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Abstract. Considering a complete Heyting algebra H, we introduce a notion of stratified H-convergence
semigroup. We develop some basic facts on the subject, besides obtaining conditions under which a
stratified H-convergence semigroup is a stratified H-convergence group. We supply a variety of natural
examples; and show that every stratified H-convergence semigroup with identity is a stratified H-quasi-
uniform convergence space. We also show that given a commutative cancellative semigroup equipped with
a stratified H-quasi-unifom structure satisfying a certain property gives rise to a stratified H-convergence
semigroup via a stratified H-quasi-uniform convergence structure.

1. Introduction

Inspired on the one hand by the enormous work done on classical convergence groups mostly within the
framework of sequential convergence lead by J. Novák [42] and on the other, by the classical convergence
group and its uniformization initiated by D. C. Kent and G. D. Richardson within the framework of filter-
theoretic convergence (cf. [32–35, 45]), we generalized the notion of convergence groups into the context
of frame-valued convergence groups [2] and later, lattice-valued convergence ring and its uniform convergence
structures [1]. Furthermore, we studied enriched lattice-valued convergence groups in [3]. All of these works
are based on lattice-valued filter-theoretic convergence structures attributed to G. Jäger undertaken since
2001(cf. [21]), which originally initiated by U. Höhle and A. Šostak [19], and independently, by U. Höhle in
[20].

One of the motivations of this work is stemmed from the fact that the category of classical convergence
spaces [6–8, 10, 13, 16, 32, 33, 37, 38, 42, 46] is a better behaved category than the category of topological
spaces; there are enormous quantity of research papers appeared over the years on topological semigroups
alone, but unfortunately, we were able to find a very few papers devoted to convergence semigroups
within the scope of filter-theoretic treatments (cf. [17, 18]); this is, however, in contrast to the category of
convergence groups (cf. [32–35, 45]). This has stimulated our interest further to look for lattice-valued
convergence semigroups based on whatever we found from existing papers on classical convergence
semigroups [17, 18]. In this paper, we intend to develop a basic theory on lattice-valued convergence
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semigroups; unlike previous findings [1–3], here classical results on semigroup theory are particularly used
like their classical counterpart [9, 11, 14, 40, 41, 44, 49].

We organize our work as follows. In Section 2, we present various facts from existing articles which will
be used throughout the text. Section 3 deals with, the main notion of stratified H-convergence semigroups
along with various results. Here we show among others that a compact Hausdorff-separated stratified
H-convergence semigroup contains an idempotent element; also, we show that the set of idempotent
elements in a compact Hausdorff-separated stratified H-convergence semigroup is >-closed [30], and
hence compact [27]. We give conditions for which a Hausdorff-separated stratifiedH-Choquet convergence
semigroup produces a stratifiedH-convergence group. In section 4, we give results on ideals in stratifiedH-
convergence semigroups. We provide in Section 5, a wide variety of examples including natural examples;
one of the examples here states that a commutative cancellative semigroup equipped with a stratified
H-quasi-uniform structure satisfying a certain property, produces a stratified H-convergence semigroup
via stratified H-neighborhood system [19, 24]. A similar example is given in Section 6 but this time via
stratified H-quasi-uniform convergence structure. In this section, the main result is to show that every
stratified H-convergence semigroup with identity element is a stratified H-quasi-uniform convergence
space.

2. Preliminaries

Throughout the text we consider H = (H,≤,∧), a complete Heyting algebra. This means that the lattice
H is a complete lattice, where finite meets are distributive over arbitrary joins; that is, for all α, β j ∈ H,
α∧

∨
j∈J β j =

∨
j∈J

(
α ∧ β j

)
. The set of allH-sets is denoted byHX (= {ν : X −→H}). If A ⊆ X, then a constant

H-set with value α ∈ H on A, is denoted by αA, and is defined as αA(x) = α, if x ∈ A and αA(x) = ⊥,
elsewhere. In particular, >X(x) = >, the characteristic function of X and ⊥X(x) = ⊥, the zero function. The
residuated implication operation → : H ×H −→ H is defined by: α → β =

∨
{γ ∈ H| α ∧ γ ≤ β}. Then

α ≤ β→ γ⇔ α ∧ β ≤ γ.

Lemma 2.1. ([20]) Let H = (H,≤,∧) be a complete Heyting algebra. Then the following are satisfied for all
α, β, γ, δ ∈H:

(i) α ≤ β⇒ α→ γ ≥ β→ γ and γ→ α ≤ γ→ β;
(ii) α→ (β ∧ γ) = (α→ β) ∧ (α→ γ);
(iii)

(∨
j∈J α j

)
→ β =

∧
j∈J(α j → β);

(iv) (α→ β) ∧ (γ→ δ) ≤ (α ∧ γ)→ (β ∧ δ).

Definition 2.2. ([19]) A map F : HX
−→H is called an H-filter on X if the conditions below are satisfied:

(HF1) F (>X) = >, F (⊥X) = ⊥;
(HF2) if ν1, ν2 ∈HX with ν1 ≤ ν2, then F (ν1) ≤ F (ν2);
(HF3) F (ν1) ∧ F (ν2) ≤ F (ν1 ∧ ν2), ∀ν1, ν2 ∈HX;
(SH) An H-filter F is called a stratified H-filter if ∀α ∈H, α ≤ F (αX).

The set of all stratified H-filters on X is denoted by F s
H

(X). On F s
H

(X), partial ordering ≤ is defined by:
if F ,G ∈ F s

H
(X), then F ≤ G ⇔ F (ν) ≤ G(ν), ∀ν ∈ HX. A maximal element in the partially ordered set(

F
s
H

(X),≤
)

is called a stratified H-ultrafilter. We denote F su
H

(X) as the set of all stratified H-ultrafilters [19].
If x ∈ X, then [x] ∈ F s

H
(X), called point stratified H-filter on X, and is defined as [x](ν) = ν(x), for all ν ∈HX.

If f : X −→ Y is a function, then f← : HY
−→ HX is defined for any µ ∈ HY by f←(µ) = µ ◦ f ; and

f→ : HX
−→ HY is defined by: f→(ν)(y) =

∨
{ν(x)| f (x) = y}, ∀ν ∈ HX, y ∈ Y. Moreover, if F ∈ F s

H
(X), then

the stratified L-filter f⇒(F ) : HY
−→H on Y is defined for any µ ∈HY by: f⇒(F )(µ) = F

(
f←(µ)

)
= F (µ◦ f ).

This is also true for F ∈ F su
H

(X), that is, in which case f⇒(F ) ∈ F su
H

(X).
If F ∈ F s

H
(Y), then f⇐(F ) : HX

−→ H defined by: [ f⇐(F )](ν) =
∨
{F (µ)|µ ∈ HY, f←(µ) ≤ ν}, for all

ν ∈ HX, is a stratified H-filter on X if and only if for all µ ∈ HY, f←(µ) = ⊥X ⇒ F (µ) = ⊥. If, however,
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f : X −→ is a surjective map, and F ∈ F s
H

(X), then f⇐(F ) ∈ F s
H

(X), and the relation f⇒
(

f⇐(F )
)

= F holds
[19].

If F ,G ∈ F s
H

(X), then F ∨G ∈ F s
H

(X) if and only if ν∧ µ = ⊥X =⇒ F (ν)∧G(µ) = ⊥. In this case F ∨G
is defined for any ξ ∈HX by: F ∨ G(ξ) =

∨
{F (ν) ∧ G(µ) : ν ∧ µ ≤ ξ}.

Let ν ∈ HX and µ ∈ HY, then their product ν × µ ∈ HX×Y is defined by ν × µ = ν ◦ prX ∧ µ ◦ prY, where
prX : X × Y −→ X, (x, y) 7→ x and prY : X × Y −→ Y, (x, y) 7→ y, are projections on X and Y, respectively.

IfF ∈ F s
H

(X) andG ∈ F s
H

(Y), then the product ofF andG is a stratifiedH-filter, defined for any ν ∈HX×Y

by: F × G(ν) =
∨
{F (ν1) ∧ G(ν2) : ν1 ∈HX, ν2 ∈HY, ν1 × ν2 ≤ ν} (cf. [21]).

