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first search process, the weighted path length and the weighted Wiener index in a
random binary search tree. We establish three regimes of nodes depending on whether
the second-order behaviour of their weighted depths follows from fluctuations of the
keys on the path, the depth of the nodes or both. Finally, we investigate a random
distribution function on the unit interval arising as scaling limit for weighted depths
of nodes with at most one child.
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1 Introduction

The binary search tree is an important data structure in computer science allowing for
efficient execution of database operations such as insertion, deletion and retrieving
of data. Given a list of elements x1, x2, . . . , xn from a totally ordered set, it is the
unique labelled rooted binary tree with n nodes constructed by successive insertion of
all elements satisfying the following property: for each node in the tree with label (or
key), say y, all keys stored in its left (right) subtree are at most equal to (strictly larger
than) y. For an illustration, see Fig. 1.

Properties of binary search trees are typically analysed under the random permuta-
tionmodel where the data x1, . . . , xn are generated by a uniformly chosen permutation
of the first n integers. Among the quantities studied in binary search trees, one finds
depths of and distances between nodes related to the performance of search queries
and finger searches in the database, the (total) path length measuring the cost of con-
structing the tree as well as the Wiener index. Further, more complex parameters such
as the height corresponding to worst case search times, the saturation level and the
profile have been studied thoroughly. We review the literature relevant in the context
of our work below.

In this note, we complement thewide literature on randombinary search trees by the
analysis of depths of nodes, path length and Wiener index in their weighted versions
as introduced by Aguech et al. [1]. Here, the weighted depth of a node is the sum of all
keys stored on the path to the root. In [1], results about weighted depths of extremal
paths have been obtained. Kuba and Panholzer [19,20] studied the problem in random
increasing trees covering the random recursive tree and the random plane-oriented
recursive tree. Weighted depths of nodes and the weighted height were also studied
by Broutin and Devroye [3] in a more general tree model, which relies on assigning
weights to the edges of the tree. Further, the weighted path length in this model was
investigated by Rüschendorf and Schopp [29]. Note that we deviate from the notation
introduced in [1,19] using the term weighted depth for what is called weighted path
length there since we also study a weighted version of the (total) path length of binary
search trees.

Fig. 1 Binary search tree
constructed from the list
4, 2, 6, 5, 7, 3, 1
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2 Preliminaries

We introduce some notation. By the size of a finite binary tree, we refer to its number
of nodes. Upon embedding a finite rooted binary tree in the complete infinite binary
tree, a node is called external if its graph distance to the binary tree is one. Any node
on level k ≥ 1 in a rooted binary tree is associated a vector v1v2 . . . vk ∈ {0, 1}k where
vi = 0 if and only if the path from the root to the node continues in the left subtree
upon reaching level i − 1.

Let n ≥ 1 and 1 ≤ k ≤ n. Under the randompermutationmodel (short: permutation
model), let Dk(n) be the depth of the node labelled k. By Wk(n) we denote the sum
of all keys on the path from the root to the node labelled k including the labels of both
endpoints. For x = x1x2 . . . ∈ {0, 1}∞, let Bn(x) be the maximal depth among nodes
of the form x1 . . . xk, k ≥ 0. We use Xn (Xn) to denote the (weighted) depth of the nth
inserted node. Finally, we define the height of the tree by Hn = sup{k ∈ N : Dk(n) >

0}.
Throughout the paper, we denote byL (X) the distribution of a random variable X .

For real-valued X with finite second moment, we write σX for its standard deviation.
By N we denote a random variable with the standard normal distribution, and by μ

the Dickman distribution on [0,∞) characterized by its Fourier transform,

∫
eiλx dμ(x) = exp

(∫ 1

0

eiλx − 1

x
dx

)
, λ ∈ R. (1)

The origins of the Dickman distribution go back to Dickman’s [10] classical result on
large prime divisors. Compare Hildebrandt and Tenenbaum [15] for a survey on the
problem. In the probabilistic analysis of algorithm, μ first arose in Hwang and Tsai’s
[17] study of the complexity of Hoare’s selection algorithm. We refer to this work
for a discussion of more details on the distribution, historical background and further
references.

Finally, we use the Landau notations little–o, big–O , little–ω, big–Ω and big–Θ
as n → ∞.

2.1 Depths and Height

We recall the following fundamental property of random binary search trees going
back to Devroye [6]: in probability and with respect to all moments, we have

Hn

log n
→ c∗, (2)

where c∗ = 4.31 . . . is the larger of the two solutions to the transcendent equation
e = ( 2e

x )x . Next, by classical results due to Brown and Shubert [4] and Devroye [7],
for any x ∈ {0, 1}∞, in distribution,

Bn(x) − log n√
log n

→ N ,
Xn − 2 log n√

2 log n
→ N . (3)

123



J Theor Probab

(In [7, Theorem O1], the first convergence in the last display is formulated for x =
0 := 00 . . .The general case follows, since, by symmetry,L (Bn(x)) = L (Bn(0)) for
all x . The second convergence was also claimed in a footnote by Mahmoud and Pittel
[23].) Grübel [13] studied the process {Bn(x) : x ∈ {0, 1}∞}, the so-called silhouette,
thereby obtaining a functional limit theorem for its integrated version. The asymptotic
behaviour of depths of nodes with given labels has been analysed by Devroye and
Neininger [9]: uniformly in 1 ≤ k ≤ n and as n → ∞,

E [Dk(n)] = log(k(n − k)) + O(1), Var(Dk(n)) = log(k(n − k)) + O(1). (4)

Moreover, for any 1 ≤ k ≤ n, which may depend on n, in distribution

Dk(n) − E [Dk(n)]

σDk (n)

→ N . (5)

Here, one should also compare Grübel and Stefanoski [14] for stronger results in
the context of the corresponding Poisson approximation. For a survey on depths and
distances in binary search trees, we refer toMahmoud’s book [21]. Finally, the asymp-
totic behaviour of the weighted depths of the nodes associated with the vectors 0 and
1 := 11 . . . denoted by Ln and Rn (L and R stand for left and right) were studied
in [1]. In distribution,

Ln

n
→ Y ,

Rn − nBn(1)
n
√
log n

→ 0, (6)

where Y has the Dickman distribution. The first convergence is closely related to the
limit law in Theorem 3.1 in [17].

2.2 Path Length and Wiener Index

In a rooted tree, the path length is defined as the sumover all depths of nodes.Moreover,
the Wiener index is obtained by summing all distances of unordered pairs of vertices.
For a random binary search tree of size n, we denote its path length by Pn and its
Wiener index by Wn . Denoting by γ the Euler–Mascheroni constant, we have

E [Pn] = 2n log n + (2γ − 4)n + o(n), Var(Pn) = 21 − 2π2

3
n2 + o(n2), (7)

going back to Hoare [16] and Knuth [18]. Further, by [25],

E [Wn] = 2n2 log n + (2γ − 6)n2 + o(n2), Var(Wn) = 20 − 2π2

3
n4 + o(n4).

