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Abstract

We discuss the compatibilities between approach limit structures and group struc-
tures; present some basic facts, provide several natural examples, and include some
characterization theorems. Introducing the notions of approach pre-Cauchy group
and approach Cauchy group, we look at the relationship of these notions with ap-
proach limit group. In particular, we consider uniformization of approach limit
groups.

1. Introduction

The category of convergence approach spaces and contractions CAP [14] is
Cartesian closed and contains the category of convergence spaces CONV as
a simultaneously bireflective and bicoreflective subcategory. In [25] approach
uniform convergence spaces were introduced and in [13] the subcategory of
ultra approach uniform convergence spaces uAUCS was shown to be Carte-
sian closed. In [19, 17] the categories of approach Cauchy spaces and of ultra
approach Cauchy spaces uACS were introduced, the latter being a Carte-
sian closed topological category. As an application of the notion of approach
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convergence space, R. Lowen and B. Windels introduced the notion of conver-
gence approach group [20], and showed that every convergence approach group
gives rise to an approach uniform convergence structure. In [21] approach con-
vergence vector spaces were studied. In 1997, P. Brock and D. C. Kent [3]
introduced the category LTS of limit tower spaces and proved that CAP and
LTS are isomorphic.
Motivated by the preceding developments, we propose a more general definition
of approach limit group. Besides presenting natural examples, we introduce
the notions of approach pre-Cauchy group, approach Cauchy group and their
relationship with approach limit group. Further, we present two constructions
of approach uniform convergence structures for approach limit groups. We
also provide various functorial relations between the categories discussed in
this paper. We arrange our work as follows: In Section 2, we fix the notation
and provide some preliminary theory and definitions. Some basic facts on ap-
proach limit groups including characterization theorems are given in Sections
3 while natural examples are accomodated in Section 4. In Section 5, we study
the uniformization of approach limit groups.

2. Preliminaries

We denote the set of all filters F, G, ... on a set X by F(X). The point filter
of a point x ∈ X is defined by [x] = {A ⊆ X : x ∈ A}. The set F(X) is
ordered by set inclusion, i.e. we write F ≤ G if F ⊆ G.

A limit space [6], (X, q) is a non-void set X together with a mapping q :
F(X) −→ 2X that satisfies the following axioms.
(L1) x ∈ q([x]) for all x ∈ X;
(L2) F ≤ G implies q(F) ⊆ q(G);
(L3) q(F) ∩ q(G) ⊆ q(F ∧ G).
A mapping between two limit spaces (X, q) and (X ′, q′), f : X −→ X ′, is
called continuous if f(q(F)) ⊆ q′(f(F)) for all F ∈ F(X). The category of
limit spaces is denoted by LIM. This category is topological over SET and
Cartesian closed. For two limit structures p, q on a set X we call q finer than
p if idX : (X, q) −→ (X, p) is continuous and we write p ≤ q in this case.

Definition 2.1. [6] Let (X, ·) be a group and (X, q) ∈ |LIM|. We call (X, ·, q)
a limit group if the group operations m : X × X −→ X, (x, y) 	→ xy and
j : X −→ X, x 	→ x−1 are continuous. The category of limit groups and
continuous group homomorphisms is denoted by LIMGRP.

We consider in the sequel a group (X, ·). For F, G ∈ F(X) we define F
G =
m (F × G) and F−1 = j(F). Noting that m (F × G) = {xy|x ∈ F, y ∈ G} =
F 
 G, we have F 
 G = [{F 
 G|F ∈ F, G ∈ G}]. Similarly, we find
F−1 = [{F−1|F ∈ F}], where F−1 = {x−1|x ∈ F}. Throughout the text for a
group (X, ·), we consider e as the identity element.

Lemma 2.2. Let X and Y be groups, F, G, H ∈ F(X) and f : X −→ Y a
group homomorphism, then we have
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(i) F 
 F−1 ≤ [e] and F−1 
 F ≤ [e];
(ii) [x] 
 [x]−1 = [x]−1 
 [x] = [e];
(iii) [x−1] = [x]−1;
(iv) [x · y] = [x] · [y];
(v) (F 
 G) 
 H = F 
 (G 
 H);
(vi) (F−1)−1 = F;
(vii) (F 
 G)−1 = G

−1 
 F
−1;

(viii) [e] 
 F = F 
 [e] = F;
(ix) (F ∧ G)−1 = F−1 ∧ G−1;
(x) (F ∧ G) 
 H = (F 
 H) ∧ (G 
 H);
(xi) f(F 
 G) = f(F) 
 f(G);
(xii) f(F−1) = (f(F))−1.

Hence we can characterize a limit group as follows.

Lemma 2.3. (X, ·, q) is a limit group if and only if (X, q) ∈ |LIM| and the
following axioms are true.
(LM) x ∈ q(F), y ∈ q(G) implies xy ∈ q(F 
 G);
(LI) x ∈ q(F) implies x−1 ∈ q(F−1).

Following an idea introduced in [5], we consider a binary operation � :
[0,∞] × [0,∞] −→ [0,∞] which is commutative and associative such that

0 � α = α,(1)

α �
∧

βk∈K

βk =
∧

βk∈K

(α � βk) , K ⊆ [0,∞].(2)

Note that, as a consequence of (2), the operation � is order-preserving in
both arguments. Moreover � = ∨ (the maximum operation) is the pointwise
smallest such operation.
Thus ([0,∞], �) is a dual quantale in the preceding definition. We consider
in this paper often two such dual quantale operations, �,�, on [0,∞], the
most prominent examples being the sum, α � β = α + β, and the maximum,
α � β = α ∨ β.

Example 2.4. Define for a fixed n ∈ IN the operation �n : [0,∞]× [0,∞] −→
[0,∞] by

α �n β = (αn + βn)1/n.

This example includes the two standard examples � = + for n = 1 and � = ∨
as limn→∞(α �n β) = α ∨ β.

The distributivity property (2) immediately implies the following result.

Lemma 2.5. Let L = [0,∞] and αi, βj ∈ L for i ∈ I, j ∈ J . Then

(
∧
i∈I

αi) � (
∧
j∈J

βj) =
∧

(i,j)∈I×J

(αi � βj).
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Definition 2.6. [3] A �-limit tower space is a pair
(
X, p = (pε)ε∈[0,∞]

)
of a

set X and a family of mappings
(
pε : F(X) −→ 2X

)
ε∈[0,∞]

which satisfies the

following conditions:

(LT1) x ∈ pε ([x]), ∀ε ∈ [0,∞], x ∈ X.
(LT2) F ⊆ G implies pε (F) ⊆ pε (G).