If A ⊆ X, and ıA : A ↪→ X is the inclusion map, then for any F ∈ F s
H

(X), FA(ν) = ı←A (F )(ν) =∨
{F (µ) : µ|A ≤ ν} ∈ F s

H
(A) if and only if µ|A = ⊥A implies F (µ) = ⊥(cf. [21]); FA is called the trace of

F on A, in which case FA exists. If G ∈ F s
H

(A), then [G] = ı⇒A (G) ∈ F s
H

(X), where [G](ν) = G(ν|A ). Note that
F ≤ [FA], and if F (>A) = >, then F = [FA]. Also, note that ifU ∈ F su

H
(X), thenUA ∈ F

s
H

(A) if and only if
U(>A) = >.

Lemma 2.3. ([22]) Let F ∈ F s
H

(X) and let f : X −→ Y. IfU ≥ f⇒(F ) is a stratifiedH-ultrafilter on Y, then there
exists a G ∈ F su

H
(X) such that G ≥ F and f⇒(G) =U.

If (X, ·) is a semigroup, and A,B ⊆ X, then one defines A · B(or simply AB) by A · B = {ab : a ∈ A, b ∈ B}.
In particular, {a}B is denoted just by aB and similarly, A{b} by Ab (cf. [9, 12, 44]).

If (X, ·) is a group and F ∈ F s
H

(X), then F −1 is defined by F −1(ν) = F (ν−1), where ν−1 : X → H, x 7→
ν(x−1). Since for any ν ∈ HX, ⇒(F )(ν) = F

(
←(ν)

)
= F (ν−1) = F −1(ν), where  : X −→ X, x 7→ x−1,  is

known as inversion mapping, we have F −1
∈ F

s
H

(X). Also, if m : X × X −→ X, (x, y) 7→ xy, the semigroup
or group operation on X, then for any ν1, ν2 ∈ HX and z ∈ X, m→ (ν1 × ν2) (z) =

∨
m(x,y)=z (ν1 × ν2) (x, y)

=
∨

xy=z
(
ν1 ◦ prX ∧ ν2 ◦ prX

)
(x, y) =

∨
xy=z ν1 ◦ prX(x, y) ∧ ν2 ◦ prX(x, y) =

∨
xy=z ν1(x) ∧ ν2(y) = ν1 � ν2(z).

If (X, ·) is a semigroup, and F ,G ∈ F s
H

(X), then the map F � G : HX
−→ H is defined for any ν ∈ HX

by: F � G(ν) =
∨
{F (ν1) ∧ G(ν2)|ν1, ν2 ∈ HX, ν1 � ν2 ≤ ν}. It is shown in Proposition 3.3[2](see also, Lemma

2.9 and Proposition 2.10 [3]) that F � G = m⇒ (F × G) is a stratified H-filter on X.
We just recall below the notion of stratified H-neighborhood system, for further details including the

notion of stratified H-topology, we refer to [19] (see also [20]).

Definition 2.4. ([19]) A pair (X,N = (Nx)x∈X) is called a stratified H-neighborhood topological space, where N is
a family of stratified H-filters on a nonempty set X satisfying the following:

(HN1) ∀x ∈ X, Nx
≤ [x];

(HN2) ∀x ∈ X, and ∀ν ∈HX, Nx(ν) =
∨
{Nx(ξ)|ξ ∈HX, ξ(y) ≤ Ny(ν),∀y ∈ X}.

A map f : (X,N) −→ (X′,N′) between stratified H-neighborhood topological spaces is said to be continuous
at x ∈ X if N′ f (x)

≤ f⇒(Nx). It is continuous if it is continuous at each point of X.

Definition 2.5. ([21, 25]) Let X be a nonempty set and lim : F s
H

(X) −→HX a map satisfying the following:
(LGC1) ∀x ∈ X: lim[x](x) = >;
(LGC2) ∀F ,G ∈ F s

H
(X) with F ≤ G implies limF (x) ≤ limG(x), ∀x ∈ X,

then the pair (X, lim) is called a stratified H-generalized convergence space.
• A stratified H-generalized convergence space is called stratified H-convergence space if it satisfies
(LCS) ∀F ,G ∈ F s

H
(X), ∀x ∈ X; limF (x) ∧ limG(x) ≤ lim (F ∧ G) (x).

• A stratified H-generalized convergence space (X, lim) is called stratified H-Choquet convergence space if
it satisfies

(LCC) ∀F ∈ F s
H

(X), ∀x ∈ X, limF (x) =
∧
{limU(x) : U ∈ F su

H
(X),U ≥ F }.

• A stratified H-generalized convergence space (X, lim) is called stratified H-pretopological convergence
space if it satisfies

(Lp) ∀F ∈ F s
H

(X), ∀x ∈ X : limF (x) =
∧
ν∈HX (Nx(ν)→ F (ν)),

where ∀ν ∈HX: Nx(ν) =
∧
G∈F s

H
(X) (limG(x)→ G(ν)).

A map f : (X, lim) −→
(
X′, lim′

)
between stratified H-generalized convergence spaces (resp. stratified

H-convergence spaces, stratified H-pretopological convergence spaces, stratified H-Choquet convergence
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spaces), is said to be continuous if and only if ∀F ∈ F s
H

(X), ∀x ∈ X: limF (x) ≤ lim′ f⇒(F )( f (x)). Note that
every stratified H-pretopological convergence space is a stratified H-convergence space (cf.[23]).

For a given source
(

f j : X −→
(
X, lim j

))
j∈J

, the initial structure on X is defined in [21] for any F ∈ F s
H

(X)

and x ∈ X by: limF (x) =
∧

j∈J lim j f j(F )( f j(x)).
Special examples of such a structure are subspaces and product spaces. As for subspace, consider (X, lim),

a stratified H-generalized convergence space, A ⊆ X and ıA : A ↪→ X, x 7→ x, an inclusion mapping,
then the initial structure on A written as lim |A is given for any F ∈ F s

H
(A) and x ∈ X by: lim |AF (x) =

lim ıA(F )(ıA(x)) = lim[F ](x).
For product space, we just consider the projection mappings pri :

∏
j∈J X j −→ Xi. In particular, if

(X, lim), (Y, lim) are stratified H-generalized convergence spaces, then their product (X × Y, limX × limY) is
a stratified H-generalized convergence space [21], where limX × limY : F s

H
(X × Y) −→ HX×Y is defined for

any F ∈ F s
H

(X × Y) by:
(limX × limY)F = pr←X

(
limX pr⇒(F )

)
∧ pr←Y

(
limY pr⇒Y (F )

)
.

Definition 2.6. ([25]) Let (X, lim) be a stratified H-generalized convergence space. Then (X, lim) is called
Hausdorff-separated or T2-space if and only if for all x, y ∈ X, ∀F ∈ F s

H
(X), limF (x) = limF (y) = > implies

x = y.

We recall a characterization of Hausdorff-separated space from [Lemma 4.4[25]]: A stratified H-
pretopological convergence space (X, lim) is Hausdorff-separated if and only if ∀x, y ∈ X: Nx

∨Ny
∈ F

s
H

(X)
implies x = y.

Definition 2.7. ([27, 28, 30]) (1) If (X, lim) is a stratified H-generalized convergence space and A ⊆ X, and

x ∈ X, then the lim-closure of A, denoted by A
lim

, is defined as follows:

x ∈ A
lim

if there exists a F ∈ F s
H

(X) such that limF (x) = > and F (>A) = >.
(2) A ⊆ X is called >-closed in (X, lim) if for F ∈ F s

H
(X), limF (x) = > and F (>A) = > implies x ∈ A.

Remark that A is >-closed if and only if A
lim
⊆ A. Furthermore, note that as it is pointed out in [28],

>-closedness of A can be characterized by stratified H-ultrafilters, in which case A is >-closed if and only
if for allU ∈ F su

H
(X), limU(x) = > andU(>A) = > implies x ∈ A.

Definition 2.8. ([27]) A stratified H-generalized convergence space (X, lim) is called compact if and only if
for all U ∈ F su

H
(X) there exists x ∈ X such that limU(x) = >. If A ⊆ X, then A is called compact if the

subspace
(
A, lim|A

)
of (X, lim) is compact (see cf. [27]).