(8)

Central limit theorems for the path length go back to Régnier [27] and Rösler [28],
for the Wiener index to Neininger [25]. More precisely, by [25, Theorem 1.1], there
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exists a non-trivial random variable Z∗ onR2 characterized by a stochastic fixed-point
equation, such that, in distribution,

(
Wn − E[Wn]

n2 ,
Pn − E[Pn]

n

)
→ Z∗. (9)

2.3 The i.i.d Model

We also consider binary search trees of size n where the data are chosen as the first
n values of a sequence of independent random variables U1, U2, . . . each having the
uniform distribution on [0, 1]. Since the vector (rank(U1), . . . , rank(Un)) constitutes a
uniformly chosenpermutation, in distribution, both the permutationmodel and the i.i.d.
model lead to the same unlabelled tree.We use the same notation as in the permutation
model for quantities not involving the labels of nodes, that is, Xn, hn, Hn, Pn, Wn and
Bn(x). Further, we define the weighted path length Pn as the sum of all weighted
depths, and the weighted Wiener index Wn as the sum over all pairs of weighted
distances. Here, the weighted distance between two nodes equals the sum of all labels
on the path connecting them, labels of endpoints included. (Notice that the weighted
distance between a node and itself is equal to its label.) Finally, analogously to Bn(x),
we defineBn(x) as the weighted depth of the node of largest depth on the path x . We
call {Bn(x) : x ∈ {0, 1}∞}, the weighted silhouette of the tree (at time n).

3 Main Results

Ourmain results are divided into two groups: Theorems 1 and 2 hold in the permutation
model, while Theorems 3 and 4 are formulated in the i.i.d. model.

3.1 Results in the Permutation Model

We start with the expansions of the first two moments of the weighted depth Wk(n).
Uniformly in 1 ≤ k ≤ n, as n → ∞,

E [Wk(n)] = k log(k(n − k + 1)) + n + O(k + log n), (10)

Var(Wk(n)) = k2 log(k(n − k + 1)) + n2

2
+ O(kn). (11)

It turns out that the asymptotic distributional behaviour of Wk(n) with respect to
terms of second order is entirely described by that of k Dk(n) if and only if k =
ω(n/

√
log n). Accordingly, in the remainder of this paper, we call nodes with labels

of order ω(n/
√
log n) large and of order O(n/

√
log n) small.

Theorem 1 (Weighted depths of large nodes) For k = ω(n/
√
log n),

E [|Wk(n) − k Dk(n)|] = o(σk Dk (n)). (12)
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In particular, for 0 < α < 1 and |k/n − α| = o((log n)−1/2), in distribution,

(
Dk(n) − 2 log n√

2 log n
,

Wk(n) − 2αn log n

αn
√
2 log n

)
→ (N ,N ). (13)

For the last inserted node, in distribution,

(
Xn − 2 log n√

2 log n
,

Xn

2n log n

)
→ (N , ξ) , (14)

where N and ξ are independent and ξ is uniformly distributed on [0, 1].

The asymptotic behaviour of weighted depths of small nodes is to be compared with
the corresponding results in [19]. Here, another phase transition occurs when k =
o(n/

√
log n).

Theorem 2 (Weighted depths of small nodes) Let k = O(n/
√
log n). Then, in distri-

bution,

(
Dk(n) − E [Dk(n)]

σDk (n)

,
Wk(n) − k Dk(n)

n

)
→ (N ,Y ), (15)

where N and Y are independent and Y has the Dickman distribution. Thus, if
k
√
log n/n → β ≥ 0, in distribution,

(
Dk(n) − 2 log n√

2 log n
,

Wk(n) − E [Wk(n)]

n

)
→ (N ,Y + √

2βN − 1).

In particular, if |k√
log n/n − β| = o((log n)−1/2) with β > 0, then, in distribution,

(
Dk(n) − 2 log n√

2 log n
,

Wk(n) − 2βn
√
log n

n

)
→ (N ,Y + √

2βN ).

3.2 Results in the i.i.d Model

Any x ∈ {0, 1}∞ corresponds to a unique value x ∈ [0, 1] by x = ∑∞
i=0 xi2−i .

This identification becomes one-to-one upon allowing only those x ∈ {0, 1}∞ which
contain infinitelymany zeros and x = 1. In the i.i.d.model, for any x ∈ {0, 1}∞, k ≥ 1,
the node x1 . . . xk eventually appears in the sequence of binary search trees and we
writeΞk(x) for its ultimate label. The following theorem about the behaviour ofBn(x)

involves a random continuous distribution function arising as the almost sure limit of
Ξk(x), x ∈ [0, 1], as k → ∞. We believe that this process is of independent interest
and state some of its properties in Proposition 1 in Sect. 3.3. The simulations of Ξ15
presented in Fig. 2 illustrate the scaling limit.
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Fig. 2 Two simulations of Ξ15, the dotted line being the graph of the identity function

Theorem 3 (Weighted silhouette) There exists a random continuous and strictly
increasing bijection Ξ(x), x ∈ [0, 1], such that, almost surely, uniformly on the unit
interval, Ξk(x) → Ξ(x). For any x ∈ [0, 1], in probability,

Bn(x)

log n
→ Ξ(x). (16)

Also, for any m ≥ 1, in probability

∫ 1

0

∣∣∣∣Bn(x)

log n
− Ξ(x)

∣∣∣∣
m

dx → 0. (17)

Further, in probability,

sup
x∈[0,1]

Bn(x)

log n
→ c∗ = 4.31 . . . (18)

with c∗ as in (2). Finally, for any x ∈ [0, 1], in distribution,

(
Bn(x) − log n√

log n
,
Bn(x)

log n

)
→ (N , Ξ(x)), (19)

where N and Ξ(x) are independent.

The next theorem extends the distributional convergence result in Theorem 1.1 in
[25], that is (9), by central limit theorems for theweighted path length and theweighted
Wiener index.

Theorem 4 (Weighted path length and Wiener index) In the i.i.d. model, we have

E [Pn]=n log n+(γ − 3/2)n + o(n), E [Wn] = n2 log n+(γ − 11/4)n2+o(n2),

123



J Theor Probab

and

Var(Pn) = 65 − 6π2

36
n2 + o(n2), Var(Wn) = 2413 − 240π2

1440
n4 + o(n4).

The leading constants in the expansions of the covariances between Pn, Wn,Pn and
Wn are given in (36)–(38). (The leading constant for Cov(Pn, Wn) was already given
in [25].) As n → ∞, with convergence in distribution and with respect to the first two
moments in R

4, we have

(
Wn − E[Wn]

n2 ,
Wn − E[Wn]

n2 ,
Pn − E[Pn]

n
,

Pn − E[Pn]
n

)
→ Z ,

where the limiting distribution L (Z) is the unique fixed point of the map T in (35).

