Tutorial 1 Answer Sheet

- 1- Calculate the following:
 - a. The weight in grams of 0.45 moles of glucose ($C_6H_{12}O_6$) No. of moles = wt_g /MWT thus, wt_g = No. of moles × MWT MWT of glucose = $(12\times6) + (1\times12) + (16\times6) = 180g$ /mole wt_g = 0.45 × 180 = 81 g
 - b. The weight in grams of 1×10^{23} molecules of NaCl.

1 mole has
$$6.023 \times 10^{23}$$

? mole has 1×10^{23}
= 0.166 mole
MWT of NaCl = $(1 \times 23) + (1 \times 35.5) = 58.5$ g/mole wt_g = 0.166 × 58.5 = 9.71 g

c. The number of molecules in 2.25 g of glycine.

```
MWT of glycine = (2\times12) + (1\times14) + (2\times16) + (5\times1) = 75g/mole.

1 mole has 75g

? mole has 2.25

= 0.03 mole

Since 1 mole has 6.023 \times 10^{23}

0.03 mole has ? molecules

= 0.03 \times 6.023 \times 10^{23}

= 0.18 \times 10^{23}
```

- 2- Calculate the normality of the following solutions:
 - a. 250 ml of HCl containing 18.25 g of HCl.

```
N = No. of equivalents / V_{(L)}

No. of equivalents = wt_g of solute / equivalents weight

EW= MWT of solute / n

MWT of HCl= (1\times35.5) + (1\times1) = 36.5g/mole

n = 1

EW= MWT of solute / n

= 36.5 / 1 = 36.5

No. of equivalents = wt_g of solute / equivalents weight

= 18.25 / 36.5

= 0.5
```

N = No. of equivalents /
$$V_{(L)}$$

= 0.5 / 0.25
= 2 normal

b. 49 g of H₂SO₄ in 250 ml.

```
MWT of H_2SO_4 = (2\times1) + (1\times32) + (4\times16) = 98g/mole n=2

EW = MWT of solute / n

= 98/2 = 49

No. of equivalents = wt<sub>g</sub> of solute / equivalents weight

= 49/49

= 1

N = No. of equivalents / V_{(L)}

= 1/0.25

= 4 normal
```

- 3- 12.25 g of phosphoric acid was dissolved in water and the volume made up to 100 ml, calculate:
 - a. The normality of the solution.
 - b. The molarity of the solution.

```
\begin{split} N &= M \times n \\ M &= \text{No. of moles of solute / V}_{(L)} \\ \text{No. of moles} &= \text{wt}_g / MWT \\ MWT \text{ of H}_3 PO_4 &= (3 \times 1) + (1 \times 31) + (4 \times 16) = 98g / \text{mole.} \\ \text{No. of moles} &= \text{wt}_g / MWT \\ &= 12.25 / 98 \\ &= 0.125 \text{ mole} \\ M &= \text{No. of moles of solute / V}_{(L)} \\ &= 0.125 / 0.1 \\ &= 1.25 \text{ molar} \\ n &= 3 \\ N &= M \times n \\ &= 1.25 \times 3 \\ &= 3.75 \text{ normal} \end{split}
```

4- 20 g of NaCl is dissolved in 200 ml water, what is its W/V%?

```
20 g in 200 ml
? in 100 ml
```

```
= 10g NaCl in 100 ml water so the W/V% is 10
```

5- Calculate the percent V/V% of ethanol in a solution prepared by diluting 30 ml of ethanol to 250ml.

```
V/V% = the volume in ml of a solute / 100 ml of solution
30 ml of ethanol in 250 ml
? -----> 100 ml
V/V\% = (30 \times 100) / 250
= 12%
```

6- Calculate the number of grams of BaCl₂.H₂O that you would need to prepare 100 ml of a 0.2 M solution.

```
Volume = 100/1000
= 0.1 L
M =no. of moles/Volume(L)
No. of moles = M × Volume(L)
= 0.2 \times 0.1
= 0.02 moles
no. of moles = WT(g)/MWT
WT(g) = no. of moles × MWT
MWT = 137.33 + (35.45 \times 2) + (1 \times 2) + 16
= 226.23 g/mol
WT(g) = 0.02 \times 226.23
= 4.52 g
```