(LT3�) ∀ε, δ ∈ [0,∞], x ∈ pε (F) , x ∈ pδ (G) implies x ∈ pε�δ (F ∧ G).
(LT4) ε ≤ δ implies pδ ≤ pε, i.e., ∀F ∈ F(X), pε (F) ⊆ pδ (F).
(LT5) p∞ is indiscrete, i.e. ∀F ∈ F(X), p∞ (F) = X.
(LT6)

⋂
γ>ε pγ (F) = pε (F), ∀ε, δ ∈ [0,∞],∀F ∈ F(X).

The property (LT6) is called left-continuity. A mapping between two �-limit
tower spaces, f : (X, p) −→ (Y, q) is called continuous if for all ε ∈ [0,∞], and
∀F ∈ F(X), we have f (pε(F)) ⊆ qε (f(F)).

Note that if � = ∨, then the axiom (LT3∨) is equivalent to
(LT3∨′) x ∈ pε (F) , x ∈ pε (G) implies x ∈ pε (F ∧ G).
Let �-LTS denote the category of all �-limit tower spaces and morphisms the
continuous mappings between the objects.

Definition 2.7. [14] We call a pair (X, λ) with a non-void set X and a limit
λ : F(X) −→ [0,∞]X a �-approach limit space if the following axioms are
satisfied.
(AL1) λ([x])(x) = 0 for all x ∈ X;
(AL2) λ(G) ≤ λ(F) whenever F ≤ G;
(AL3�) For all F, G ∈ F(X) we have λ(F ∧ G) ≤ λ(F) � λ(G).
A mapping between two �-approach limit spaces, f : (X, λ) −→ (Y, λ′) is
called a contraction if for all F ∈ F(X) and for all x ∈ X, λ′(f(F))(f(x)) ≤
λ(F)(x).

The category with objects all the �-approach limit spaces and as morphisms
the contractions is denoted by �-ALS. In [14] ∨-approach limit spaces are
called convergence approach spaces and in [18] +-approach limit spaces are
calle weak convergence approach spaces. Note that (AL3∨) is the strongest
possible condition and that ∨-ALS is a Cartesian closed category [14].

The following two functors provide an isomorphism between the categories
�-LTS and �-ALS [3].

F :

⎧⎨
⎩

� −ALS −→ � − LTS
(X, λ) 	−→ (X, Fλ)

f 	−→ f
,

where x ∈ Fλε(F) ⇐⇒ λ(F)(x) ≤ ε, and

G :

⎧⎨
⎩

� − LTS −→ � − ALS
(X, p) 	−→ (X, Gp)

f 	−→ f
,
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where Gp(F)(x) =
∧{ε ∈ [0,∞] : x ∈ pε(F). Thus in view of Theorem 3.3

[11], we have the following:

Corollary 2.8. The categories �-ALS and �-LTS are isomorphic.

For filters Φ, Ψ ∈ F(X×X) we use the notation Φ−1 = {F−1|F ∈ Φ}, where
F−1 = {(x, y) ∈ X × X|(y, x) ∈ F} and Φ ◦ Ψ = [{F ◦ G|F ∈ Φ, G ∈ Ψ}],
where F ◦ G = {(x, y) ∈ X × X| ∃z ∈ X � (x, z) ∈ F, (z, y) ∈ G}. Note that
only if F ◦ G �= ∅ for all F ∈ Φ, G ∈ Ψ, then Φ ◦ Ψ ∈ F(X). In this case, we
also say that Φ ◦ Ψ exists.

Definition 2.9. A ��-approach uniform convergence structure on a set X is
a mapping Υ : F (X × X) → [0,∞] satisfying the following conditions:
(AUC1) ∀x ∈ X: Υ ([x] × [x]) = 0;
(AUC2) Φ ≤ Ψ implies Υ (Φ) ≥ Υ (Ψ) ;
(AUC3�) Υ (Φ ∧ Ψ) ≤ Υ (Φ) � Υ (Ψ) ;
(AUC4) Υ (Φ) = Υ (Φ−1) ;
(AUC5�) ∀Φ,Ψ ∈ F(X × X), Υ (Φ ◦ Ψ) ≤ Υ (Φ) � Υ (Ψ), whenever Φ ◦ Ψ
exists.
The pair (X, Υ) is called an ��-approach uniform convergence space. If (X, Υ)
and (Y, Υ′) are two ��-approach uniform convergence spaces, then a mapping
f : (X, Υ) −→ (Y, Υ′) is called a uniform contraction if and only if for any Φ ∈
F (X × X), Υ′ ((f × f)(Φ)) ≤ Υ(Φ). The category of ��-approach uniform
convergence spaces and uniform contractions is denoted by ��-AUCS.

For � = � = +, a ��-approach uniform convergence space is known as
approach uniform convergence space while for � = � = ∨, it is known as ultra
approach uniform convergence space [13].

Definition 2.10. [13] A pair
(
X, Υ = (Υε)ε∈[0,∞]

)
, is called a ��-uniform

convergence tower space, where Υε satisfies the following conditions:
(UCTS1) ∀x ∈ X, ∀ε ∈ [0,∞], ẋ × ẋ ∈ Υε;
(UCTS2) Φ ∈ Υε with Ψ ≤ Φ, implies Ψ ∈ Υε;
(UCTS3) if ε ≤ δ, then Υε ≤ Υδ;
(UCTS4) Υ∞ = F (X × X);
(UCTS5�) ∀ε, δ ∈ [0,∞], if Φ ∈ Υε and Ψ ∈ Υδ, then Φ ∧ Ψ ∈ Υε�δ;
(UCTS6) if Φ ∈ Υε, then Φ−1 ∈ Υε;
(UCTS7�) if Φ ∈ Υε, Ψ ∈ Υδ, and Φ ◦ Ψ exists, then Φ ◦ Ψ ∈ Υε�δ;
(UCTC) Υε = ∩ε<δΥδ.
A mapping f : (X, Υ) −→ (Y, Υ′) between ��-uniform convergence tower
spaces is called uniformly continuous if and only if for all ε ∈ [0,∞], (f × f) (Υε) ⊆
Υ′

ε. We denote ��-UCTS the category of ��-uniform convergence tower
spaces as objects and uniformly continuous functions between ��-uniform
convergence tower spaces as morphisms (see also [13], pp. 708).
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Note again that (UCTS7∨) is equivalent to the axiom
(UCTS7∨′) if Φ ∈ Υε, Ψ ∈ Υε, and Φ ◦ Ψ exists, then Φ ◦ Ψ ∈ Υε.

3. ��-limit tower groups and ��-approach limit groups

Definition 3.1. Let (X, ·) be a group and (X, p) ∈ | � −LTS|. We call the
triple (X, ·, p) a ��-limit tower group if and only if the following axioms are
fulfilled:
(LTM�) ∀ε, δ ∈ [0,∞], Fε, Gδ ∈ F(X), ∀x, y ∈ X : x ∈ pε(F) and y ∈ pδ(G)
implies xy ∈ pε�δ(F 
 G).
(LTI) ∀F ∈ F(X), ∀ε ∈ [0,∞], ∀x ∈ X : x ∈ pε(F) implies x−1 ∈ pε(F

−1).