Conclusions We have seen that there exist three types of nodes showing significantly
different behaviour with respect to their weighted depths. By Theorem 1, for k =
ω(n/

√
log n), second-order fluctuations of weighted depths are due to variations of

the depth of nodes. In the second regime, when k = Θ(n/
√
log n), variations of

weighted depths are determined by two independent contributions, one for the depths
and one for the keys on the paths. Finally, when k = o(n/

√
log n) only fluctuations of

labels on paths influence second-order terms of weighted depths. The third regime can
be further subdivided with respect to the first-order terms of Wk(n) and k Dk(n): for
k = ω(n/ log n), they coincide, for k = Θ(n/ log n), they are of the same magnitude,
whereas, for k = o(n/ log n), they are of different scale. By Theorem 3, the weighted
silhouette behaves considerably different. Here, the lack of concentration around the
mean leads to an interesting random distribution function on the unit interval as scaling
limit.

3.3 Further Results and Remarks

Model comparison We decided to present Theorems 3 and 4 in the i.i.d. model rather
than in the permutation model since this allows for a stronger mode of convergence
in (16), (17) and a clearer presentation of the proof of Theorem 4. In the i.i.d. model,
denoting byW(k)(n) the weighted depth of the node of rank k among the first n inserted
keys, Theorems 1 and 2 remain valid upon replacing Wk(n) by nW(k)(n). Similarly,
Theorems 3 and 4 hold in the permutation model where weighted depths and the
weighted path length are to be scaled down by a factor n and theweightedWiener index
by a factor n2. The convergences in (16) and (17) then only hold in distribution. This
can be deduced most easily from the following coupling of the two models: starting
with the binary search tree in the i.i.d. model, also consider the random binary search
tree in the permutation model relying on the permutation (rank(U1), . . . , rank(Un)).
Then, for all 1 ≤ k ≤ n,

∣∣∣∣W(k)(n) − Wk(n)

n

∣∣∣∣ ≤ Hn max
1≤i≤n

∣∣∣∣Ui − rank(Ui )

n

∣∣∣∣ . (20)

123



J Theor Probab

It is well known that the second factor on right-hand side grows like n−1/2, compare,
e.g. Donsker’s theorem for empirical distribution functions or the Dvoretzky–Kiefer–
Wolfowitz inequality [11]. Combining this, (20) and (2) is sufficient to transfer all
results in Sect. 3 between the two models.

The depth first search process In the permutation model, let v1, . . . , vn+1 be the
external nodes as discovered by the depth first search process from left to right. By
D∗

k (n) and W ∗
k (n), 1 ≤ k ≤ n+1, we denote depth and weighted depth of the external

node vk . Then, at the end of Sect. 4.1, we show that, uniformly in 1 ≤ k ≤ n,

E
[
|Dk(n) − D∗

k (n)|2
]

= o(log n), E
[
|Wk(n) − W ∗

k (n)|2
]

= o(Var(Wk(n))).

(21)

Thus, the results in Theorems 1 and 2 also cover the second-order analysis of the
sequences D∗

k (n) and W ∗
k (n).

Weighted distances In the permutation model, let Dk,(n) be the graph distance
between the nodes labelled 1 ≤ k ≤  ≤ n and Wk,(n) be the sum of all labels
on the path from k to , labels at the endpoints included. Asymptotic normality for
the sequence (Dk,(n)) (after rescaling) under the optimal condition  − k → ∞ has
been obtained in [9]. For uniformly chosen nodes, distributional convergence results
date back to Mahmoud and Neininger [22] and Panholzer and Prodinger [26]. Analo-
gously to Theorem 1, it is straightforward to prove central limit theorems jointly for
weighted and non-weighted distances. We only state the results. If  − k = Ω(n) and
k = ω(n/

√
log n), then

E
[|Wk,(n) − k Dk(n) − D(n)|] = σD(n).

In particular, for 0 < s < t < 1 and |k/n − s| = o((log n)−1/2), |/n − t | =
o((log n)−1/2), we have, in distribution,

(
Dk(n) − 2 log n√

2 log n
,

D(n) − 2 log n√
2 log n

,
Dk,(n) − 4 log n√

4 log n
,

Wk,(n) − 2(s + t)n log n

n
√
2 log n

)

→
(
N1,N2,

N1 + N2√
2

, sN1 + tN2

)
.

Here, N1,N2 are independent random variables both with the standard normal dis-
tribution.

The limit process Ξ The process Ξ in Theorem 3 is a random distribution function.
In particular, it can be regarded as an element in the set of càdlàg functions D[0, 1]
consisting of all f : [0, 1] → R, such that, for all t ∈ [0, 1], f (t) = lims↓t f (s)
and lims↑t f (s) exists. The absolute value of f is defined by sup{| f (t)| : t ∈ [0, 1]}.
Endowed with Skorokhod’s topology J1,D[0, 1] becomes a Polish space. We refer to
Chapter3 in Billingsley’s book [2] for detailed information on this matter.
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Proposition 1 (Properties of Ξ ) The process Ξ is unique (in distribution) among all
càdlàg processes with finite absolute second moment satisfying

L ((Ξ(t))t∈[0,1]) = L
( (

1[0,1/2)(t)UΞ(2t)

+ 1[1/2,1)(t)
(
(1 − U )Ξ ′(2t − 1) + U

))
t∈[0,1]

)
. (22)

Here, Ξ,Ξ ′, U are independent, U has the uniform distribution on [0, 1], and Ξ ′ is
distributed like Ξ . We have

(i) E [Ξ(t)] = t for all t ∈ (0, 1);
(ii) L ((Ξ(t))t∈[0,1]) = L ((1 − Ξ(1 − t))t∈[0,1]);

(iii) Ξ(ξ) has the arcsine distribution with density

1

π
√

x(1 − x)
, x ∈ (0, 1),

where Ξ, ξ are independent and ξ has the uniform distribution on [0, 1];
(iv) for t ∈ (0, 1), L (Ξ(t)) has a smooth density ft : (0, 1) → (0,∞);
(v) for t ∈ (0, 1/2), x f ′

t (x) = − f2t (x), x ∈ (0, 1), ft is strictly monotonically
decreasing and limx↑1 ft (x) = 0;

(vi) with α
(i)
t := limx↓0 f (i)

t (x), i = 0, 1, t ∈ (0, 1/2) and γ0 = 1/4, γ1 = 5/16,

we have α
(i)
t = (−1)i∞ for 0 < t ≤ γi , |α(i)

t | < ∞ for γi < t < 1/2 and
|α(i)

t | ↑ ∞ as t ↓ γi .