Lemma 2.9. ([27]) Let (X, lim) be a stratified H-generalized convergence space and A ⊆ X. Then A is compact if
and only if for every stratified H-ultrafilterU ∈ F su

H
(X) withU(>A) = > there is an x ∈ A such that limU(x) = >

Lemma 2.10. ([26, 27]) Let (X, lim) and
(
Y, lim′

)
be stratifiedH-generalized convergence spaces, and f : (X, lim) −→(

Y, lim′
)

be continuous. If A ⊆ X is compact, then f (A) is a compact subset of
(
Y, lim′

)
.

Definition 2.11. ([9, 12]) Let (X, ·) be a semigroup. A subsemigroup T of a semigroup X is a non-empty subset
T of X such that TT ⊆ T. A subgroup of a semigroup X is a nonempty subset A of X such that xA = Ax = A
for each x ∈ A. An element e in X is called an idempotent if and only if e2 = e. The set of all idempotents is
denoted by E(X). If X contains an idempotent e, then {e} is a subgroup of X, and is contained in a maximal
subgroup. We denote H(e) the maximal subgroup of X containing the idempotent e.

Definition 2.12. ([9, 12]) A semigroup (X, ·) is called right simple if aX = X for all a ∈ X; equivalently, for all
a, b ∈ X there exists x ∈ X such that ax = b; it is called left simple if Xa = X for all a ∈ X; equivalently, for all
a, b ∈ X there exists x ∈ X such that xa = b. It is called simple if it is both left simple and right simple.

A semigroup (X, ·) is called right group if and only if X is both left cancellative, i.e., zx = zy implies that
x = y, and right simple.
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3. Complete Heyting Algebra-Valued Convergence Semigroups

Definition 3.1. A triple (X, ·, lim) is called a stratified H-generalized convergence semigroup(resp. stratified H-
convergence semigroup, stratified H-pretopological semigroup, stratified H-Choquet convergence semigroup) if the
following are fulfilled:

(LCSG1) (X, ·) is a semigroup;
(LCSG2) (X, lim) is a stratified H-generalized convergence space (resp. stratified H-convergence space,

stratified H-pretopological convergence space, stratified H-Choquet convergence space);
(LCSG3) the multiplication m : X×X −→ X, (x, y) 7→ xy is continuous; equivalently, for allF ,G ∈ F s

L (X),
for all x, y ∈ X: limF (x) ∧ G(y) ≤ limF � G(xy).

Lemma 3.2. Let (X, ·, lim) be a stratified H-generalized convergence semigroup, and a ∈ X. Then both the left and
the right translations by a, a% : X −→ X, x 7→ ax, and %a : X −→ X, x 7→ xa are continuous.

Proof. Fix a ∈ X. Then for any x ∈ X and F ∈ F s
H

(X), limF (x) = lim[a](a) ∧ limF (x) ≤ lim ([a] � F ) (ax) ≤
lim a%⇒(F )(a%(x)); in fact, upon using stratification (SH), for any ν ∈ HX, ([a] � F ) (ν) =

∨
ν1�ν2≤ν[a](ν1) ∧

F (ν2) =
∨
ν1�ν2≤ν ν1(a)∧F (ν2) ≤

∨
ν1�ν2≤ν F (ν1(a) ∧ ν2) ≤

∨
ν1(a)∧ν2≤ν◦a% F (ν1(a) ∧ ν2) ≤ F (ν ◦ a%) = a%⇒(F )(ν).

Similarly, the continuity of %a follows from the observation: limF (x) = limF (x)∧lim[a](a) ≤ lim (F � [a]) (xa) ≤
lim %⇒a (F )(%a(x)).

Lemma 3.3. Let (X, ·, lim) be a Hausdorff-separated stratified H-generalized convergence semigroup and A,B are
subsets of X. Then the following holds:

(a) If B is >-closed in (X, lim), then {x ∈ X : xA ⊆ B} is >-closed.
(b) If B is compact, then {x ∈ X : A ⊆ xB} is >-closed.
(c) If B is compact, then {x ∈ X : xA ⊆ Bx} is >-closed.

Proof. (a) Denote C := {x ∈ X : xA ⊆ B} with B is >-closed in (X, lim), and let x ∈ C
lim

. Then there exists
F ∈ F

s
H

(X) such that limF (x) = > with F (>C) = >. Let a ∈ A. Then it follows from the continuity of
x 7→ xa that lim(F � [a])(xa) = >. Now note that due to Lemma 2.6[28], as {x} is >-closed, one can deduce
F (>{x}) = >, and since >{x} · >A = >xA ≤ >B, we obtain: (F � [a]) (>B) =

∨
{F (ν1) ∧ [a](ν2) : ν1 � ν2 ≤ >B} ≥

F (>{x}) ∧ >A(a) = >, i.e., (F � [a]) (>B) = >. As B is >-closed, we have xa ∈ B. This means that x ∈ C.

(b) Let K := {x ∈ X : A ⊆ xB}, and B be a compact subset of X. We show K is >-closed. For, let x ∈ K
lim

.
Then there exists a F ∈ F s

H
(X) such that limF (x) = > and F (>K) = >. Let U ∈ F su

H
(X) such that U ≥ F .

Take a ∈ A, then {a} is>-closed, and so, limF (a) = > but then limU(a) = >. Since B is compact, xB compact
subset of X, and hence there exists z ∈ xB such that limU(z) = >. As z ∈ xB, there exits b ∈ B such that
z = xb. Then limU(xb) = >. But X is Hausdorff-separated so, a = xb. This means A ⊆ xB and hence x ∈ K.

(c) Set F := {x ∈ X : xA ⊆ Bx}, and let x ∈ F
lim

. Then there exists F ∈ F s
H

(X) such that limF (x) = >
and F (>F) = >. If y ∈ xA, then there is a ∈ A such that y = xa. Choose U ∈ F su

H
(X) such that U ≥ F .

Then since B is compact, there exists z ∈ B such that limU(z) = >. Then due to continuity of x 7→ zx,
limU � F (zx) = >. Also, we have limU � F (xa) = >. Since X is Hausdorff-separated, it follows from
limU �F (zx) = limU �F (xa) = > implies zx = xa, but then y = zx, showing xA ⊆ Bx, hence x ∈ F.

In classical theory of topological semigroups, the following result is known as Ellis’s Lemma[14](see
also [41]). This result has been incorporated for classical convergence semigroup in [17].

Theorem 3.4. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-generalized convergence semigroup.
Then it contains an idempotent element.

Proof. Let S denote the set of >-closed subsemigroups of X, i.e., S = {A ⊆ X : AA ⊆ A,A
lim

= A}. Since
it follows from Lemma 3.5[27] that X itself is a >-closed subsemigroup, we have X ∈ S; so S , ∅. If S is
partially ordered by reverse inclusion, then by Zorn’s lemma, there exists a minimal element K in S. Let
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y ∈ K. Then since K is >-closed subsemigroup of X, by Corollary 3.4[27], K is compact, and by continuity
of the mapping f : X −→ X, x 7→ yx, yK is compact subset of X, and therefore, again by Lemma 3.5[27], yK
is a >-closed subsemigroup of X such that yK ⊆ K. That yK is a subsemigroup follows from (yK)(yK) ⊆ yK,
which is true because of the fact that (yx1)(yx2) = y(x1yx2) = yx3 ∈ yK, x1, x2, x3 ∈ K. Hence by minimality
of K, we get yK = K. Similarly, Ky = K. Thus, K is a subgroup of X. If e is the identity of K, then again by
minimality, K = {e}.

The following lemma in classical topological semigroups is known as Swelling Lemma (see Lemma
1.9[9]). We generalize it in the context of compact Hausdorff-separated stratifiedH-generalized convergence
semigroup, in which case, a part of the classical proof will remain as it is.

Lemma 3.5. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-generalized convergence semigroup. If A
is a >-closed subset of X, t ∈ X and A ⊆ tA, then A = tA.