7- Calculate the molarity and osmolality of a 10 W/V % MgCl₂ solution.

```
10 g in 100 ml

= 10g NaCl in 100 ml water so the W/V% is 10

MWT MgCl<sub>2</sub>= (1\times24) + (2\times35.5) = 95g/mole

No. of moles = wt<sub>g</sub>/MWT

= 10/95 = 0.1 mole

M = No. of moles of solute / V<sub>(L)</sub>

= 0.1/0.1

= 1 molar

Osmolarity = M × n

n=3
```

$$N= 1 \times 3$$

= 3 Osmolarity

- 8- How would you prepare 0.2 L of 0.3 MgCl₂ W/V% solution.
 - 0.3 g in 100 ml is 0.3% W/V% but since 200 ml is needed ? g in 200 ml = $(0.3 \times 200) / 100$ = 0.6 g of MgCl₂
- 0.6~g of $MgCl_2$ is dissolved in a little volume of distilled water then the volume was made up to 200ml with distilled water
- 9- A solution was prepared by dissolving 8 g of solid ammonium sulfate (MWT = 132.14) in 39.52 ml of water. Express the concentration in terms of: g/L, M, N, W/V%, mg%, osmolarity.

```
g/L
8g ----> 39.52 ml
? ----> 1000 ml
? = (8 \times 1000)/39.52 = 202.4 \text{ g/l}
M = no. of moles/volume_{(L)}
no. of moles = wt/MWT = 8/132.14 = 0.0605 mole
volume(L) = 39.52 \text{ ml}/1000 = 0.03952 \text{ L}
M = 0.0605/0.03952
  = 1.53 \text{ molar}
N = n \times M
  = 1 \times 1.53
  = 1.53 \text{ N}
W/V\% = wt in g/volume in 100 ml of solution
8g ----> 39.52 ml
? ----> 100 ml
? = (8 \times 100)/39.52 = 20.24 \%
mg%
from W/V\% = 20.24\%
mg\% = 20.24 \times 1000
      = 2024 \text{ mg}\%
```

Osmolarity = $n \times M$

$$= 2 \times 1.53$$

= 3.06 osmolar

10- A solution contains 15 g of CaCl₂ in a total volume of 190 ml. Express the concentration of this solution in terms of: g/L, M, W/V%, mg%, osmolarity.

```
g/L
15g -----> 190 ml
? -----> 1000 ml
? = (15 \times 1000)/190 = 78.9 \text{ g/l}
M = no. of moles/volume_{(L)}
no. of moles = wt/MWT = 15/(40 + (35 \times 5)) = 0.135 mole
volume(L) = 190 \text{ ml}/1000 = 0.19 \text{ L}
M = 0.135/0.19
  = 0.711 \text{ molar}
W/V\% = wt in g/volume in 100 ml of solution
78.9g - - > 1000 \text{ ml}
? -----> 100 ml
? = (78.9 \times 100)/1000 = 7.89 \%
mg%
from W/V\% = 7.89\%
mg\% = 7.89 \times 1000
      = 7890 \text{ mg}\%
Osmolarity = n \times M
              = 3 \times 0.711
              = 2.134 osmolar
```

Tutorial 2 Answer Sheet

1. How many ml of 0.8 M acetic acid (CH₃COOH) are needed to prepare 200ml of 0.4N acetic acid?

$$N = M \times n$$

so M = N / n n of the acetic acid =1 M of the required solution =
$$0.4$$
 / 1 = 0.4 molar $C_1 \times V_1 = C_2 \times V_2$ $0.8 \times V_1 = 0.4 \times 200$ $0.8 \times V_1 = 80$ $V_1 = 80$ / 0.8 $V_1 = 100$ ml

So 100 ml of the 0.8M solution is needed and make up the volume to 200ml with distilled water.

OR YOU CAN USE THIS WAY

$$N = M \times n$$

so $M = N/n$
n of the acetic acid =1
M of the required solution = 0.4/ 1= 0.4 molar
 $M = No$. of moles of solute / thus $V_{(L)}$ thus
No. of moles of required solution = $M \times V$
= 0.4 × 0.2
= 0.08 moles needed

From the molarity of the stock solution:

0.8 mole in 1000 ml solution

0.08 moles in? ml solution

 $= (0.08 \times 1000) / 0.8$

 $= 100 \, \text{ml}$

So 100 ml of the 0.8M solution is needed and make up the volume to 200ml with distilled water.

2. Describe the preparation of 2L of a 0.23M H₂SO₄ solution starting from a stock solution of H₂SO₄ 92% W/W%, SG=1.84 g/ml?