Random recursive trees A random recursive tree is constructed as follows: starting
with the root labelled one, in the kth step, k ≥ 2, a node labelled k is inserted in the
tree and connected to an already existing node chosen uniformly at random. Weighted
depths in random binary search trees differ substantially from those in random recur-
sive trees analysed in [19] where all nodes show an asymptotic behaviour comparable
to that of nodes labelled k = o(n/

√
log n) in the binary search tree. The difference is

highlighted by the weighted path length. Being of the same order as the path length
in binary search trees, it follows from results in [19] that the weighted path lengthQn

in a random recursive tree of size n is of order n2. The same is valid for its standard
deviation. We conjecture that the sequence (n−2Qn) converges in distribution to a
non-trivial limit; however, the recursive approach worked out in the proof of Theorem
4, which also applies to the analysis of the path length in random recursive trees, seems
not to be fruitful in this context.

Outline All results are proved in Sect. 4 starting with the proofs of Theorems 1 and
2 as well as (21) in Sect. 4.1. Here, most arguments are based on representations of
(weighted) depths as sums of bounded independent random variables which go back
to Devroye and Neininger [9]. Theorem 3 and Proposition 1 are proved in Sect. 4.2. In
this part, the construction of the limiting process relies on suitable uniform L1-bounds
on the increments of the process Ξk(x)x∈[0,1], k ≥ 1, while the properties of the limit
laws formulated in Proposition 1 follow from the distributional fixed-point equation
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(22). Finally, the proof of Theorem 4 relying on the contraction method is worked out
in Sect. 4.3.

4 Proofs

4.1 Weighted Depths of Labelled Nodes

In the permutation model, let A j,k be the event that the node labelled k is in the subtree
of the node labelled j . Then, Dk(n) =∑n

j=1 1A j,k − 1 and Wk(n) =∑n
j=1 j1A j,k . It

is easy to see that A1,k, . . . , Ak−1,k and Ak+1,k, . . . , An,k are two families of indepen-
dent events; however, there exist subtle dependencies between the sets. Following the
approach in [9], let B j,k = A j,k−1 for j < k and B j,k = A j,k+1 for j > k. For con-
venience, let Bk,k be an almost sure event. The following lemma summarizes results
in [9], and we refer to this paper for a proof. In this context, note that Devroye [8]
gives distributional representations as sums of independent (orm-dependent) indicator
variables for quantities growing linearly in n, such as the number of leaves.

Lemma 1 Let 1 ≤ k ≤ n. Then, the events B j,k, j = 1, . . . , n, are independent. For
j �= k, we have

P
(

A j,k
) = 1

|k − j | + 1
, P

(
B j,k
) = 1

|k − j | .

From the lemma, it follows that

E

⎡
⎣ n∑

j=1

1B j,k\A j,k

⎤
⎦ ≤ 2, and E

⎡
⎣ n∑

j=1

j1B j,k\A j,k

⎤
⎦ ≤ 2k + log n.

The ideas in [9] can also be used to analyse second (mixed) moments. Straightforward
calculations show the following bounds:

E

⎡
⎣ n∑

i, j=1

1B j,k1Bi,k\Ai,k

⎤
⎦ = O(1), and

E

⎡
⎣ n∑

i, j=1

i j1B j,k1Bi,k\Ai,k

⎤
⎦ = O(k2 + k(log n)2).

Here, both O-terms are uniform in 1 ≤ k ≤ n. Define D̄k(n) =∑n
j=1 1B j,k − 1 and

W̄k(n) =∑n
j=1 j1B j,k . We make the following observation:

O: The asymptotic statements in (10), (11), Theorem 1 and Theorem 2 are correct
if and only if they are correct upon replacing Dk(n) by D̄k(n) and/or Wk(n) by
W̄k(n).
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For i = 1, 2, n ≥ 0 and 1 ≤ k ≤ n, set H (i)
n := ∑n

j=1 j−i and H (i)
k,n := H (i)

k−1 +
H (i)

n−k . Using Lemma 1, one easily computes

E
[
W̄k(n)

] = k(H (1)
k,n − 1) + n + 1,

Var(W̄k(n)) = k2
(

H (1)
k,n − H (2)

k,n − 3
)
+ n2

2
+kn + 2k

(
H (1)

k−1 − H (1)
n−k

)
− n

2
+ k + 1.

As H (1)
n = log(n +1)+ O(1) and H (2)

n = O(1), both expansions (10) and (11) follow
from observation O.

4.1.1 Weighted Depths of Large Nodes

We prove Theorem 1. First, (12) follows from (4) and

E [|k Dk(n) − Wk(n)|] ≤ k +
n∑

j=1

|k − j |P (A j,k
) ≤ k + n. (23)

For k = ω(n/
√
log n), combining (4), (5) and (10), in distribution,

(
Dk(n) − E [Dk(n)]

σDk (n)

,
Wk(n) − E [Wk(n)]

σWk (n)

)
→ (N ,N ).

From here, statement (13) follows from (4) and (10).
Considering the last inserted node with value Yn , note that, conditionally on Yn =

k, the correlations between the events A j,k, j < k and A j,k, j > k vanish. More
precisely, given Yn = k, the family {1A j,k , j = 1, . . . , n} is distributed like a family of
independent Bernoulli random variables {Vj,k : j = 1, . . . , n} with P

(
Vj,k = 1

) =
|k − j |−1 for j �= k and P

(
Vk,k = 1

) = 1. Thus,

E [|Yn(Xn + 1) − Xn|] ≤ 1

n

n∑
k=1

E

⎡
⎣ n∑

j=1

|k − j |1A j,k

∣∣∣∣Yn = k

⎤
⎦

= 1

n

n∑
k=1

E

⎡
⎣ n∑

j=1

|k − j |Vj,k

⎤
⎦ ≤ n.

By (3), we have Xn/ log n → 2 in probability. Hence, in order to prove (14), it suffices
to show that, in distribution,

(
Xn − 2 log n√

2 log n
,

Yn

n

)
→ (N , ξ) . (24)

For a sequence (kn) satisfying sn ≤ kn ≤ tn for 0 < s < t < 1, let us condition on
the event Yn = kn . Then, by the central limit theorem for triangular arrays of row-wise
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independent uniformly bounded random variables with diverging variance applied to
Vj,kn , j = 1, . . . , n, in distribution,

Xn − 2 log n√
2 log n

→ N .

Hence, (24) follows from an application of the theorem of dominated convergence
noting that Yn is uniformly distributed on {1, . . . , n}.

4.1.2 Weighted Depths of Small Nodes

We prove Theorem 2. Let D̄>
k (n) = ∑n

j=k+1 1B j,k and W̄ >
k (n) = ∑n

j=k+1 j1B j,k .
Since k = O(n/

√
log n), the same calculation as in (23) shows that,

E
[|W̄k(n) − W̄ >

k (n) − k(D̄k(n) − D̄>
k (n))|]

n
≤ k

n
→ 0, n → ∞. (25)

For λ,μ ∈ R, we have

logE
[
exp
(

iλ
(
D̄>

k (n) − log n
)
/
√
log n + iμ

(
W̄ >

k (n) − k D̄>
k (n)

)
/n
)]

= −iλ
√
log n + logE

⎡
⎣exp

⎛
⎝i

n∑
j=k+1

(
λ√
log n

+ μ
j − k

n

)
B j,k

⎞
⎠
⎤
⎦

= −iλ
√
log n +

n∑
j=k+1

log

⎛
⎝1 +

exp
(

i
(

λ√
log n

+ μ
j−k
n

))
− 1

j − k

⎞
⎠ .

