \\ 15 \mathrm{SAR} & \text { if } \omega=\omega_{2} \\ 7.5 \mathrm{SAR} & \text { if } \omega=\omega_{3} .\end{cases}
$$

and

$$
S_{0}^{2}=4 \quad \text { and } \quad S_{1}^{2}(\omega)= \begin{cases}5 \mathrm{SAR} & \text { if } \omega=\omega_{1} \\ 3 \mathrm{SAR} & \text { if } \omega=\omega_{2} \\ 4 \mathrm{SAR} & \text { if } \omega=\omega_{3} .\end{cases}
$$

1. (2 mark) Find a RNPM for the model $\left(S_{t}^{0}, S_{t}^{1}, S_{t}^{2}\right)_{t \in\{0,1\}}$.
2. (1 mark) Is the model $\left(S_{t}^{0}, S_{t}^{1}, S_{t}^{2}\right)_{t \in\{0,1\}}$ arbitrage free and complete ?
3. (1 mark) Give an example of an attainable contingent claim for this model ?
4. (1 mark) Give its price at time zero
5. (1 mark) Find its replicating portfolio.

Exercise 5. (8 marks)

Consider the following probability space $\left(\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{5}\right\}\right.$, on which is defined two period market model consisting of a riskless asset (bond or saving account) with price $S_{t}^{0}=1$ for $t=0,1,2$ (for simplicity assume that $r=0$) and two risky assets (stocks) with prices S^{1} and S^{2} given by:

t	S_{t}^{0}	S_{t}^{1}						S_{t}^{2}					
		ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}		
0	1	6	6	6	6	6	3.75	3.75	3.75	3.75	3.75		
1	1	5	5	5	7	7	3	3	3	4.5	4.5		
2	1	3	4	8	6	8	2	3	4	4	5		

We denote for $t \in\{0,1\} \mathcal{F}_{t}=\sigma\left(\left\{S_{k}^{0}, S_{k}^{1}, S_{k}^{2}\right\}, k \leq t\right)$ a set which describes all the in formations available in the market up to time t and $\mathcal{F}_{2}=\mathcal{P}(\Omega)$ (the power set of $\mathcal{P}(\Omega)$).

1. (1 mark) Find \mathcal{F}_{0} and \mathcal{F}_{1}. (remember that you need this objects to compute conditional expectations)
2. (2 marks) Find RNPM for this model if any ?
3. (1 mark) Is this market model arbitrage free and complete?

Assume that F is random variable on Ω given by:

t	F				
	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}
2	1	$\frac{1}{4}$	3	2	0

4. (2 marks) Calculate the values of F at times 0 and 1 .
5. (2 marks) Find a replicating portfolio of F for the period 1 and the period 2.