Proof. Let K := {x ∈ X : tA ⊆ xA}. Then clearly T is a subsemigroup of X and in view of Preceding Lemma
3.3(c), we have K is >-closed, and hence by Theorem 3.4, it contains an idempotent e. Hence the rest of the
proof, mainly, algebraic part follows from the proof of the classical Swelling Lemma 1.9[9].

Theorem 3.6. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-pretopological convergence semigroup.
Then

(a) The set of all idempotents E(X) of X is >-closed, and hence compact.
(b) Every maximal subgroup H(e) of X is >-closed and hence compact.

Proof. (a) Let x ∈ E(X)
lim

and x2 , x. Then by Lemma 4.4[25], Nx2
∨Nx < F s

H
(X). This implies that there are

ν1, ν2 ∈HX such that ν1 ∧ ν2 = ⊥X and Nx2
(ν1) ∧Nx(ν2) , ⊥... ... ...(I).

Since x ∈ E(X)
lim

, there exists F ∈ F s
H

(X) such that limF (x) = > and F (>E(X)) = >. Then Nx
≤ F ;

and since the map (x, x) 7→ x2 is continuous, we have limF (x) ∧ limF (x) ≤ lim (F � F ) (x2), which implies
that lim (F � F ) (x2) = >. Consequently, Nx2

≤ F � F . But it follows that F � F ≤ F , which by (LGC2),
limF (x2) = >, and so, Nx2

≤ F . In fact, for any ξ ∈ HX, F � F (ξ) =
∨
{F (ξ1) ∧ F (ξ2) : ξ1 � ξ2 ≤ ξ} ≤∨

{F (ξ1∧ξ2) : ξ1∧ξ2 ≤ ξ1�ξ2 ≤ ξ} ≤
∨
{F (ξ1∧ξ2) : ξ1∧ξ2 ≤ ξ} ≤ F (ξ). This is so, because of idempotency,

and the fact that for any z ∈ X, ξ1 � ξ2(z) =
∨

st=z ξ1(s) ∧ ξ2(t) ≥
∨

s=s2=z ξ1(s) ∧ ξ2(s) = ξ1 ∧ ξ2(z); i.e.,
ξ1 ∧ ξ2 ≤ ξ1 � ξ2. Thus, we have Nx2

(ν1) ∧Nx(ν2) ≤ F (ν1) ∧ F (ν2) ≤ F (ν1 ∧ ν2) = F (⊥X) = ⊥ implying that
Nx2

(ν1) ∧ Nx(ν2) = ⊥ ... ... ...(II), a contradiction with (I), and hence by Lemma 4.4[25], we have x2 = x, i.e.,
x ∈ E(X). The compactness of E(X) follows from Corollary 3.4[27].

(b) For the fact that H(e) = {x ∈ eXe : (∃y ∈ eXe) xy = yx = e} is the largest subgroup of X having

e as its identity follows from [40]. We only show that H(e) is >-closed. To this end, let x ∈ H(e)
lim

.
Then there exists F ∈ F s

H
(X) such that limF (x) = > and F

(
>H(e)

)
= >. Choose U ∈ F su

H
(X) such that

U ≥ F . As X is compact, there exists y ∈ X such that limU(y) = >. Because of continuity of the mapping
m : X × X −→ X, (x, y) 7→ xy, limF (x) ∧ limU(y) ≤ lim(F � U)(xy) ⇒ limF � U(xy) = >, x, y ∈ X.
Since ϕ : X −→ X, x 7→ exe is continuous, it follows from [26] that eXe is compact subset of X, and by
Lemma 3.5[27], eXe is >-closed; as H(e) ⊆ eXe, we have U (>eXe) = >, therefore, y ∈ eXe. Also, note that
limF � U(e) = >. Thus limF � U(xy) = limF � U(e) = >, But as X is Hausdorff-separated, xy = e;

similarly, yx = e implying that x ∈ H(e), showing that H(e)
lim
⊆ H(e). So, H(e) is >-closed, and hence by

Corollary 3.4[27], it is is compact.

Theorem 3.7. Let (X, ·, lim) and
(
Y, ·, lim′

)
be compact Hausdorff-separated stratified H-convergence semigroups

and f : X −→ Y be a surjective continuous semigroup-homomorphism. Then f (E(X)) = E(Y).

Proof. We only check E(Y) ⊆ f (E(X)). For, let e ∈ E(Y). Then since {e} is >-closed by Lemma 2.6[28];
so, by Corollary 2.13[30], f−1({e}) is >-closed which in view of Corollary 3.4[27] is compact, and then a
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subsemigroup of X. Consequently, by Theorem 3.4, it contains an idempotent element, say e′. So, f (e′) = e.
Therefore, E(Y) ⊆ f (E(X)).

Proposition 3.8. Let (X, ·, lim) be a stratified H-convergence semigroup, and A be a subsemigroup of X. Then A
lim

is a subsemigroup of X.

Proof. Let x, y ∈ A
lim

. Then there areF ,G ∈ F s
H

(X) such that limF (x) = >, limG(y) = > andF (>A) = > and
G(>A) = >. Since m : X×X −→ X, (x, y) 7→ xy is continuous, limF (x)∧ limG(y) ≤ limF �G(xy) implying
that limF �G(xy) = >. Since A is a subsemigroup, we have AA ⊆ A and hence>A �>A = >AA ≤ >A which
implies that F � G(>A) =

∨
{F (ν1) ∧ G(ν2) : ν1, ν2 ∈ HX, ν1 � ν2 ≤ >A} ≥ F (>A) ∧ G(>A) = > yields that

F �G(>A) = >. But in view of Proposition 3.3[2], we know F �G ∈ F s
H(X), by settingH := F �G ∈ F s

H(X),

we have limH(xy) = > andH(>A) = >which implies that xy ∈ A
lim

.

Corollary 3.9. Let (X, ·, lim) be a stratified H-convergence semigroup and A ⊂ X be a maximal subsemigroup of X.
Then A is >-closed.

Proof. By Proposition 3.8, A
lim

is a subsemigroup of X. Due to Lemma 2.7(2)[30], A ⊆ A
lim

, which by

maximality of A coincides with A
lim

. Hence A is >-closed.

Theorem 3.10. Let (X, ·, lim) be a Hausdorff-separated stratified H-convergence semigroup and G a subgroup of X.

Then G
lim

is a subsemigroup of X with identity.

Proof. Due to Proposition 3.8, it follows immediately that G
lim

is a subsemigroup of X. To show the remaining

part, let e ∈ G be the identity element of G, and assume x ∈ G
lim

. Then there isF ∈ F s
H

(X) such that limF (x) =
>. and F (>G) = >. By continuity of the map (e, x) 7→ ex, we have > = lim[e](e)∧ limF (x) ≤ lim([e]�F )(ex)
implies lim([e] � F )(ex) = >. Now as >e � >G = >eG = >G, we have ([e] � F )(>G) =

∨
{[e](ν1) ∧ F (ν2) :

ν1, ν2 ∈HX, ν1 � ν2 ≤ >G} ≥ [e](>e)∧F (>G) = >, implying ([e]�F )(>G) = >. Also, for any ν ∈HX, we have
([e]�F )(ν) =

∨
{[e](ν1)∧F (ν2) : ν1, ν2 ∈HX, ν1 � ν2 ≤ ν} ≥ [e](>e)∧F (ν) = >e(e)∧F (ν) = >∧F (ν) = F (ν)

implies that F ≤ ([e] � F ). Then by using (LGC2), limF (x) ≤ lim([e] � F )(x) for any x ∈ X. This yields
that lim([e] � F )(x) = >. Thus we arrive at lim([e] � F )(ex) = > and also, lim([e] � F )(x) = >. Since
[e] � F ∈ F s

H
(X), and X is Hausdorff, we have ex = x. Similarly, xe = x, which in conjunction with Lemma

2.7(2)[30] ensures that e ∈ G
lim

.

Theorem 3.11. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-convergence semigroup and Y a sub-

group of X. Then Y
lim

is also a subgroup of X.