By a standard Taylor expansion, the last display equals

− iλ
√
log n +

n∑
j=k+1

exp
(

i
(

λ√
log n

+ μ
j−k
n

))
− 1

j − k
+ o(1)

= −iλ
√
log n +

n∑
j=k+1

exp
(

iμ j−k
n

) (
1 + iλ√

log n
− λ2

2 log n

)
− 1

j − k
+ o(1)

= −λ2/2 +
(
1 + iλ√

log n
− λ2

2 log n

) n−1∑
j=0

exp
(

iμ j+1
n

)
− 1

j + 1
+ o(1)

= −λ2/2 +
∫ 1

0

eiμx − 1

x
dx + o(1).

Here, in the last step, we have used that the sum on the right-hand side is a Riemann
sum over the unit interval whose mesh size n−1 tends to zero. Thus, using the notation
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of the theorem, (1) and Lévy’s continuity theorem, in distribution,

(
D̄>

k (n) − log n√
log n

,
W̄ >

k (n) − k D̄>
k (n)

n

)
→ (N ,Y ). (26)

In order to deduce (15) note that, by Lemma 1, D̄k(n)− D̄>
k (n) and (D̄>

k (n), W̄ >
k (n))

are independent while

D̄k(n) − D̄>
k (n) − E

[
D̄k(n) − D̄>

k (n)
]

σD̄k (n)−D̄>
k (n)

→ N ,

in distribution if and only if k → ∞ using the central limit theorem for sums of
independent and uniformly bounded random variables. Since

D̄k(n) − E
[
D̄k(n)

]
σD̄k (n)

= D̄>
k (n) − E

[
D>

k (n)
]

√
log n

√
log n

σD̄k (n)

+ D̄k(n) − D̄>
k (n) − E

[
D̄k(n) − D̄>

k (n)
]

σD̄k (n)−D̄>
k (n)

σD̄k (n)−D̄>
k (n)

σD̄k (n)

,

we deduce

(
D̄k(n) − E

[
D̄k(n)

]
σD̄k (n)

,
W̄ >

k (n) − k D̄>
k (n)

n

)
→ (N ,Y ),

from (26) upon treating the cases k = O(1) and k = ω(1) separately. From here, the
assertion (15) follows with the help of (25) and observation O.

4.1.3 Proof of (21)

The main observation is that the kth external node visited by the depth first search
process is always contained in the subtree rooted at the node labelled k. This can
be proved by induction exploiting the decomposition of the tree at the root. Thus,
denoting by Hk(n) the height of the subtree rooted at the node labelled k, we have

Dk(n) ≤ D∗
k (n) ≤ Dk(n) + Hk(n),

Wk(n) ≤ W ∗
k (n) ≤ Wk(n) + Mk(n)Hk(n).

Here, Mk(n) stands for the largest label in the subtree rooted at the node labelled k.
Let Tk(n) be the size of the subtree rooted at k. Then Tk(n) = 1 + T <

k (n) + T >
k (n)

where T <
k (n) denotes the number of elements in the subtree rooted at k with values

smaller than k. By Lemma 1, for  ≤ n − k, we have P
(
T >

k (n) ≥ 
) = P

(
Ak,k+

) =
1/(+1). Using the same arguments for the quantity T <

k (n), we deduce that, uniformly
in 1 ≤ k ≤ n,
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E [Tk(n)] = Θ(log n), E
[
(Tk(n))2

]
= Θ(n1/2), E

[
(log Tk(n))2

]
= O(1).

Thus, by an application of (2), for some C1 > 0,

E
[
|Dk(n) − D∗

k (n)|2
]

≤ E
[
(Hk(n))2

]
≤ C1E

[
(log Tk(n))2

]
= O(1).

By the same arguments, for some C2 > 0, we have

E
[
|Wk(n) − W ∗

k (n)|2
]

≤ E
[
(Mk(n)Hk(n))2

]
≤ E
[
(k + Tk(n))2(Hk(n))2

]

≤ C2k2 + C1

(
2kE
[
Tk(n)(log Tk(n))2

]

+E
[
(Tk(n))2(log Tk(n))2

])

= O(k2 + (log n)2n1/2).

From here, (21) follows from (10).

4.2 The Weighted Silhouette

We prove Theorem 3 and Proposition 1.

Proof of Theorem 3 We start with the uniform convergence of (Ξk). For all x ∈ [0, 1],
|Ξk(x)−Ξk−1(x)| is distributed like the product of k+1 independent randomvariables,
each of which having the uniform distribution on [0, 1]. In particular, by the union
bound and Markov’s inequality, for any m ≥ 1,

P

(
sup

x∈[0,1]
|Ξk(x) − Ξk−1(x)| ≥ t

)
≤ 2k

P

(
k+1∏
i=1

Ui ≥ t

)
≤
(

2

m + 1

)k

t−m .

For k ≥ 1, let Dk = {2−k :  = 1, . . . , 2k − 1}. By construction, for k ≥ 1, the map
x → Ξk(x) is a right continuous step function. Further, it is continuous at x if and
only if x /∈ Dk . Next, for 0 < q < 1,

E

[
sup

x∈[0,1]
|Ξk(x) − Ξk−1(x)|

]
=
∫ ∞

0
P

(
sup

x∈[0,1]
|Ξk(x) − Ξk−1(x)| ≥ t

)
dt

≤ qk +
∫ ∞

qk

(
2

m + 1

)k

t−mdt

= qk + 1

m − 1

(
2

m + 1

)k

q−k(m−1).

With m = 2 and q = √
2/3, the latter expression is bounded by 2qk . By

Markov’s inequality, it follows that supm≥n supx∈[0,1] |Ξm(x) − Ξn(x)| → 0 in
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probability as n → ∞. An application of the triangle inequality shows that
supm,p≥n supx∈[0,1] |Ξm(x) − Ξp(x)| → 0 in probability as n → ∞. By monotonic-
ity, this convergence is almost sure. Thus, almost surely, (Ξk) is uniformly Cauchy in
the space of càdlàg functions endowed with the uniform topology. By completeness,
(Ξk) converges to a limit denoted by Ξ with càdlàg paths. Moreover, Ξ is continuous
at x /∈ D where D = ∪m≥1Dm since this is true for all Ξk , k ≥ 1. For x ∈ D ,
let Φ(x) be the key of the node associated with x1 . . . xk−1 where k ≥ 1 is chosen
minimal with x ∈ Dk . Then, limy↑x Ξ(x) = Φ(x) = Ξ(x). Thus, x �→ Ξ(x) is
continuous. By the construction of the tree, it is clear that Ξ(x) < Ξ(y) for any
x, y ∈ D with x < y. As D is dense in [0, 1], the process Ξ is strictly monotonically
increasing. Obviously, Ξ(0) = 0 and Ξ(1) = 1; hence, Ξ is the distribution function
of a probability measure on [0, 1]. ��

We turn to the convergence ofBn(x). For any fixed x ∈ [0, 1], display (3) implies
that, as n → ∞, in probability, Bn(x)/ log n → 1. Thus, (16) follows from the
convergence Ξk(x) → Ξ(x). The convergence (16) is with respect to all moments
since Bn(x) ≤ Hn and we have convergence of all moments in (2). By the theorem of
dominated convergence, for any m ≥ 1, again using (2), we have

∫ 1

0
E
[∣∣∣∣Bn(x)

log n
− Ξ(x)

∣∣∣∣
m]

dx → 0.