We denote the category with objects the ��-limit tower groups and mor-
phisms the continuous group homomorphisms by ��-LTG.

Lemma 3.2. Let (X, p) ∈ | � � − LTG|. Let F ∈ F(X), ε ∈ [0,∞], and
x ∈ X. Then x ∈ pε(F) ⇔ e ∈ pε ([x−1] 
 F) ⇔ e ∈ pε (F 
 [x−1]).

Proof. Let F ∈ F(X), ε ∈ [0,∞], and x ∈ X. Let x ∈ pε(F). By (LTI), x−1 ∈
p0([x

−1]) and hence, by (LTM�), e = xx−1 ∈ pε�0 ([x−1] 
 F) = pε ([x−1] 
 F).
Conversely, assume that e ∈ pε ([x−1] 
 F). Then since x ∈ p0([x]), again
applying (LMT�) in conjunction with Lemma 2.2(ii) and (v), we have x =
xe ∈ pε�0 ([x] 
 [x−1] 
 F) = pε(F).

Definition 3.3. [20] Let (X, ·) be a group. A triple (X, ·, λ) is called a ��-
approach limit group if and only if the following conditions are fulfilled:
(ALS�) (X, λ) is a �-approach limit space.
(ALM�) ∀F, G ∈ F(X), x, y ∈ X : λ(F 
 G)(xy) ≤ λ(F)(x) � λ(G)(y).
(ALI) ∀F ∈ F(X), x ∈ X : λ(F−1)(x−1) ≤ λ(F)(x).
We denote the category with objects the ��-approach limit groups and con-
tractive homomorphisms as morphisms by ��-ALG.

It is not difficult to show that functors F, G, are isomorphism functors when
restricted to ��-LTG and ��-ALG, i.e. that ��-LTG and ��-ALG are
isomorphic and this is we put in the following

Theorem 3.4. The functors F : �−LTS −→ �−ALS and G : �−ALS −→
�−LTS, restricted in domain and codomain to ��-LTG and ��-ALG, are
isomorphism functors between ��-LTG and ��-ALG.

Lemma 3.5. Let (X, λ) ∈ | � � −ALG|, F ∈ F(X) and x ∈ X.
Then λ(F)(x) = λ ([x−1] 
 F) (e) = λ (F 
 [x−1]) (e).

Proof. This is quite similar to the proof of Lemma 3.2 and is left to the reader.

We present below characterizations of ��-approach limit groups.
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Theorem 3.6. Let (X, ·) be a group and λ be a �-approach limit structure on
X. Then (X, ·, λ) is an ��-approach limit group if and only if the following
axioms are fulfilled:
(1) λ ([e]) (e) = 0.
(2) If F, G ∈ F(X) with F ≤ G, then λ (G) (e) ≤ λ (F) (e).
(3) ∀F, G ∈ F(X), λ (F ∧ G) (e) ≤ λ (F) (e) � λ (G) (e).
(4) λ (F 
 G) (e) ≤ λ (F) (e) � λ (G) (e), ∀ F, G ∈ F(X).
(5) λ (F−1) (e) ≤ λ (F) (e), ∀F ∈ F(X).
(6) ∀F ∈ F(X) and x ∈ X: λ (F) (x) = λ ([x−1] 
 F) (e) = λ (F 
 [x−1]) (e).

Proof. If (X, ·, λ) is a ��-approach limit group, then (1), (2) and (3) are
special cases of (AL1), (AL2) and (AL3�). Items (4) and (5) follow from the
definition of multiplication and inversion for the identity element, while (6)
is just Lemma 3.5. Conversely, assume that (1)-(6) are true. First, we prove
(ALM�). Let F, G ∈ F(X) and x, y ∈ X. Then by using Lemma 2.2 several
times, we have the following:
λ (F 
 G) (xy) = λ ([e 
 (F 
 G)) (xy) = λ ([(xy)−1] 
 (F 
 G)) (e) (by (6))

= λ ([y−1] 
 [x−1] 
 (F 
 G)) (e) = λ

(
[y−1] 


︷ ︸︸ ︷((
[x−1] 
 F

) 
 G
))

(e)

= λ

(︷ ︸︸ ︷((
[x−1] 
 F

) 
 G
)
[y−1]

)
(e) (by (6))

= λ (([x−1] 
 F) 
 (G 
 [y−1])) (e) (by Lemma 2.2(v))
≤ λ ([x−1] 
 F) (e) � λ (G 
 [y−1]) (e) (by (4))
= λ (F) (x) � λ (G) (y) (by (6))
(ALI) Let F ∈ F(X) and x ∈ X. Then
λ (F−1) (x−1) = λ ([x−1]−1 
 F−1) (e) (by (6))

= λ
(
(F 
 [x−1])

−1
)

(e) (by Lemma 2.2(vii))

≤ λ (F 
 [x−1]) (e) (by (5))
= λ (F) (x) (by (6)).

Theorem 3.7. Let (X, ·) be a group and λ′ : F(X) → [0,∞]X be a map such
that the following axioms are fulfilled:
(1) λ′ ([e]) (e) = 0.
(2) If F, G ∈ F(X) with F ≤ G, then λ′ (G) (e) ≤ λ′ (F) (e).
(3) ∀F, G ∈ F(X), λ′ (F ∧ G) (e) ≤ λ′ (F) (e) � λ′ (G) (e).
(4) λ′ (F 
 G) (e) ≤ λ′ (F) (e) � λ′ (G) (e), ∀F, G ∈ F(X).
(5) λ′ (F−1) (e) ≤ λ′ (F) (e), ∀F(X).
Then there exists a unique �-approach limit structure
λ : F(X) → [0,∞]X satisfying λ (F) (e) = λ′ (F) (e), such that (X, ·, λ) is a
(homogeneous) ��-approach limit group.

Proof. Define the map λ : F(X) → [0,∞]X by λ (F) (x) = λ′ ([x]−1 
 F) (e).
Then the result follows from straightforward calculation.
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4. Examples of ��-approach limit groups

Example 4.1 ([14]). For a limit group (X, ·, q) its embedding in ��-ALG,
(X, ·, λq), is an ��-approach limit group. Here,

λq(F)(x) =

{
0, if x ∈ q(F);

∞, otherwise.

Example 4.2. This example generalizes Example 3.2 in [20]. Let X be a
vector space and let ‖ ‖ be a norm with the triangle inequality

‖x + y‖ ≤ ‖x‖ � ‖y‖
for all x, y ∈ X. Note that for all norms, no matter what triangular inequality
we have, we obtain a ∨-approach limit space. A typical example for the case
� = ∨ is the space of p-adic numbers that can be seen in [12]. Also, further
examples are given by commutative Hausdorf topological groups, where the
neighborhood filter of the zero element has a base consisting of subgroups, see
e.g. [22].