Proof. In view of Proposition 3.8, it suffices to show that, if x ∈ Y
lim

, then there exists x−1
∈ Y

lim
such that

x−1x = x−1x = e. Let y ∈ Y
lim

. Then there exists F ∈ F s
H

(X) such that limF (y) = > and F (>Y) = >.
Clearly, ⇒(F ) = F −1

∈ F
s
H

(X). Choose U ≥ F −1. Since (X, lim) is compact, there exists an h ∈ X such
that limU(h) = >. As because Y is a subgroup of X, we have U(>Y) ≥ F −1(>Y) = F (>Y−1 ) ≥ F (>Y) = >,

i.e., U(>Y) = >. This together with limU(h) = > imply that h ∈ Y
lim

. Now we have limU � F (hy) ≥
limU(h) ∧ limF (y) = >, implying limU �F (hy) = >. Since ⇒(F ) ≤ U, then in view of Lemma 2.3, there
exists G ∈ F su

H
(Y) such that G ≥ F and ⇒(G) =U. Then it follows thatU�F = ⇒(G)�F ≤ G−1

�G ≤ [e]
which yields that lim[e](hy) ≥ limU �F (hy) = >, i.e., lim[e](hy) = > but as we know lim[e](e) = > implies

hy = e because of Hausdorffness. Similarly, yh = e, and hence h = y−1
∈ Y. This proves Y

lim
is a subgroup

of X.

Corollary 3.12. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-convergence semigroup and A be a
>-closed subsemigroup of X, then A is a subgroup of X
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Theorem 3.13. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-Choquet convergence semigroup such
that (X, ·) is algebraically a group. Then (X, ·, lim) is a stratified H-convergence group.

Proof. Let  : X −→ X, x 7→ x−1, F ∈ F s
H

(X) and x ∈ X. Then ⇒(F ) ∈ F s
H

(X). Let U ∈ F su
H

(X) such that
U ≥ ⇒(F ). Since (X, lim) is compact, there exists y ∈ X such that limU(y) = >, and due to continuity of
semigroup operation, we have> = lim[x](x)∧limU(y) ≤ limF (x)∧limU(y) ≤ limF �U(xy) implying that
limF �U(xy) = >. Now it ensures fromU ≥ ⇒(F ) in conjunction with Lemma 2.3 (see Lemma 3.7[22])
that there exists G ∈ F su

H
(X) such that G ≥ F implying j⇒(G) =U. This yields that F �G−1

≤ G�G
−1
≤ [e].

But then F � U = F � G−1
≤ [e]. So, lim[e](xy) ≥ limF � U(xy) = > implying lim[e](xy) = >. But

we know that lim[e](e) = >, hence xy = e, since (X, lim) is Hausdorff-separated. Similarly, one obtains
yx = e which implies y = x−1. Now as (X, lim) is a stratified H-Choquet convergence space, we have
limF (x) ≤ > =

∧
U∈F su

H
,U≥ ⇒(F ) limU(y) = lim j⇒(F )(y), i.e., limF (x) ≤ lim ⇒(F )(x−1), proving that  is

continuous. Hence (X, ·, lim) is a stratified H-convergence group.

Proposition 3.14. If (X, ·, lim) is a compact Hausdorff-separated stratified H-convergence semigroup, then each
maximal subgroup is >-closed.

Proof. Let (X, ·, lim) be a compact stratified H-convergence semigroup and Y a maximal subgroup of X.

Then in view of Theorem 3.11, Y
lim

is a subgroup of X and Y ⊆ Y
lim
⊆ X. Since Y

lim
is a subgroup of X and

Y is maximal, we have Y
lim

= Y. This shows that Y is >-closed.

Definition 3.15. Let X be a right group. For each idempotent e of X, let ϕe : X −→ X be defined by
ϕe(x) = (ex)−1. Then (X, ·, lim) is called a stratified H-convergence right group if and only if ϕe is continuous
for every idempotent e in X.

Theorem 3.16. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-Choquet convergence semigroup. If X
is right simple, then (X, ·, lim) is a stratified H-convergence right group.

Proof. By a result in Clifford-Preston [12] in conjunction with Theorem 3.4, X is a right group since it is right
simple and contains an idempotent. For each idempotent e of X, letϕe : X −→ X be defined byϕe(x) = (ex)−1.
Let F ∈ F s

H
(X) and x ∈ X. Then ϕ⇒e (F ) ∈ F s

H
(Xe). Let U be an ultrafilter on Xe such that U ≥ ϕ⇒e (F ).

Since Xe is compact, because of X is compact, and X = Xe, as X is a right group. Then there exists y ∈ Xe
such that limU(y) = >. Now lim (U �F ) (yx) = > and also, lim (U �F ) (e) = > implying yx = e since X is
Hausdorff-separated. Thus y = (ex)−1. Now as (X, lim) is stratifiedH-Choquet convergence space, we have
limF (x) ≤ > =

∧
U≥ϕ⇒e (F ) limU(y) = limϕ⇒e (F )(y). Hence limF (x) ≤ limϕ⇒e (F )((ex)−1).

Definition 3.17. Let (X, ·) be a semigroup and for any x ∈ X, let O(x) = {x, x2, x3, ...}. Define Γ(x) = O(x)
lim

.

Remark 3.18. Note that O(x) is a subsemigroup of X and Γ(x) is also a subsemigroup of X by Proposition
3.11.

Proposition 3.19. Let (X, ·, lim) be a Hausdorff-separated stratified H-generalized convergence semigroup. Then
(X, ·) has an idempotent if and only if there exists x ∈ X such that Γ(x) is compact.

Proof. Let (X, ·, lim) have an idempotent e. Then O(e) = {e}, so Γ(e) = {e}which is compact. Next, let there be
an x ∈ X such that Γ(x) is compact. Then by a classical result on semigroups Γ(x) has a kernelK , and Γ(x) is
commutative. Consequently, it is a group and the identity of the kernelK is the desired idempotent.

4. Ideals in Complete Heyting Algebra-Valued Convergence Semigroups

Definition 4.1. ([9, 12, 44]) A nonempty subset A of a semigroup (X, ·) is called left ideal if XA ⊆ A; it is
called right ideal if AX ⊆ A. It is called ideal if it is both left and right ideal.
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Definition 4.2. ([9, 12, 44]) Let (X, ·) be a semigroup and a ∈ X. Let J(a) = {a} ∪Xa∪ aX∪ SaS, L(a) = {a} ∪Xa
and R(a) = {a} ∪ aX, whence J(a) is the smallest ideal of X containing a; and L(a) and R(a) are the smallest
left and right ideals of X containing a. Furthermore, if A is a subset of a semigroup X, then L(A) = A ∪ XA,
R(A) = A ∪ AX and J(A) = A ∪ XA ∪ AX ∪ XAX.

If A ⊆ X, then J0(A) is defined to be the empty set if A contains no ideal of X and J0(A) is the union of all
ideals contained in A in the contrary case. Similarly, L0(A) and R0(A) are defined.

Proposition 4.3. Let (X, ·, lim) be a Hausdorff-separated stratified H-convergence semigroup and A be an ideal of

X. Then A
lim

is an ideal of X.

Proof. Let A be an ideal, x ∈ X and z ∈ A
lim

. We show that xz ∈ A
lim

. From z ∈ A
lim

it follows that there
exists F ∈ F s

H
(X) such that limF (z) = > and F (>A) = >. Now since ψx : X −→ X, z 7→ xz is continuous,

we have limF (z) ≤ limψ⇒x (F )(ψx(z)) which implies that limψ⇒x (F )(xz) = limψ⇒x (F )(ψx(z)) = >, and
ψ⇒x (F ) ∈ F s

H
(X). Now ψ⇒x (F )(>A) = F

(
ψ←x (>A)

)
= F (>A ◦ ψx) = >, since >A ◦ ψx(z) = >A(xz) = > and

xz ∈ A being A a left ideal of X. This proves that xz ∈ A
lim

, meaning A
lim

is a left ideal of X. Similarly, we
can prove that it is right ideal. Hence it is an ideal of X.

Lemma 4.4. If (X, ·, lim) is a Hausdorff-separated stratified H-convergence semigroup and A ⊆ X is >-closed, then
J0(A), L0(A) and R0 are >-closed.