This shows (17). To prove (18), note that, for any k ≥ 1, supx∈[0,1] Bn(x) is larger
than the product of the height of the subtree rooted at the node wk := 1 . . . 1 on level
k and Ξk−1(1). Let ε > 0. Fix k large enough such that P (Ξk−1(1) < 1 − ε) < ε.
Conditional on its size, the subtree rooted at wk is a random binary search tree. Since
its size grows linearly in n as n → ∞, it follows from (2) that, for all n sufficiently
large, its height exceeds (c∗ − ε) log n with probability at least 1− ε. For these values
of n, we have supx∈[0,1] Bn(x) ≥ (c∗ − 6ε) log n with probability at least 1 − 2ε. As
ε was chosen arbitrarily, this shows (18).

For the joint convergence of Bn(x) and Bn(x) for fixed x ∈ [0, 1], we abbre-
viate Bn := Bn(x),Bn := Bn(x), Ξk := Ξk(x),Ξ = Ξ(x) and B̄n = (Bn −
log n)/

√
log n. Note that Ξ and Bn are not independent which causes the proof to

be more technical. Denote by Nk the time when the node associated with x1 . . . xk is
inserted in the binary search tree. For any ε > 0, we can choose k, L ≥ 1 such that,
for all n sufficiently large,

P (|Ξk − Ξ | ≥ ε) + P (Nk ≥ L) + P

(∣∣∣∣ Bn

log n
− Ξ

∣∣∣∣ ≥ ε

)
≤ ε.

Further, there exists δ > 0 such that P (|Ξk − Ξk−1| ≤ δ) ≤ ε. Then, for r, y ∈ R

with P (Ξ = y) = 0, and n large enough,

P

(
B̄n ≤r,

Bn

log n
≤ y

)
≤2ε+P

(
B̄n ≤ r, Ξk ≤ y + 2ε, |Ξk − Ξk−1| ≥ δ, Nk < L

)
.
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Let x̄ = xk+1xk+2 . . ., (V1, V2, . . .) be an independent copy of (U1, U2, . . .) and

Bin(n, p) :=
n∑

i=1

1{Vi ≤p}, n ≥ 0, p ∈ [0, 1].

Given Ξk, |Ξk − Ξk−1|, Nk , on Nk < n, B̄n is distributed like
B̄∗
Bin(n−Nk ,|Ξk−Ξk−1|)(x̄) + k/

√
log n where (B∗

n (x̄)) is distributed like (Bn(x̄))

and independent from the remaining quantities. We deduce

P

(
B̄n ≤ r,

Bn

log n
≤ y

)

≤2ε+P

(
k√
log n

+ B̄∗
Bin(n−L ,δ)(x̄) ≤ r, Ξk ≤ y+2ε, |Ξk −Ξk−1| ≥ δ, Nk < L

)

≤ 3ε + P

(
k√
log n

+ B̄∗
Bin(n−L ,δ)(x̄) ≤ r

)
P (Ξ ≤ y + 2ε) .

Using the asymptotic normality of (B̄∗
n (x̄)) (after rescaling) in (3), taking the limit

superior as n → ∞ and then letting ε tend to zero, we obtain

lim sup
n→∞

P

(
B̄n ≤ r,

Bn

log n
≤ y

)
≤ P (N ≤ r)P (Ξ ≤ y) .

The proof of the converse direction establishing (19) is easier. It runs along the same
lines upon using the trivial bounds |Ξk − Ξk−1| ≤ 1 and Nk ≥ 0.

Proof of Proposition 1 We start with the characterization of the distribution of the
process. For a deterministic sequence of pairwise different numbers u1, u2, . . . on the
unit interval, we define ξk(x) analogously to Ξk(x) in the infinite binary search tree
constructed from this sequence. Here, we abbreviate ξk(x) = 0 if the node x1 . . . xk is
not in the tree. Let n−

m, m ≥ 1, be the subsequence defined by the elements un−
m

< u1

and u+
m, m ≥ 1, be the subsequence defined by the elements un+

m
> u1. At least one of

these sequences is infinite. Form ≥ 1, let y−
m = un−

m
/u1 and y+

m = (un+
m
−u1)/(1−u1).

Next, define ξ−
k (ξ+

k , respectively) analogously to ξk based on the sequence (y−
m ) ((y+

m ),
respectively). By construction, for k ≥ 1,

ξk(x) = 1[0,1/2)(x)u1ξ
−
k−1(2x) + 1[1/2,1](x)((1 − u1)ξ

+
k−1(2x − 1) + u1).

Applying the construction to the sequence U1, U2, . . . yields

Ξk(x) = 1[0,1/2)(x)U1Ξ
−
k−1(2x) + 1[1/2,1](x)((1 − U1)Ξ

+
k−1(2x − 1) + U1).

Almost surely, the random sequences y−
m and y+

m are both infinite and (Ξ−
k ), (Ξ+

k ) are
independent copies of (Ξk). Further, both sequences are independent of U1. Hence,
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letting k → ∞ in the last display, we obtain (22) on an almost sure level. The char-
acterization of L (Ξ) by (22) follows from a standard contraction argument, and the
argument on page 267 in [12] applies to our setting without any modifications. ��

Wemove on to the statements (i) – (vi) on themarginal distributions of the process.
Here, we use notation that was introduced in the proof of Theorem 3. By continuity, it
suffices to show (i) for x ∈ D . Let k ≥ 1. By symmetry, for 1 ≤ i ≤ 2k − 1, we have
E
[
Φ(i2−k)

] = i2−k . Thus, the assertion follows for x ∈ D since Φ(x) = Ξ(x).
The symmetry statement (ii) is reminiscent of the fact that the uniform distribution
on [0, 1] is symmetric around 1/2. More precisely, we apply the reflection argument
from [1] which is at the core of the proof of the second assertion in (6). Let U∗

1 =
1 − U1, U∗

2 = 1 − U2, . . . and define Ξ∗ analogously to Ξ in the binary search tree
process relying on the sequence U∗