Every norm induces a metric d(x, y) = ‖x − y‖ for all x, y ∈ X. Hence we
can consider such a normed space as an approach space [16] with limit function

λ‖ ‖(F)(x) =
∨

�≥� ultra

∨
U∈�

∧
z∈U

‖x − z‖.

If we define for ε ≥ 0 the ε-neighborhood filter at x by Ux
ε = [{B(x, α) : α > ε}]

with the balls B(x, α) = {y ∈ X : ‖x − y‖ ≤ α}, then it is not difficult to
show that

U
x
ε =

∧
λ‖ ‖(�)(x)≤ε

F.

Hence this concept of neighborhood filter coincides with the ε-neighborhood
filter introduced in [8, 9]. We therefore have λ(F)(x) ≤ ε ⇐⇒ F ≥ U

x
ε . In case

of a normed space we can then show that λ(F)(x) ≤ ε and λ(G)(y) ≤ δ implies
λ(F⊕G)(x + y) ≤ ε � δ. In fact, it suffices to prove that Ux

ε ⊕U
y
δ ≥ U

x+y
ε�δ . To

show this, let U ∈ U
x+y
ε�δ . Then there is α > ε� δ such that B(x+y, α) ⊆ U . If

z ∈ B(x, ε)⊕B(y, δ), then z = u+v with ‖x−u‖ ≤ ε and ‖y−v‖ ≤ δ. It follows
from this that ‖(x + y)− (u + v)‖ ≤ ‖x− u‖� ‖y− v‖ ≤ ε � δ < α, and hence
z ∈ B(x+y, α). We have thus shown that B(x, ε)⊕B(y, δ) ⊆ B(x+y, α) ⊆ U
and therefore U ∈ Ux

ε ⊕ U
y
δ . Hence

(
X, +, λ‖ ‖

)
a �∨-approach limit group.

Example 4.3. For (X, λ) ∈ |∨-ALS| Lowen and Windels in [20] define

Aλ(x) = {ϕ : ∀F ∈ F(X) :
∧
F∈�

∨
y∈�

ϕ(y) ≤ λ(F)(x)}.

This implies, in particular, for F ∈ F(X) and for x ∈ X that∨
ϕ∈Aλ(x)

∧
F∈�

∨
y∈F

ϕ(y) ≤ λ(F)(x).
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They further define the approach limit λ⊗ on X × X by

λ⊗(Φ)(a, b) =
∨

ϕa∈Aλ(a)

∨
ϕb∈Aλ(b)

∧
φ∈Φ

∨
(x,y)∈φ

(ϕa(x) + ϕb(y)).

For technical reason we use the symbol ⊕ for the group operation. Then the
additive group (X,⊕), is a Lowen-Windels approach convergence group if

⊕ :

{
(X × X, λ⊗) −→ (X, λ)

(x, y) 	−→ x ⊕ y

and − : (X, λ) −→ (X, λ), x 	−→ −x are contractions. In particular then

λ(F ⊕ G)(x ⊕ y) ≤ λ⊗(F × G)(x, y) ≤ λ(F)(x) + λ(G)(y).

Hence (X,⊕, λ) is a +∨-approach limit group. Because every approach group
in the definition of Lowen-Windels is an approach convergence group, also
Lowen-Windels approach groups are +∨-approach limit groups.

Example 4.4. Let μ be the Lebesgue measure on [0, 1] and let further τ be
the usual (metric) topology on [0, 1]. Denote further X = {f : [0, 1] −→
� : f measurable} and define the pointwise (group) operations on X by
(f ⊕ g)(x) = f(x) ⊕ g(x) and (−f)(x) = −f(x). For F ∈ F(X) and f ∈ X we
define

λ(F)(f) =
∧

{α ∈ [0, 1] : ∃A ⊆ [0, 1], μ(A) ≤ α, F(x)
τ→ f(x),∀x /∈ A}.

Then (X,⊕, λ) is a +-approach limit space. We only prove condition (AL3+).
If λ(F)(f) < δ and λ(G)(f) < γ, then there are α < δ, β < γ, A, B ⊆ [0, 1] with

μ(A) < α, μ(B) < β such that F(x)
τ→ f(x) for all x /∈ A and G(x)

τ→ f(x)
for all x /∈ B. Then μ(A ∪ B) < α + β < δ + γ and for all x /∈ A ∪ B we have

(F ∧ G)(x) = F(x) ∧ G(x)
τ→ f(x). Hence λ(F ∧ G)(f) < δ + γ.

We further consider addition. We have if λ(F)(f) < δ and λ(G)(g) < γ that
there are α < δ, β < γ and A, B ⊆ [0, 1] with μ(A) < α, μ(B) < β such that

F(x)
τ→ f(x) for all x /∈ A and G(x)

τ→ g(x) for all x /∈ B. Then for all x /∈
A∪B we conclude that (F⊕G)(x) = F(x)⊕G(x)

τ→ f(x)⊕g(x) = (f ⊕g)(x).
Because μ(A∪B) ≤ μ(A)+μ(B) < α+β < δ+γ we conclude λ(F⊕G) < δ+γ.
Contractivity of the inverse is easy and not presented. Hence (X,⊕, λ) is a
++-approach limit group.
Note that λ(F)(f) = 0 if and only if F → f μ-almost everywhere. Note further
that 0 ≤ λ(F)(f) ≤ μ([0, 1]) = 1 in this example.

Example 4.5. For two ∨-approach limit spaces (X, λX), (Y, λY ) we denote
C(X, Y ) = {h : X −→ Y : h contraction} and for f, g ∈ C(X, Y ) we define
the mappings fg and f−1 pointwise by (fg)(x) = f(x)g(x) and f−1(x) =
(f(x))−1 with the group operations in Y . It is not difficult to show that fg and
f−1 are contractions and that (C(X, Y ), ·) is a group. We will show that this
group, endowed with the natural function space structure of ∨-ALS [14] is an



204 T. M. G. Ahsanullah and Gunther Jäger

∨∨-approach limit group. With the evaluation mapping ev : C(X, Y )×X −→
Y, (f, x) 	−→ f(x) we define for F ∈ F(C(X, Y )) and f ∈ C(X, Y ) the interval

L∨ (F, f) = {α ∈ [0,∞] : ∀H ∈ F(X), x ∈ X, λY (ev(F × H))(f(x)) ≤ λX(F)(x) ∨ α}
and with this then λc(F)(f) =

∧L∨ (F, f). It is shown in Theorem 4.2 [14]
that (C(X, Y ), λc) ∈ | ∨ −ALS|. We show that it is also a ∨∨-approach
limit group with the group operations defined above. We first show that the
multiplication in C(X, Y ) is a contraction. To this end, let H ∈ F(X) and
let x ∈ X. If for F, G ∈ F(C(X, Y )) and f, g ∈ C(X, Y ) we have that α ∈
L∨ (F, f) and β ∈ L∨ (G, g), then λY (ev(F × H))(f(x)) ≤ λX(H)(x) ∨ α and
λY (ev(G × H))(g(x)) ≤ λX(H)(x) ∨ β. It is not difficult to show that ev(F ×
H) 
 ev(G × H) ≤ ev((F 
 G) × H). Hence we conclude

λY (ev((F 
 G) × H))((fg)(x)) ≤ λY (ev(F × H) 
 ev(G × H))((fg)(x))

≤ λY (ev(F × H))(f(x)) ∨ λY (ev(G × H))(g(x))

≤ λX(H)(x) ∨ α ∨ λX(H)(x) ∨ β

= λX(H)(x) ∨ (α ∨ β).