MW of
$$H_2SO_4 = (2\times1) + (1\times32) + (4\times16) = 98g/mole$$
.
 $M = No.$ of moles of solute / $V_{(L)}$
No. of moles = $M \times V_{(L)}$
= $0.23 \times 2 = 0.46$ mole
 $wt_g = No.$ of moles $\times MWT$
= $0.46 \times 98 = 45.08g$
Since $92g$ of H_2SO_4 stock solution in $100g$ solution
 $45.08g$ of H_2SO_4 required solution in $?g$ solution

```
= (45.08 \times 100) / 92
= 49g of solution
V= wt /\rho = 49/ 1.84
= 26.6ml
```

So 26.6ml of the stock solution is taken then complete up the volume to 2 liters with distilled water.

3. Calculate the molarity of H_2SO_4 which has a molality of 6.8 molal, P = 1.48 g/ml?

```
Molality means 6.8 mole of solute in 1000 g of solvent. MWT of H_2SO_4 = (2\times1) + (1\times32) + (4\times16) = 98g/\text{mole}. No. of moles = \text{wt}_g/\text{MWT} thus \text{wt}_g = \text{No.} of moles \times MWT = 6.8 \times 98 = 666.4g

The weight of solution = weight of solvent + weight of solute. = 1000 + 666.4 = 1666.4 g

V= wt /\rho = 1666.4 / 1.48 = 1125.9 ml

Since 6.8 mole of solute in 1125.9 ml of solution ? mole of solute in 1000 ml of solution = 6.04 molar
```

4. A solution of H₂SO₄ is 4% W/W%, density is 1.84g/ml. Calculate the molarity, normality and molality?

Molarity

```
MWT of H_2SO_4 = (2\times1) + (1\times32) + (4\times16) = 98g/mole.

Since 4% W/W is 4 g H_2SO_4 in 100g solution.

No. of moles = wt_g/MWT

= 4 / 98

= 0.04 mole

V= wt/\rho

= 100/ 1.84

= 54.35 ml of solution

So 0.04 mole in 54.35ml solution
```

```
? Mole in 1000 ml of solution
= (0.04 × 1000) / 54.35
= 0.74 molar

Normality
N = M × n
n= 2
N= 0.74 × 2
```

Molality

= 1.48 normal

Since the weight of solution = weight of solvent + weight of solute. Thus, the weight of solvent = weight of solution - weight of solute.

$$= 100g - 4g$$

= 96g

0.04 mole of solute in 96 g of solvent

? mole of solute in 1000 g of solvent

No. of moles of solute 1000 g of solvent =
$$(0.04 \times 1000) / 96$$

= 0.42 moles

The molality is 0.42

5. Describe how to prepare a 400 ml ,1:8 dilution of a disinfectant solution from a stock solution provided using water as your diluent.

```
Since DF=Vf / Vi thus Vi = Vf / DF
DF is 8
Vi = 400 / 8
= 50 ml.
```

To prepare, we need 50ml of the stock solution and make up the volume to 400ml with water

6. You are provided with 3ml of a 100 mg/ml stock solution of ampicillin and requested to prepare dilute it a final concentration of 25mg/ml and final volume of 200µl. Calculate the volume of stock solution needed? Describe the preparation process.

$$C_1 \times V_1 = C_2 \times V_2$$

 $C_1 = 100$ mg/ml, $C_2 = 25$ mg/ml, $V_2 = 200\mu$ l, $V_1 = ?$
 $100 \times V_1 = 25 \times 200$

$$V_1 = (25 \times 200) / 100$$

= 50µl

To prepare, we need $50\mu l$ of the stock solution and make up the volume to $200\mu l$ with water.

NOTE: I did not convert volume!!

7. A 100.0 mL of 2.500 M KBr solution is on hand. You need to prepare a 0.5500 M KBr. What is the final volume of solution that results?

$$C_1 \times V_1 = C_2 \times V_2$$

 $C_1 = 2.5 \text{ M}, C_2 = 0.55 \text{ M}, V_1 = 100 \text{ml}, V_2 = ?$
 $2.5 \times 100 = 0.55 \times V_2$
 $V_2 = (2.5 \times 100) / 0.55$
 $V_2 = 454.55 \text{ml}.$

The final volume of the solution is 454.55ml

- 8. From the following serial dilution answer the following (stock solution is 0.4M);
- a- The dilution factor?
- b- Calculate the concentration of tube 4 and 7 in the serial dilution.

b- Serial dilution:

For tube 4 =
$$10 \times 10 \times 10 \times 10 = 10000$$
. The concentration is 0.4/10000 = 4×10^{-5} M

For tube 7 = $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 10000000$. The concentration is $0.4/10000000 = 4 \times 10^{-8}$ M