1 , U∗
2 , . . . Then, Ξ∗(t) + Ξ(1 − t) = 1 for all

t ∈ [0, 1] which proves (ii). With Y = Ξ(ξ), (22) yields

L (Y ) = L (UY + 1A(1 − U )),

where 1A, U, Y are independent and P (A) = 1/2. From [5], it follows that Y has the
arcsine distribution, proving (iii). We move on to the statements about the distribution
ofΞ(t). Let t ∈ (0, 1/2). SinceΞ is strictly increasing,we haveΞ(2t) ∈ (0, 1) almost
surely. By (22), L (Ξ(t)) = L (UΞ(2t)) with conditions as in (22). Therefore,
L (Ξ(t)) admits a density. By symmetry, the same is true for t ∈ (1/2, 1). For
t ∈ (0, 1/2), by conditioning on the value of U , one finds the density

ft (x) = E
[
1[x,1](Ξ(2t))

Ξ(2t)

]
, x ∈ (0, 1]. (27)

ft (x) is monotonically decreasing and continuous on (0, 1] with f (1) = 0. For t ∈
(1/2, 1), ft (x) = f1−t (1 − x), x ∈ (0, 1) is a density of L (Ξ(t)) by (ii). By (27),
for t ∈ (0, 1/2), x ∈ (0, 1),

ft (x) =
∫ 1

x

f2t (y)

y
dy, or x f ′

t (x) = − f2t (x). (28)

Upon setting f0 = f1 = 0, the last identity also holds for t = 0 and t = 1/2 since
f1/2 = 1[0,1] is a density of L (Ξ(1/2)). Thus, for any t ∈ (0, 1), ft is smooth on
(0, 1). Since the uniform distribution takes values arbitrarily close to one, it follows
that, for all δ > 0, t ∈ (0, 1), we have P (Ξ(t) > 1 − δ) > 0. Hence, for all t ∈
(0, 1), the density ft is strictly positive on (0, 1). Thus, for t ∈ (0, 1/2), ft is strictly
monotonically decreasing. Summarizing, we have shown (iv) and (v). For t ∈ (0, 1/4],
the assertion α

(0)
t = ∞ in (vi) follows immediately from (28) since α

(0)
2t > 0. Let

1/4 < t < 1/2. Assume α
(0)
1−2(1−2t) < ∞. Then, f2(1−2t)(1) < ∞. By (28), it

follows that f ′
1−2t (1) is finite and hence f ′

2t (0) is finite. Thus, f2t (y)/y is bounded in

a neighbourhood of zero and α
(0)
t < ∞. For t > 3/8, we have 1 − 2(1 − 2t) > 1/2;

thus, α
(0)
t < ∞. Iterating this argument leads to α

(0)
t < ∞ for all 1/3 < t < 1/2.
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In order to proceed further, note that, for t > 1/4, there exists k ∈ N, such that, in
probability, Ξ(t) ≥ Z := U1(U2 + (1 − U2)

∏k
=1 U2+). Z admits a density fZ

given by

fZ (x) = 1 +
∫ 1

x
r(y)dy − xr(x), r(x) = 1

x2

∫ x

0
P

(
k∏

=1

U2+ ≤ x − v

1 − v

)
dv.

Thus,

lim
x↓0 fZ (x) = 1 +

∫ 1

0
r(y)dy < ∞.

It follows that α
(0)
t ≤ 1 + ∫ 10 r(x)dx < ∞. Since Ξ is increasing, the function

t �→ α
(0)
t is decreasing. Thus, by monotonicity and continuity, it follows α

(0)
t ↑ ∞

as t ↓ 1/4. For t ≤ 1/4, α(0)
t = ∞ follows immediately from (28) since α

(0)
2t < ∞.

For 1/4 < t < 1/2, the remaining statements about α
(1)
t are direct corollaries of the

results for α
(0)
t since α

(1)
t = α

(0)
1−2(1−2t). This finishes the proof of (vi).

The curvature We make a concluding remark about the curvature of ft , t ∈ (0, 1/2).
First, since x f

′′
t (x) = − f ′

2t (x) − f ′
t (x), for 0 < t ≤ 1/4, the function ft is convex.

From (28) it is easy to deduce f1/3(x) = 2(1 − x). Since f ′′
1/3 = f ′′

1/2 = 0, it is
plausible to conjecture that ft is convex for t ≤ 1/3 and concave for 1/3 ≤ t < 1/2.
Concavity at rational points with small denominator such as t = 3/8 or t = 5/12 can
be verified by hand using (28).

4.3 Weighted Path Length and Wiener Index

In order to obtain mean and variance for the weighted path length and the weighted
Wiener index, we use the reflection argument from the proof of Proposition 1 (i i). To
this end, let P∗

n and W ∗
n denote weighted path length and weighted Wiener index in

the binary search tree built from the sequence U∗
1 = 1− U1, U∗

2 = 1− U2, . . . Then,
Pn + P∗

n = Pn + n and Wn + W ∗
n = Wn + (n2

)
providing the claimed expansions

for E [Pn] and E [Wn] upon recalling (7) and (8).
For a finite rooted labelled binary tree T , denote by p(T ) its path length, by p(T )

its weighted path length, by w(T ) its Wiener index and by w(T ) its weighted Wiener
index. Let T1, T2 be its left and right subtree and x the label of the root. Then, denoting
by |T | the size of T , for |T | ≥ 1,

p(T ) = p(T1) + p(T2) + |T | − 1, (29)

w(T ) = w(T1) + w(T2)+(|T2| + 1)p(T1)+(|T1| + 1)p(T2) + |T | + 2|T1||T2| − 1.
(30)

The first statement is obvious, the argument for the second can be found in [25]. For
the weighted quantities, one obtains
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p(T ) = p(T1) + p(T2) + |T |x, (31)

w(T ) = w(T1) + w(T2) + (|T2| + 1)p(T1) + (|T1| + 1)p(T2) + (|T | + |T1||T2|)x .