Hence α ∨ β ∈ L∨ (F 
 G, fg). Using Lemma 2.5, we conclude that

λc(F 
 G)(fg) ≤ (
∧

α∈L∨(�,f)

α) ∨ (
∧

β∈L∨(� ,g)

β) = λc(F)(f) ∨ λc(G)(g).

To show that the inverse f−1 is a contraction, let α ∈ L∨ (F, f). Then for all
H ∈ F(X), x ∈ X we have λY (ev(F × H))(f(x)) ≤ λX(H)(x) ∨ α. It is not
difficult to show that ev(F−1 × H) = (ev(F × H)−1) and hence we conclude

λY (ev(F−1 × H))(f−1(x)) ≤ λY (ev((F × H)−1)(f(x)) ≤ λX(H)(x) ∨ α,

and α ∈ L∨ (F−1, f−1). From this it follows that λc(F
−1)(f−1) ≤ λc(F)(f) and

therefore (C(X, Y ), ·, λc) is a ∨∨-approach limit group.
Note that if (X, λX) and (Y, λY ) are ∨-approach limit groups and if Y is

commutative, then the set Ch(X, Y ) of contractive group homomorphisms is
a subgroup of C(X, Y ). Hence, (Ch(X, Y ), ·, λc) is a ∨∨-approach limit group
using the structure λc. However, this function space does not make ∨-ALG
Cartesian closed. This is due to the fact that the evaluation mapping, ev :
Ch(X, Y ) × X −→ Y, (f, x) 	−→ f(x) is not a group homomorphism.

5. Relationship between approach pre-Cauchy groups,
��-approach Cauchy groups and ��-approach limit groups,

and uniformization of ��-approach limit groups

Definition 5.1. A map Γ : F(X) −→ [0,∞] is called an approach pre-Cauchy
structure on X if and only if the following axioms are fulfilled:
(PACS1) ∀x ∈ X: Γ([x]) = 0;
(PACS2) ∀F, G ∈ F(X) with F ≤ G, Γ(G) ≤ Γ(F),
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and the pair (X, Γ) is called an approach pre-Cauchy space. It is called a �-
approach Cauchy space if it additionally fulfills the following Cauchy condition:
(AChy�) ∀F, G ∈ F(X), if F ∨ G exists, then Γ (F ∧ G) ≤ Γ(F) � Γ(G).

A mapping f : X −→ Y between approach pre-Cauchy spaces (resp. be-
tween �-approach Cauchy spaces) (X, Γ) and (Y, Γ′) is called a Cauchy con-
traction if and only if ∀F ∈ F(X), Γ′ (f(F)) ≤ Γ(F). The categories of approach
pre-Cauchy spaces (resp. �-approach Cauchy spaces) and Cauchy contractions
as morphisms are denoted by APRCHYS (resp. �-ACHYS).

Let (X, ·, λ) ∈ | � � −ALG|. Define for F ∈ F(X), Γl(F) = λ(F−1 
 F)(e).
We call Γl(F) the left-Cauchy degree of F.

Proposition 5.2. If (X, ·, λ) ∈ |∨�−ALG|, then (X, Γl) ∈ |APRCHYS|.
If � = � = ∨, then (X, Γl) ∈ | ∨ −ACHYS|.
Proof. (PACS1) Γl([x]) = λ([x]−1 
 [x])(e) = λ([e])(e) = 0;
(PACS2) F ≤ G implies Γl(F) = λ(F−1 
 F)(e) ≥ λ(G−1 
 G)(e) = Γl(G);
(PACS3∨) If F ∨ G exists, then it can be shown that F 
 G

−1 ≤ [e]. Hence

Γl(F) ∨ Γl(G) = λ(F−1 
 F)(e) ∨ λ(G−1 
 G)(e)

(ALM∨)

≥ λ(F−1 
 F 
 G
−1 
 G)(e) ≥ λ(F−1 
 G)(e)

Similarly, one can show that Γl(G) ∨ Γl(F) ≥ λ(G−1 
 F)(e). Hence

Γl(F ∧ G) = λ((F ∧ G)−1 
 (F ∧ G))(e)

= λ((F−1 
 F) ∧ (F−1 
 G) ∧ (G−1 
 F) ∧ (G−1 
 G))(e)

≤ λ(F−1 
 F)(e) ∨ λ(F−1 
 G)(e) ∨ λ(G−1 
 F)(e) ∨ λ(G−1 
 G)(e)

≤ Γl(F) ∨ (Γl(F) ∨ Γl(G)) ∨ (Γl(F) ∨ Γl(G)) ∨ Γl(G).

= Γl(F) ∨ Γl(G).

Definition 5.3. Let Γ : F(X) → [0,∞] be a approach pre-Cauchy struc-
ture (resp. a �-approach Cauchy structure) on a group (X, ·), then the triple
(X, ·, Γ) is called a �-approach pre-Cauchy group (resp. a ��-approach Cauchy
group) if and only if the following axioms are satisfied:
(ACGM�) ∀F, G ∈ F(X), Γ (F 
 G) ≤ Γ(F) � Γ(G);
(ACGI) ∀F ∈ F(X), Γ(F−1) ≤ Γ(F)).

Note that (ACGM�) and (ACGI) are equivalent to the single condition:
(ACGM�′) ∀F ∈ F(X), Γ (F 
 G−1) ≤ Γ(F) � Γ(G).
In fact, if F ∈ F(X), then Γ(F−1) = Γ ([e] 
 F−1) ≤ Γ([e]) � Γ(F) = 0 �

Γ(F) = Γ(F), and if F, G ∈ F(X), then Γ (F 
 G) = Γ
(
F 
 G−1−1

)
≤ Γ(F) �

Γ(G−1) ≤ Γ(F) � Γ(G). Conversely, if F, G ∈ F(X), then Γ (F 
 G−1) ≤
Γ(F) � Γ(G−1) ≤ Γ(F) � Γ(G).
The category of �-approach pre-Cauchy groups (resp. ��-approach Cauchy
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groups) and contractive group homomorphisms is denoted by �-APRCHYG
(resp. ��-ACHYG).