Proof. We only prove for the case J0(A). Let J0(A) , ∅. Since J0(A) is the largest ideal of X contained in A,

i.e., J0(A) ⊆ A, we have by Lemma 2.7(3)[30], J0(A)
lim
⊆ A

lim
. By Lemma 4.3, J0(A)

lim
is an ideal of X. Now

since A is >-closed, we have A
lim

= A, and so, J0(A)
lim
⊆ J0(A). This proves that J0(A)

lim
is >-closed.

Proposition 4.5. Let (X, ·, lim) be a compact Hausdorff-separated stratified H-convergence semigroup and let A be
a compact subset of X. Then L(A), R(A) and J(A) are all compact.

Proof. Since X and A are compact, L(A) = A ∪ XA is compact. Similarly, other parts follow.

Proposition 4.6. Let (X, ·, lim) be a compact Hausdorff-separated stratifiedH-convergence semigroup with identity.
Then J(a) is compact for each a ∈ X. The same holds for L(a) and R(a).

Proof. Since X is compact, {a} is compact being >-closed subset of Hausdorff-separated space X; aX, Xa and
XaX are compact under continuous mappings.

Definition 4.7. ([30]) LetEbe a class of stratifiedH-generalized convergence spaces (E, limE) which contains
a space with at least two points. A stratifiedH-generalized convergence space (X, lim) is called E-connected
if for any (E, limE) ∈ E, every continuous mapping f : (X, lim) −→ (E, limE) is constant.

Proposition 4.8. Let (X, ·, lim) be an E-connected stratifiedH-convergence semigroup with identity and let A be an
E-connected subset of X. Then L(A), R(A) and J(A) are all E-connected.

Proof. In view of Lemma 5.1[30], XA being the continuous image of E-connected sets X and A under
m : X×X −→ X, (x, y) 7→ xy isE-connected. Hence exploiting Lemma 5.5[30], we deduce that L(A) = A∪XA
is E-connected. Similar arguments show that R(A) and J(A) are E-connected.

5. Examples: Stratified H-Convergence Semigroups, Approach Convergence Semigroups and Proba-
bilistic Convergence Semigroups

Example 5.1. Let (X, ·) be a semigroup and (X, limi) be an indiscrete stratified H-convergence space, where
limi F (x) = > ∀F ∈ F s

H
(X) and x ∈ X [24]. Then (X, ·, limi) is an indiscrete stratified H-convergence

semigroup.
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Example 5.2. let (X, ·) be a semigroup and (X, limd) be a discrete stratified H-convergence space, where

limdF (x) =

>, if F ≥ [x];
⊥, if F � [x].

Then (X, ·, limd) is a discrete stratified H-convergence semigroup.

Definition 5.3. A triple (X, ·,N = (Nx)x∈X) is called a stratified H-neighborhood topological semigroup if the
following conditions are satisfied:

(HTSG1) (X, ·) is a semigroup;
(HTSG2) (X,N) is a stratified H-neighborhood topological space;
(HTSGM) the mapping m : (X × X,N ×N) −→ (X,N) , (x, y) 7→ xy is continuous, where the product

stratified H-neighborhood system N × N on X × X, is given for any ν ∈ HX×X by: (N × N)(x,y)(ν) =∨
{Nx(ν1) ∧Ny(ν2) : ν1, ν2 ∈HX, ν1 ◦ pr1 ∧ ν2 ◦ pr2 ≤ ν}.

Proposition 5.4. Every stratified H-neighborhood topological semigroup is a stratified H-convergence semigroup.

Proof. Let (X, ·,N) be a stratified H-neighborhood topological semigroup, we show that (X, ·, limN) is a
stratified H-convergence semigroup. Let m : (X × X,N ×N) −→ (X,N) , (x, y) 7→ xy be continuous, and
F ,G ∈ F s

H
(X). Then for any x, y ∈ X, we have

limN F � G(xy) =
∧
ν∈HX (Nxy(ν)→ (F � G)(ν))

≥
∧
ν∈HX

(∨
{Nx(ν1) ∧Ny(ν2) : ν1, ν2 ∈HX, ν1 � ν2 ≤ ν} → F � G)(ν)

)
=

∧
ν∈HX

∧
ν1�ν2≤ν ((Nx(ν1) ∧Ny(ν2))→ (F � G)(ν))

≥
∧
ν1,ν2∈HX ((Nx(ν1) ∧Ny(ν2))→ (F (ν1) ∧ G(ν2)))

≥
∧
ν1,ν2∈HX (Nx(ν1)→ F (ν1)) ∧

∧
ν2∈HX (Ny(ν2)→ G(ν2))

= limN F (x) ∧ limNG(y),
that is, limN F (x) ∧ limGN(y) ≤ lim(F � G)(xy).

Definition 5.5. ([15]) Let X be a nonempty set and U a stratified H-filter on X × X. If U satisfies the
properties below, then it is called stratified H-quasi-uniformity on X.

(QUS1)U(d) ≤
∧

x∈X d(x, x), ∀d ∈HX×X;
(QUS2)U(d) ≤

∨
{U(d1) ∧U(d2) : d1 ◦ d2 ≤ d}, ∀d ∈HX×X,

where d1 ◦ d2(x, y) =
∨

z∈X d1(x, z) ∧ d2(z, y),∀(x, y) ∈ X × X.
The pair (X,U) is called stratified H-quasi-uniform space.

It follows from [15] that given a stratified H-quasi-uniformity on X, one can obtain a stratified H-
neighborhood system for each x ∈ X and ν ∈ HX: Nx

U
(ν) =

∨
{U(d)|d ∈ HX×X, d(x,−) ≤ ν}, where

d(x,−) : X −→ H, y 7→ d(x,−)(y) = d(x, y). This stratified H-neighborhood system then yields a strati-
fied H-convergence structure on X: limU F (x) =

∧
ν∈HX

(
Nx
U

(ν)→ F (ν)
)
(cf. [24]).

Proposition 5.6. Let (X, ·) be a commutative and cancelation semigroup and letU be a stratifiedH-quasi-uniformity
on X such that for all d ∈HX×X and for all x, y, z ∈ X, the property that d(x, y) ≤ d(xz, yz) holds. Then (X, ·, limNU )
is a stratified H-convergence semigroup.

Proof. Let x, y ∈ X and ν ∈HX. Then we have
N

m(x,y)
U

(ν) = N
xy
U

(ν)
=

∨
{U(d)|d ∈HX×X, d(xy,−) ≤ ν}

≤
∨
{
∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1 ◦ d2 ≤ d}|d ∈HX×X, d(xy,−) ≤ ν}

≤
∨
{
∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1(x,−) × d2(y,−)(x′, y′) ≤ d(xy, x′y′) ≤ ν(x′y′),∀x′, y′ ∈ X}

≤
∨
{
∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1(x,−) × d2(y,−)(x′, y′) ≤ ν(x′y′),∀x′, y′ ∈ X}

≤
∨
{
∨
{U(d′1)|d′1(x,−) ≤ d1(x,−)} ∧

∨
{U(d′2)|d′2(y,−) ≤ d2(y,−)}|d1(x,−)× d2(y,−)(x′, y′) ≤ ν(x′y′),∀x′, y′ ∈

X}
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≤
∨
{Nx
U

(d1(x,−)) ∧Ny
U

(d2(y,−))|d1(x,−), d2(y,−) ∈HX, d1(x,−) × d2(y,−)(x′, y′)
≤ m←(ν)(x′, y′),∀x′, y′ ∈ X}
=

(
Nx
U
×N

y
U

)
(m←(ν)).

In fact, upon using the given property, one obtains: for any x′, y′ ∈ X,
(
d1(x,−) × d2(y,−)

)
(x′, y′) = d1(x, x′)∧

d2(y, y′) ≤ d1(xy, x′y) ∧ d2(x′y, x′y′) ≤ d1 ◦ d2(xy, x′y′) ≤ d(xy, x′y′) ≤ ν(x′y′); note that X is a semigroup, and
so, x′y ∈ X.

Thus, we have Nm(x,y)
U

(ν) ≤
(
Nx
U
×N

y
U

)
(m←(ν)), showing that (x, y) 7→ xy is continuous, and hence(

X, ·,N =
(
Nx
U

)
x∈X

)
is a stratifiedH-neighborhood topological semigroup, which in conjunction with Propo-

sition 5.4 proves that (X, ·, limNU ) is a stratified H-convergence semigroup.