(32)

Again, the first assertion is easy to see and we only justify the second. The terms
w(T1) and w(T2) account for weighted distances within the subtrees. The sum of all
weighted distances between nodes in the left subtree and the root equals p(T1)+|T1|x .
Replacing T1 by T2, we obtain the analogous sum in the right subtree. The sum of all
distances between nodes in different subtrees equals |T1|p(T2)+|T2|p(T1)+|T1||T2|x .
Finally, we need to add x for the weighted distance of the root to itself. Adding up the
terms and simplifying leads to (32). For α, β > 0 let αT +β be the tree obtained from
T where each label y is replaced by αy + β. Obviously, p(T ) = p(αT + β) with the
analogous identity for the Wiener index. For the weighted quantities, we have

p(αT + β) = αp(T ) + (p(T ) + |T |)β, (33)

w(αT + β) = αw(T ) + (w(T ) + |T |(|T | + 1)/2)β. (34)

Let T be the binary search tree of size n in the i.i.d. model. Then, given In :=
rank(U1), U := U1, in distribution, the trees 1

U T1 and 1
1−U T2 − U

1−U are independent
binary search trees of size In −1 and n − In , constructed from independent sequences
of uniformly distributed random variables on [0, 1]. Thus, combining (29)–(34), for
the vector Yn = (Wn, Wn,Pn, Pn)T , we have

Yn
d=

⎡
⎢⎢⎣

U 0 (n + 1 − In)U 0
0 1 0 n + 1 − In

0 0 U 0
0 0 0 1

⎤
⎥⎥⎦ YIn−1

+

⎡
⎢⎢⎣
1 − U U In(1 − U ) InU

0 1 0 In

0 0 1 − U U
0 0 0 1

⎤
⎥⎥⎦ Y ′

n−In

+

⎛
⎜⎜⎝

(2n + (n − In)(3In + n − 2))U/2
n − 1 + 2(In − 1)(n − In)

(2n − In)U
n − 1

⎞
⎟⎟⎠ ,

where (Y ′
n), (Yn), (In, U ) are independent and (Y ′

n) is distributed like (Yn). Here,
d=

indicates that left- and right-hand side are identically distributed.
We consider the sequence (Zn)n≥0 defined by

Zn :=
(
Wn − E[Wn]

n2 ,
Wn − E[Wn]

n2 ,
Pn − E[Pn]

n
,

Pn − E[Pn]
n

)T

, n ≥ 1,
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and Z0 = 0. Let αn = E [Wn] , βn = E [Wn] , γn = E [Pn] and δn = E [Pn]. Further,
let

A(n)
1 =

⎡
⎢⎢⎢⎢⎢⎣

(
In−1

n

)2
U 0

(
1 − In−1

n

)
In−1

n U 0

0
(

In−1
n

)2
0

(
1 − In−1

n

)
In−1

n

0 0 In−1
n U 0

0 0 0 In−1
n

⎤
⎥⎥⎥⎥⎥⎦

,

A(n)
2 =

⎡
⎢⎢⎢⎢⎢⎣

(
1 − In

n

)2
(1 − U )

(
1 − In

n

)2
U In

n

(
1 − In

n

)
(1 − U ) In

n

(
1 − In

n

)
U

0
(
1 − In

n

)2
0 In

n

(
1 − In

n

)

0 0
(
1 − In

n

)
(1 − U )

(
1 − In

n

)
U

0 0 0 1 − In
n

⎤
⎥⎥⎥⎥⎥⎦

,

and C (n) = (C (n)
1 , C (n)

2 , C (n)
3 , C (n)

4 )T with

C (n)
1 = U

n2 αIn−1+ 1 − U

n2 αn−In + U

n2 βn−In +U
(n + 1 − In)

n2 γIn−1+(1 − U )
In

n2 γn−In

+ U
In

n2 δn−In + U
2n + (n − In)(3In + n − 2)

2n2 − 1

n2 αn,

C (n)
2 = 1

n2 βIn−1 + 1

n2 βn−In +
(
1 − In − 1

n

)
1

n
δIn−1 + In

n2 δn−In

+ n − 1 + 2(n − 1)(n − In)

n2 − 1

n2 βn,

C (n)
3 = U

n
γIn−1 + 1 − U

n
γn−In + U

n
δn−In +

(
2 − In

n

)
U − 1

n
γn,

C (n)
4 = 1

n
δIn−1 + 1

n
δn−In + 1 − 1

n
− 1

n
δn .

Then, from the recurrence for (Yn), it follows

Zn
d= A(n)

1 Z In−1 + A(n)
2 Z ′

n−In
+ C (n), n ≥ 1,

where (Zn), (Z ′
n), (In, U ) are independent and (Z ′

n) is distributed like (Zn). We prove
convergence of Zn in distribution by an application of the contraction method. To this
end, note that In/n → U almost surely by the strong law of large numbers. Thus,
with convergence in L2 and almost surely,

A(n)
1 → A1 :=

⎡
⎢⎢⎣

U 3 0 U 2(1 − U ) 0
0 U 2 0 U (1 − U )

0 0 U 2 0
0 0 0 U

⎤
⎥⎥⎦ ,
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A(n)
2 → A2 :=

⎡
⎢⎢⎣

(1 − U )3 U (1 − U )2 U (1 − U )2 U 2(1 − U )

0 (1 − U )2 0 U (1 − U )

0 0 (1 − U )2 U (1 − U )

0 0 0 1 − U

⎤
⎥⎥⎦ ,

and

C (n) → C :=

⎛
⎜⎜⎝

U 2 logU + (1 − U 2) log (1 − U ) + U (−14U 2 + 9U + 5)/4
2U logU + 2(1 − U ) log(1 − U ) + 6U (1 − U )

U 2 lnU + (1 − U 2) ln(1 − U ) + U
2U lnU + 2(1 − U ) ln (1 − U ) + 1

⎞
⎟⎟⎠ .

For a quadratic matrix A, denote by ‖A‖op its spectral radius. By calculating the
eigenvalues of A1AT

1 and A2AT
2 , one checks that ‖A1‖op = U and ‖A2‖op = 1− U .

Thus,

E
[
‖A1AT

1 ‖op
]

+ E
[
‖A2AT

2 ‖op
]

≤ E
[
‖A1‖2op

]
+ E
[
‖A2‖2op

]
< 1.

Moreover, we have P (In ∈ {1, . . . , } ∪ {n}) → 0 for all fixed . Thus, by Theorem
4.1 in [24], in distribution and with convergence of the first two moments, we have
Zn → (W , W,P, P) where L (W , W,P, P) is the unique fixed-point of the map:

T : M 4
2 (0) −→ M 4

2 (0), T (μ) = L
(

A1Z + A2Z ′ + C
)
, (35)

with A1, A2, C defined above, where Z , Z ′, U are independent and L (Z) =
L (Z ′) = μ. Here, M 4

2 (0) denotes the set of probability measures on R
4 with

finite absolute second moment and zero mean. Variances and covariances can
be computed successively using the fixed-point equation, e.g. in the following
order: E

[
P2
]
,E [PW ], E

[
W 2
]
,E [PP] , E

[
P2
]
,E [PW ] , E [PW ] ,E [WW ],

E [PW ] ,E
[
W 2
]
. Additionally to the variances given in the theorem, one obtains

Cov(Pn,Pn) ∼ 21 − 2π2

6
n2, Cov(Pn, Wn) ∼ 20 − 2π2

3
n3, (36)

Cov(Pn, Wn) ∼ 10 − π2

3
n3, Cov(Pn,Wn) ∼ 10 − π2

3
n3, (37)

Cov(Wn,Wn) ∼ 10 − π2

3
n4, Cov(Pn,Wn) ∼ 481 − 48π2

288
n3. (38)
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