Proposition 5.4. If (X, ·, Γ) ∈ | ∨ −APRCHYG|, then it fulfills the ∨-
approach Cauchy condition (AChy∨) and hence is ∈ | ∨ ∨ −ACHYG|.
Proof. If F, G ∈ F(X) such that F ∨ G exists, then F ∧ G ≥ F 
 G−1 
 G.
Then using (PACS2) and (ACGM∨′), we get Γ (F ∧ G) ≤ Γ (F 
 G−1 
 G) ≤
Γ (F 
 G−1) ∨ Γ(G) ≤ Γ(F) ∨ Γ(G) ∨ Γ(G) = Γ(F) ∨ Γ(G).

Proposition 5.5. If (X, ·, Γ) ∈ | ∨ −APRCHYG|, then (X, ·, λΓ) | ∨ ∨ −
ALG|.
Proof. Every approach pre-Cauchy space (X, Γ) gives rise to a ∨-approach
limit structure λΓ : F(X) → [0,∞]X defined by λΓ(F)(x) = Γ (F ∧ [x]) ([18]).
It is then sufficient to verify the condition (ALM∨), while the condition (ALI)
is easy. If F, G ∈ F(X) and x, y ∈ X, then by the Lemma 2.2(iv) and (v), we
have
(F 
 G

−1) ∧ [xy−1] = (F 
 G−1) ∧ ([x] 
 [y]−1) ≥ (F ∧ [x]) 
 (G−1 ∧ [y]−1).
Upon using (PACS2), we get
Γ ((F 
 G−1) ∧ ([x] 
 [y]−1)) ≤ Γ ((F ∧ [x]) 
 (G−1 ∧ [y]−1))
= Γ

(
(F ∧ [x]) 
 (G ∧ [y])−1) (by Lemma 2.2(vii))

≤ Γ (F ∧ [x]) ∨ Γ (G ∧ [y]) (by using condition (ACGM∨′))
= λΓ(F)(x) ∨ λΓ(G)(y).
Consequently, we have
λΓ (F 
 G−1) (xy−1) = Γ ((F 
 G−1) ∧ [xy−1]) ≤ λΓ(F)(x) ∨ λΓ(G)(y).

Proposition 5.6. If f : (X, ·, Γ) −→ (Y, ·, Γ′) is a contractive group homo-
morphism between ∨-approach pre-Cauchy groups, then f : (X, ·, λΓ) −→ (Y, ·, λΓ′)
is a contraction.

We deduce from Propositions 5.5 and 5.6, the following

Corollary 5.7.

T :

⎧⎨
⎩

∨ −PRACHYG −→ ∨∨ −ALG
(X, ·, Γ) 	−→ (X, ·, λΓ)

f 	−→ f
,

is a functor.

Now we are going to introduce a compatible finest ��-approach uniform
convergence structure which has for all F ∈ F(X) the same left-Cauchy degree
as (X, ·, λ).

We define the following mapping Λl : F(X × X) −→ [0,∞] by

Λl(Φ) =
∧

Φ≥(�1×�1 )∧···∧(�n×�n )

Γl(F1) � · · ·� Γl(Fn).
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Theorem 5.8. If (X, ·, λ) ∈ | � � − ALG|, then (X, Λl) is a ��-approach
uniform convergence space.

We use the following results from e.g. [6, 7].

Lemma 5.9. (i) Let Φ, Ψ ∈ F(X × X), Φ ≥ Φ1, Ψ ≥ Ψ1 and let Φ ◦ Ψ
exist. Then also Φ1 ◦ Ψ1 exists.
(ii) If (

∧
i∈I Φi) ◦ (

∧
j∈J Ψj) exists, then there is (i, j) ∈ I × J such that

Φi ◦ Ψj exists.

Proof of Theorem 5.8. (AUC1): We have Λl([x] × [x]) ≤ Γl([x]) = 0.
(AUC2) follows as Φ ≥ (F1 × F1) ∧ · · · ∧ (Fn × Fn) implies Ψ ≥ (F1 × F1) ∧
· · · ∧ (Fn × Fn) for Φ ≤ Ψ.
(AUC3�) follows directly with Lemma 2.5.
(AUC4) follows from the fact that Φ ≥ (F1 × F1) ∧ · · · (Fn × Fn) implies
Φ−1 ≥ ((F1 × F1) ∧ · · · ∧ (Fn × Fn))−1 = (F1 × F1)

−1 ∧ · · · (Fn × Fn)−1.
(AUC5�) In view of the preceding lemma, we conclude from Φ ≥ (F1 × F1) ∧
· · · (Fn × Fn) and Ψ ≥ (G1 × G1) ∧ · · · (Gm × Gm) and Φ ◦ Ψ exists that
((F1 × F1) ∧ · · · (Fn × Fn)) ◦ ((G1 × G1) ∧ · · · (Gm × Gm)) exists and is =∧

(i,j)∈K(Fi×Fi)◦(Gj ×Gj), where K is the set of all (i, j) such that (Fi×Fi)◦
(Gj × Gj) exists. According to results of W. Gähler [7] we have that, in case
of existence, (Fi ×Fi) ◦ (Gj ×Gj) = Fi ×Gj and that Fi ∨Gj exists. Hence in
this case Γl(Fi ∧ Gj) ≤ Γl(Fi) � Γl(Gj). We conclude from this

Λl(Φ) � Λl(Ψ) ≥
∧

Φ◦Ψ≥�(i,j)∈K �i×� j ≥
�

(i,j)∈K(�i∧� j )×(�i∧� j )

∨
(i,j)∈K

Γl(Fi ∧ Gj)

≥
∧

Φ◦Ψ≥(�1×�1 )∧···∧(�p×�p )

Γl(H1) � · · ·� Γl(Hp)

= Λl(Φ ◦ Ψ).

For a ��-approach uniform convergence space (X, Λ) we define, for F ∈
F(X) and x ∈ X the limit map by λΛ(F)(x) = Λ (F × [x]). It is straightforward
to see that then (X, λΛ) is an �-approach limit space.

Lemma 5.10. Let (X, ·, λ) be a ∨∨-approach limit group. Then λ = λΛl
.

Proof. Let F ∈ F(X) and x ∈ X. If λ(F)(x) ≤ δ, then λ(F ∧ [x])(x) ≤
λ(F)(x)∨ λ([x])(x) ≤ δ ∨ 0 = δ. Hence, by (ALI), λ((F∧ [x])−1)(x−1) ≤ δ and
with (ALM∨) we conclude

Γl(F ∧ [x]) = λ((F ∧ [x]) 
 (F ∧ [x])−1)( e︸︷︷︸
=xx−1

) ≤ λ(F ∧ [x])(x) ∨ λ((F ∧ [x])−1)(x−1) ≤ δ.

Hence λΛl
(F)(x) = Λl(F × [x]) ≤ Γl(F ∧ [x]) ≤ δ.