Definition 5.7. ([5, 37, 38]) An ultra approach convergence structureλ on a set X is a functionλ : F(X)→ [0,∞]X

which satisfies the following conditions:
(uALS1) λ (ẋ) (x) = 0, ∀x ∈ X, where ẋ = {A ⊆ X|x ∈ A} ∈ F(X).
(uACS2) If F,G ∈ F(X) with F ≤ G, then λ (G) ≤ λ (F) .
(uACS3) ∀F,G ∈ F(X), λ (F ∧G) = λ (F) ∨ λ (G) .

The pair (X, λ) is called an ultra approach convergence space.
A mapping f : (X, λ)→ (X′, λ′) between ultra approach convergence spaces is called a contraction if and

only if ∀F ∈ F(X) and x ∈ X, λ′
(

f (F)
)

( f (x)) ≤ λ (F) (x).

Definition 5.8. (see also, [38]) Let (X, ·) be a semigroup and (X, λ) be an ultra approach convergence space.
Then the triple (X, ·, λ) is called an ultra approach convergence semigroup if and only if the following conditions
are fulfilled:

(uACGM) ∀F,G ∈ F(X), x, y ∈ X: λ (F �G) (xy) ≤ λ (F) (x) ∨ λ(G)(y)

If F ∈ F s
[0,1](X), then ΦF is a filter defined by: ΦF = {A ⊆ X| F (1A) = 1}, (cf. [29]).

Now let S : [0, 1]→ [0,∞] be a strictly decreasing surjective mapping such that S(1) = 0, which is also order
reversing and satisfies that S

(∧
j∈J α j

)
=

∨
j∈J S(α j) and S

(∨
j∈J α j

)
=

∧
j∈J S(α j). For this map S, there exists

inverse S−1 : [0,∞]→ [0, 1] which is strictly decreasing and surjective.

Proposition 5.9. ([29]) If (X, λ) is a convergence approach space, then (X, limλ) is a stratified [0, 1]-convergence
space, where limλ F (x) = S−1 (λ (ΦF ) (x)) , ∀F ∈ F s

[0,1](X).

Proposition 5.10. ([29]) If f : (X, λ)→ (X′, λ′) is a contraction, then f : (X, limλ)→ (X′, limλ′ ) is continuous.

Proposition 5.11. If (X, ·, λ) is an ultra approach convergence semigroup, then (X, ·, limλ) is a [0, 1]-convergence
semigroup, where for any F ∈ F s

[0,1](X), limλ (F ) (x) = S−1 (λ (FF ) (x)).

Proof. Only we need to prove that ifF ,G ∈ F s
[0,1](X), and x, y ∈ X, then limλ F (x)∧limλG(y) ≤ limλ (F � G) (xy),

i.e., the multiplication, m : X × X→ X, (x, y) 7→ xy is continuous. We have
limλ (F � G) (xy) = S−1

(
λ
(
ΦF�G

)
(xy)

)
.

≥ S−1 (
λ
(
ΦF �ΦG

)
(xy)

)
(as both S−1 and λ are order reversing)

≥ S−1 (
λ (ΦF ) (x) ∨ λ

(
ΦG

)
(y)

)
(since S−1 is order reversing, applying (uACGM))

= S−1 (λ (ΦF ) (x)) ∧ S−1 (
λ
(
ΦG

)
(y)

)
= limλ F (x) ∧ limλG(y).

In fact, if F ,G ∈ F s
[0,1](X), then we have: ΦF �ΦG ≤ ΦF�G.

Indeed, if A ∈ ΦF � ΦG, then there are F ∈ ΦF and G ∈ ΦG such that F · G ⊆ A. These mean that
there are F,G with F (1F) = 1 and G(1G) = 1 such that F · G ⊆ A. Since 1F · 1G = 1F·G ⊆ 1A, we have
1 = F (1F) ∧ G(1G) ≤

∨
{F (ν1) ∧ G(ν2) : ν1 � ν2 ≤ 1A} = F � G(1A), i.e., F � G(1A) = 1, which yields that

A ∈ ΦF�G.
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Remark 5.12. Lowen-Windels approach semigroup (see [38, Proposition 5.1]] is a convergence approach
semigroup (see Definition 6.4, and [38, Proposition 6.5]] according to their notions of approach space and
approach convergence space [39]. However, if we consider (X,+, λ) (cf. [38, Definition 6.4]), as convergence
approach semigroup, then replacing � by ⊕, and making some notational readjustments, one can deduce
that the triple (X,+, limλ) is an example of stratified [0, 1]-convergence semigroup.

Definition 5.13. ([21]) Let (X, limX) and (Y, limY) be stratifiedH-convergence spaces. IfC(X,Y) = { f | f : (X, limX) −→
(Y, limY) is continuous}, then the convergence structure of continuous convergence is defined for any F ∈
F

s
H

(C(X,Y)) and f ∈ C(X,Y) by

c − limF ( f ) =
∧
G∈F s

H
(X)

∧
x∈X

(
limX G(x)→ limY ev(F × G)( f (x))

)
Proposition 5.14. Let (X, lim) be a stratifiedH-convergence space and

(
Y, ·, lim′

)
be a Hausdorff-separated stratified

H-convergence semigroup. Then (C(X,Y), ·, c − lim) is a Hausdorff-separated stratified H-convergence semigroup.

Proof. This follows from Proposition 4.11[3] in conjunction with Corollary 5.7[27].

Definition 5.15. ([16]) A pair (X,C) with C = (cx)x∈X, where cx : F(X) −→ [0, 1] is called a probabilistic
convergence space under ∧ if and only if the following conditions are fulfilled.

(PC1) ∀x ∈ X: cx (ẋ) = 1.
(PC2) ∀x ∈ X, ∀F,G ∈ F(X) with F ≤ G implies cx (F) ≤ cx (G).
(PC3) ∀x ∈ X, ∀F,G ∈ F(X), cx (F) ∧ cx (G) ≤ cx (F ∧G).

A mapping f :
(
X,CX

)
−→

(
Y,CY

)
is called continuous between probabilistic limit spaces

(
X,CX

)
and

(
Y,CY

)
if and only if for all x ∈ X and for all F ∈ F(X), cX

x (F) ≤ cY
f (x)

(
f (F)

)
.

Definition 5.16. A triple (X, ·,C = (cx)x∈X) is called a probabilistic convergence semigroup under ∧ if and only
if the following conditions are satisfied:

(PCG1) (X, ·) is a semigroup.
(PCG2) (X,C = (cx)x∈X) is a probabilistic convergence space under ∧.
(PCGM) ∀F,G ∈ F(X),∀x, y ∈ X: cx (F) ∧ cy (G) ≤ cxy (F �G).

Proposition 5.17. If (X, ·,C = (cx)x∈X) is a probabilistic convergence semigroup under ∧, then (X, ·, limC) is a
stratified [0, 1]-convergence semigroup, where limC F (x) = cx (ΦF ), for any F ∈ F s

[0,1](X) and x ∈ X.

Proof. The pair (X, limC) is a stratified [0, 1]-convergence space. LetF ,G ∈ F s
[0,1](X) and x, y ∈ X, limC F (x)∧

limG(y) ≤ limC (F � G) (xy). Let F ,G ∈ F s
[0,1](X) and x, y ∈ X. Then we have

limC (F � G) (xy) = cxy

(
ΦF�G

)
≥ cxy

(
ΦF �ΦG

)
≥ cx (ΦF )∧cy

(
ΦG

)
(by(PCGM)) = limC F (x)∧limCG(y).