Conversely, let λΛl
(F)(x) ≤ δ. Then Λl(F × [x]) ≤ δ. It can be shown that
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F×[x] ≥ (F1×F1)∧· · ·∧(Fn×Fn) implies [x−1]
F ≥ (F−1
1 
F1)∧· · ·∧(F−1

n 
Fn)
and hence

λ([x−1] 
 F)(e) ≤ λ(F−1
1 
 F1)(e) ∨ · · · ∨ λ(F−1

n 
 Fn)(e) = Γl(F1) ∨ · · · ∨ Γl(Fn).

This implies

δ ≥
∧

�×[x]≥(�1×�1 )∧···∧(�n×�n )

Γl(F1) ∨ · · · ∨ Γl(Fn) = λ([x−1] 
 F)(e) = λ(F)(x).

For a ��-approach uniform convergence space (X, Λ) we define the Cauchy
grade of a filter [17] by ΓΛ(F) = Λ(F × F). Then (X, ΓΛ) is a �-approach
Cauchy space (see also [13]).

Lemma 5.11. Let (X, ·, λ) be an ��-approach limit group. Then Γl = ΓΛl
.

Proof. Let Γl(F) ≤ δ. Then ΓΛl
(F) = Λl(F × F) ≤ Γl(F) ≤ δ. Conversely, let

ΓΛl
(F) ≤ δ. Then Λl(F × F) ≤ δ. It can be shown that

F×F ≥ (F1×F1)∧· · ·∧(Fn×Fn) implies F
−1
F ≥ (F−1

1 
F1)∧· · ·∧(F−1
n 
Fn).

Hence Γl(F) = λ(F−1 
 F)(e) ≤ λ
(
(F−1

1 
 F1) ∧ · · · ∧ (F−1
n 
 Fn)

)
≤ λ(F−1

1 
F1)(e)�· · ·�λ(F−1
n 
Fn)(e) = Γl(F1)�· · ·�Γl(Fn) and we conclude

δ ≥ Λl(F × F) ≥ Γl(F).

Lemma 5.12. Let (X, ·, λ) ∈ | � � − ALG| and let Λ be a ��-approach
uniform convergence structure on X with ΓΛ = Γl. Then Λ ≤ Λl.

Proof. This follows from Γl(F) = Λ (F × F) and the axioms (AUC3�) and
(AUC2).

Lemma 5.13. Let (X, λ), (Y, η) ∈ | � � − ALG| and let f : X −→ Y be a
group homomorphism. Then f : (X, λ) −→ (Y, η) is a contraction if and only
if f : (X, Λλ

l ) −→ (Y, Λη
l ) is a uniform contraction.

Proof. Let first f : (X, λ) −→ (Y, η) be a contraction and let Λλ
l (Φ) ≤ δ. If

Φ ≥ (F1 × F1) ∧ · · · ∧ (Fn × Fn), then (f × f)(Φ) ≥ (f(F1) × f(F1)) ∧ · · · ∧
(f(Fn)× f(Fn)). Moreover, since � preserves order, we have by using Lemma
2.2(xi),

Γλ
l (F1) � · · ·� Γλ

l (Fn)

= λ(F−1
1 
 F1)(eX) � · · ·� λ(F−1

n 
 Fn)(eX)

≥ η(f(F−1
1 
 F1))(f(eX)) � · · ·� η(f(F−1

n 
 Fn))(f(eX))

= η(f(F−1
1 ) 
 f(F1))(eY ) � · · ·� η(f(F−1

n ) 
 f(Fn))(eY )

= Γη
l (f(F1)) � · · ·� Γη

l (f(Fn)).
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Hence we conclude

Λη
l ((f × f)(Φ))

≤
∧

(f×f)(Φ)≥(f(�1 )×f(�1 ))∧···∧(f(�n )×f(�n ))

Γη
l (f(F1)) � · · · � Γη

l (f(Fn))

≤
∧

Φ≥(�1×�1 )∧···∧(�n×�n )

Γλ
l (F1) � · · · � Γλ

l (Fn) = Λλ
l (Φ)

and f : (X, Λλ
l ) −→ (Y, Λη

l ) is a uniform contraction.
Conversely, let f : (X, Λλ

l ) −→ (Y, Λη
l ) be a uniform contraction. Then

λ(F)(x) = λΛλ
l
(F)(x) = Λλ

l (F × [x])

≥ Λη
l (f(F) × [f(x)]) = λΛη

l
(f(F))(f(x)) = η(f(F))(f(x))

and f : (X, λ) −→ (Y, η) is a contraction.

In view of the Theorem 5.8 and Lemma 5.13, we have the following

Corollary 5.14.

H :

⎧⎨
⎩

� � −ALG −→ � � −AUCS
(X, ·, λ) 	−→ (X, Λl)

f 	−→ f
,

is a functor.

In the rest of the section, we consider the mapping ωl : X×X −→ X, (x, y) 	→
x−1y. Based on this mapping, we show that every ��-approach limit group
gives rise to a ��-approach uniform convergence structure. Note that if
� = � = +, then with a slight modification, the Theorem 5.16 below co-
incides with Proposition 6.9 [20].

The following lemma follows by easy algebraic manipulations.

Lemma 5.15. Let (X, ·) be a group. Then for all Φ, Ψ ∈ F(X × X):
(a) ωl (Φ ∧ Ψ) = ωl (Φ) ∧ ωl (Ψ);
(b) ωl (Φ × Ψ) = Φ−1 
 Ψ;
(c) ωl (Φ

−1) = (ωl (Φ))−1 ;
(d) ωl (Φ) 
 ωl (Ψ) ≤ ωl (Φ ◦ Ψ);
(e) f (ωl(Φ)) = ωl ((f × f)(Φ)).

Let (X, ·, λ) be a ��-approach limit group. For Φ ∈ F(X × X) we define
Λ′

l : F(X × X) −→ [0,∞] by Λ′
l(Φ) = λ(ωl(Φ))(e).

Theorem 5.16. Let (X, ·, λ) ∈ |��−ALG|. Then (X, Λ′
l) is a ��-approach

uniform convergence space.
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Proof. (AUC1) follows from ωl([x] × [x]) = [x]−1 
 [x] = [e].
(AUC2) If Φ ≤ Ψ then ωl(Φ) ≤ ωl(Ψ) and hence Λ′

l(Φ) = λ(ωl(Φ))(e) ≥
λ(ωl(Ψ))(e) = Λ′

l(Ψ).
(AUC3�) Λ′

l(Φ∧Ψ) = λ(ωl(Φ∧Ψ))(e) = λ(ωl(Φ)∧ωl(Ψ))(e) ≤ λ(ωl(Φ))(e)�
λ(ωl(Ψ))(e) = Λ′

l(Φ) � Λ′
l(Ψ).

(AUC4) Λ′
l(Φ

−1) = λ(ωl(Φ
−1))(e) = λ(ωl((Φ))−1)(e) ≤ λ(ωl(Φ))(e) = Λ′

l(Φ).
(AUC5�) Λ′

l(Φ ◦Ψ) = λ(ωl(Φ ◦Ψ))(e) ≤ λ(ωl(Φ)
ωl(Ψ))(e) ≤ λ(ωl(Φ))(e) �
λ(ωl(Ψ))(e) = Λ′

l(Φ) � Λ′
l(Ψ).

The following example shows that the preceding uniformization Λ′
l is quite

natural.

Example 5.17. We consider a normed vector space (X, ‖ · ‖) and the ∨-ALS-
structure λ = λ‖ ‖ as in Example 4.2. For the uniformization Λ′

l we obtain

Λ′
l(Φ) = λ(ωl(Φ))(0) ≤ ε

⇐⇒ ωl(Φ) ≥ U
0
ε

⇐⇒ ∀φ ∈ Φ∃α > ε : ωl(φ) ⊆ B(0, α)

⇐⇒ ∀φ ∈ Φ∃α > ε : y ∈ ωl(φ) ⇒ ‖y‖ ≤ α

⇐⇒ ∀φ ∈ Φ∃α > ε : (a, b) ∈ φ ⇒ ‖a − b‖ ≤ α

⇐⇒ ∀φ ∈ Φ∃α > ε : Nα = {(a, b) : ‖a − b‖ ≤ α} ⊆ φ.

Hence, if we define the ε-entourage filter Nε = [{Nα : α > ε}] with Nα =
{(x, y) : ‖x − y‖ ≤ α}, then we have Λ′

l(Φ) ≤ ε ⇐⇒ Φ ≥ Nε.

Lemma 5.18. Let (X, ·, λ) ∈ | � � −ALG|. Then λ = λΛ′
l
.

Proof. Let F ∈ F(X) and x ∈ X. Then
λΛ′

l
(F)(x) = Λ′

l(F × [x]) = Λ′
l([x] × F) = λ(ωl([x] × F))(e) = λ([x] 
 F)(e) =

λ([x−1] 
 F)(e) = λ(F)(x).

Lemma 5.19. Let (X, ·, λ) ∈ | � � −ALG|. Then Γl = ΓΛ′
l
.

Proof. ΓΛ′
l
(F) = Λ′

l(F × F) = λl(F
−1 
 F)(e) = Γl(F).

Corollary 5.20. Let (X, ·, λ) ∈ | � � −ALG|. Then Λ′
l ≤ Λl.

Lemma 5.21. Let (X, λ), (Y, η) ∈ | � � − ALG| and let f : X −→ Y be a
group homomorphism. Then f : (X, λ) −→ (Y, η) is a contraction if and only

if f : (X, Λ
′λ
l ) −→ (Y, Λ

′η
l ) is a uniform contraction.

Proof. Let f : (X, λ) −→ (Y, η) be a contractive group homomorphism and Φ ∈
F (X × X). Then Λ

′λ
l (Φ) = λ(ωl(Φ))(eX) ≥ η(f(ωl(Φ)))(eY ). Hence in view

of Lemma 5.15(e), we have Λ
′λ
l (Φ) ≥ η(ωl((f ×f)(Φ)))(eY ) = Λ

′η
l ((f ×f)(Φ)).

To show the converse, assume that f : (X, Λ
′λ
l ) −→ (Y, Λ

′η
l ) is a uniform con-

traction. Let F ∈ F(X) and x ∈ X. Then

λ(F)(x) = λΛ′
l
λ(F)(x) = Λ′

l
λ(F×[x]) ≥ Λ′

l
η ((f × f) (F × [x])) = Λ′

l
η (f(F) × [f(x)])

= η (ωl (f(F) × [f(x)])) (eY ) = η ((f(F))−1 
 [f(x)]) (eY ) = η (f(F)) (f(x)).
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In view of the Theorem 5.16 and Lemma 5.21, we deduce the following

Corollary 5.22.

V :

⎧⎨
⎩

� � −ALG −→ � � −AUCS
(X, ·, λ) 	−→ (X, Λ′

l)
f 	−→ f

,

is a functor.

Let
(
X, ·, p = (pε)ε∈[0,∞]

)
be a ��-limit tower group. Define for Φ ∈ F (X × X),

Ωl (Φ) =
∧{ε ∈ [0,∞] : e ∈ pε (ωl (Φ))}.

Theorem 5.23. If
(
X, ·, p = (pε)ε∈[0,∞]

)
is a ��-limit tower group, then (X, Ωl)

is a ��-approach uniform convergence space.

Proof. Since Ωl = (Λ′
l)

λpε , the result follows from the Theorems 3.4 and 5.16.

Proposition 5.24. Let
(
X, ·, p = (pε)ε∈[0,∞]

)
∈ |��−LTG|. Then pε = pεΩl

.

Proof. We show for any F ∈ F(X), pε(F) = pεΩε
l
(F). Let x ∈ pεΩε

l
(F). Then

[x] × F ∈ Ωε
l , implying Ωl ([x] × F) ≤ ε. This yields that

∧{α ∈ [0,∞] :
e ∈ pα (ωl ([x] × F))} ≤ ε. This means that for all α > ε, e ∈ pα (ωl ([x] × F)),
which in turn gives that e ∈ ⋂

α>ε pα (ωl ([x] × F)) = pε (ωl ([x] × F)) = pε ([x−1] 
 F).
It then follows from Lemma 3.2 that x ∈ pε(F). Converse follows similarly.

Corollary 5.25. Let
(
X, ·, p = (pε)ε∈[0,∞]

)
∈ |��−LTG|. Then

(
X,

(
Ωp,ε

l

)
ε∈[0,∞]

)
is a ��-uniform convergence tower space, where Ωp,ε

l = {Φ ∈ F (X × X) |Ωl
p,ε (Φ) ≤

ε}.
Proposition 5.26. Let (X, p) , (Y, q) ∈ |� � −LTG| and f : X → Y a group
homomorphism. Then f : (X, p) → (Y, q) is continuous if and only if f :
(X, Ωl) → (Y, Ωl) is a uniform contraction.

Proof. Since Ωl = Λ
λpε

l , the results follows from Lemma 5.21.

We now state the following functorial relation between the category of ��-limit
tower groups and the category of ��-approach uniform convergence space
which follows from the Theorem 5.21 and Proposition 5.23.

Corollary 5.27.

U :

⎧⎪⎨
⎪⎩

� � −LTG −→ � � −AUCS(
X, ·, p = (pε)ε∈[0,∞]

)
	−→ (X, Ωl)

f 	−→ f

,

is a functor.
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In view of proposition 5.24, Corollary 5.25, and the definitions of continuity
between �-limit tower spaces, we have the following

Corollary 5.28.

W :

⎧⎪⎨
⎪⎩

� � −LTG −→ � � −UCTS(
X, ·, p = (pε)ε∈[0,∞]

)
	−→

(
X,

(
Ωp,ε

l

)
ε∈[0,∞]

)
f 	−→ f

,

is a functor.
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