6. StratifiedH-QUCS-Uniformization of StratifiedH-Convergence Semigroups

Definition 6.1. ([24]) Let X be a non-empty set. A map U : F s
H

(X × X) −→ H is called a stratified H-quasi-
uniform convergence structure if and only if ∀F ,G ∈ F s

H
(X × X)

(HQUS1) ∀x ∈ X, U ([(x, x)]) = >.
(HQUS2) F ≤ G implies U(F ) ≤ U(G).
(HQUS3) U(F ) ∧ U(G) ≤ U(F ∧ G).
(HQUS4) U(F ) ∧ U(G) ≤ U(F ◦ G), whenever F ◦ G exists,

are fulfilled. Then the pair (X,U) is called a stratified H-quasi-uniform convergence space.
If, moreover, there is a stratified H-filterV ∈ F s

H
(X × X) such that

(PHQUS) ∀F ∈ F s
H

(X × X), U(F ) =
∧
η∈HX×X

(
V(η)→ F (η)

)
,

then the pair (X,U) is called a principal stratified H-quasi-uniform convergence space.
A map f : (X,U) −→ (Y,U′) is called quasi-uniformly continuous if ∀F ∈ F s

H
(X ×X), U(F ) ≤ U′

(
( f × f )⇒(F )

)
.
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Let H = (H,≤,∧) be a complete Heyting algebra and (X, ·) be a semigroup with identity element e.
If ν ∈ HX, define a map Υl

ν : X × X −→ H for any x, y ∈ X by Υl
ν(x, y) = x � ν(y), where x � ν(y) =∨

xz=y,z∈X ν(z)(analogously, define Υr
ν : X × X −→ H for any x, y ∈ X by Υr

ν(x, y) = ν � x(y), where ν � x(y) =∨
zx=y,z∈X ν(z).

Also, for any F ∈ F s
H

(X), we define a map Υl
F

: HX×X
−→H defined by

Υl
F

(d) =
∨
{F (ν) : ν ∈HX,Υl

ν ≤ d}

(analogously, for any F ∈ F s
H

(X), we define a map Υr
F

: HX×X
−→H defined by

Υr
F

(d) =
∨
{F (ν) : ν ∈HX,Υr

ν ≤ d}.)

Theorem 6.2. Every stratified H-convergence semigroup with identity element e gives rise to a stratified H-quasi-
uniform convergence space. That is, every stratifiedH-convergence semigroup with identity element e is SH-QUCS-
uniformizable.

The proof of this theorem follows from the following construction, for details see Theorem 5.6[3].
If we define the map Ul : F s

H
(X × X) −→H for any G ∈ F s

H
(X × X) by

Ul(G) =
∨
{limF (e) : F ∈ F s

H
(X),Υl

F
≤ G},

then the pair
(
X,Ul

)
is a stratified left H-quasi-uniform convergence space (analogously, (X,Ur) is also a

stratified right H-quasi-uniform convergence space, where

Ur(G) =
∨
{limF (e) : F ∈ F s

H
(X),Υr

F
≤ G}.)

Definition 6.3. A triple (X, ·,U) is called a stratified H-quasi-uniform convergence semigroup if the following
conditions are fulfilled:

(QUCG1) (X, ·) is a semigroup;
(QUCS2) (X,U) is a stratified H-quasi-uniform convergence space;
(QUCS3) The mapping m : X × X −→ X, (x, y) 7→ xy is quasi-uniformly continuous,

where the product stratifiedH-quasi-uniform convergence structureU×U on X×X is given by: U×U(F ) =
U

(
(pr1 × pr1)⇒(F )

)
∧ U

(
(pr2 × pr2)⇒(F )

)
, ∀F ∈ F s

H
((X × X) × (X × X)).

Proposition 6.4. Every principal stratified H-quasi-uniform convergence semigroup is a stratified H-convergence
semigroup.

Proof. This follows from Proposition 7.6[1].

Proposition 6.5. Let (X, ·) be a commutative and cancelation semigroup, and letU be a stratifiedH-quasi-uniformity
on X such that for all d ∈HX×X and for all x, y, z ∈ X, the property that d(x, y) ≤ d(xz, yz) holds. Then (X, ·, limUU )
is a stratified H-convergence semigroup.

Proof. It follows from Lemma 5.5[24] that (X,UU) is a principal stratified H-quasi-uniform convergence
space. Now it remains to be shown that (X, ·,UU) is a principal stratified H-quasi-uniform convergence
semigroup, i.e., we show that for any F ,G ∈ F s

H
(X × X): UU(F ) ∧ UU(G) ≤ UU ((m ×m)⇒(F × G)).

To prove this, let F ,G ∈ F s
H

(X × X). Then
UU ((m ×m)⇒(F × G)) =

∧
d∈HX×X (U(d)→ (m ×m)⇒(F × G)(d))

≥
∧

d∈HX×X

(∨{U(d1) ∧U(d2)|d1, d2 ∈H
X×X, d1 ◦ d2 ≤ d}

)
︸                                                        ︷︷                                                        ︸→ (m ×m)⇒(F × G)(d)

 (])

Upon using the stated property, for any (x, y), (x′, y′) ∈ X ×X, (d1 ⊗ d2)
(
(x, y), (x′, y′)

)
= d1(x, x′) ∧ d2(y, y′) ≤

d1(xy, x′y) ∧ d2(x′y, x′y′) ≤ d1 ◦ d2(xy, x′y′) ≤ d(xy, x′y′) = d(m(x, y),m(x′, y′)) = (m × m)←(d)
(
(x, y), (x′, y′)

)
;

note that x′y ∈ X as (X, ·) is a semigroup. We have
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{U(d1) ∧U(d2)|d1, d2 ∈H

X×X, d1 ◦ d2 ≤ d}
)

︸                                                        ︷︷                                                        ︸
≤

(∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1 ⊗ d2 ≤ (m ×m)←(d)}

)
(\)

Now using (\) in (]), one obtains that
(]) ≥

∧
d∈HX×X

((∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1 ⊗ d2 ≤ (m ×m)←(d)}

)
→ (m ×m)⇒(F × G)(d)

)
,

that is,

≥
∧

d∈HX×X

(∨{U(d1) ∧U(d2)|d1, d2 ∈H
X×X, d1 ◦ d2 ≤ d}

)
︸                                                        ︷︷                                                        ︸→ (m ×m)⇒(F × G)(d)


≥

∧
d∈HX×X

((∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1 ⊗ d2 ≤ (m ×m)←(d)}

)
→ (m ×m)⇒(F × G)(d)

)
=

∧
d∈HX×X

((∨
{U(d1) ∧U(d2)|d1, d2 ∈HX×X, d1 ⊗ d2 ≤ (m ×m)←(d)}

)
→ (F × G) ((m ×m)←(d))

)
≥

∧
d∈HX×X

∧
d1,d2∈HX×X ,d1⊗d2≤(m×m)←(d) ((U(d1) ∧U(d2))→ (F (d1) ∧ G(d2))

≥
∧

d1,d2∈HX×X ((U(d1) ∧U(d2)→ F (d1)) ∧ (U(d1) ∧U(d2))→ G(d2)) (applying Lemma 2.1(ii) and (iv))
≥

∧
d1∈HX×X (U(d1)→ F (d1)) ∧

∧
d2∈HX×X (U(d2)→ G(d2))

= UU(F ) ∧ UU(G),
showing that UU(F ) ∧ UU(G) ≤ UU ((m ×m)⇒(F × G)), i.e., m : (x, y) 7→ xy is quasi-uniformly continuous.
Hence the result follows from the Proposition 6.4 in conjunction with the Lemma 6.2[24].

7. Conclusion

In this article we have introduced a notion of complete Heyting algebra-valued convergence semigroup,
and presented various basic facts including a wide variety of natural examples in an attempt to develop
a theory on lattice-valued convergence semigroups. One of the interesting problems that received much
attention over the years in the area of classical topological semigroups is the embedding of a topological
semigroup into a topological group(cf. [11, 14, 36, 43]) besides developing the theory itself which have
many interesting and useful applications (cf.[40]). It is an interesting topic to discuss the embedding
problem in our case. Another point we would like to mention here that in Proposition 5.6, we used a
property d(x, y) ≤ d(xz, yz) which leads to a stratifiedH-quasi-uniformity on a commutative and cancelation
semigroup to be a stratified H-convergence semigroup. As pointed out by the referee and we also believe
that it is a nice question whether one can provide some examples of spaces which satisfy this property, and
some spaces which do not. Unfortunately, at this stage we could not worked out such examples, and leave
it as an open question. We intend to look into this question in one of our future papers along with the
embedding problem that we have cited above.
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