Tutorial 1 Answer Sheet

1- Calculate the following:
a. The weight in grams of 0.45 moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

No. of moles $=\mathrm{wt}_{\mathrm{g}} /$ MWT thus, $\mathrm{wt}_{\mathrm{g}}=$ No. of moles \times MWT
MWT of glucose $=(12 \times 6)+(1 \times 12)+(16 \times 6)=180 \mathrm{~g} / \mathrm{mole}$ $\mathrm{wt}_{\mathrm{g}}=0.45 \times 180=81 \mathrm{~g}$
b. The weight in grams of 1×10^{23} molecules of NaCl .

1 mole has 6.023×10^{23}
$?$ mole has 1×10^{23}
$=0.166$ mole
MWT of $\mathrm{NaCl}=(1 \times 23)+(1 \times 35.5)=58.5 \mathrm{~g} / \mathrm{mole}$ $\mathrm{wt}_{\mathrm{g}}=0.166 \times 58.5=9.71 \mathrm{~g}$
c. The number of molecules in 2.25 g of glycine.

MWT of glycine $=(2 \times 12)+(1 \times 14)+(2 \times 16)+(5 \times 1)=75 \mathrm{~g} / \mathrm{mole}$. 1 mole has 75 g
? mole has 2.25
$=0.03 \mathrm{~mole}$
Since 1 mole has 6.023×10^{23}

$$
\begin{aligned}
& 0.03 \text { mole has } ? \text { molecules } \\
= & 0.03 \times 6.023 \times 10^{23} \\
= & 0.18 \times 10^{23}
\end{aligned}
$$

2- Calculate the normality of the following solutions:
a. 250 ml of HCl containing 18.25 g of HCl .
$\mathrm{N}=$ No. of equivalents $/ \mathrm{V}_{(\mathrm{L})}$
No. of equivalents $=\mathrm{wt}_{\mathrm{g}}$ of solute $/$ equivalents weight EW = MWT of solute $/ \mathrm{n}$
MWT of $\mathrm{HCl}=(1 \times 35.5)+(1 \times 1)=36.5 \mathrm{~g} /$ mole
$\mathrm{n}=1$
EW $=$ MWT of solute $/ \mathrm{n}$

$$
=36.5 / 1=36.5
$$

No. of equivalents $=\mathrm{wt}_{\mathrm{g}}$ of solute $/$ equivalents weight

$$
\begin{aligned}
& =18.25 / 36.5 \\
& =0.5
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N} & =\text { No. of equivalents } / \mathrm{V}_{(\mathrm{L})} \\
& =0.5 / 0.25 \\
& =2 \text { normal }
\end{aligned}
$$

b. 49 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 250 ml .

MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)=98 \mathrm{~g} / \mathrm{mole}$ n=2
EW $=$ MWT of solute $/ \mathrm{n}$
$=98 / 2=49$
No. of equivalents $=\mathrm{wt}_{\mathrm{g}}$ of solute $/$ equivalents weight

$$
\begin{aligned}
& =49 / 49 \\
& =1
\end{aligned}
$$

$\mathrm{N}=$ No. of equivalents $/ \mathrm{V}_{(\mathrm{L})}$
$=1 / 0.25$
$=4$ normal
3- 12.25 g of phosphoric acid was dissolved in water and the volume made up to 100 ml , calculate:
a. The normality of the solution.
b. The molarity of the solution.

$$
\begin{aligned}
& \mathrm{N}=\mathrm{M} \times \mathrm{n} \\
& \mathrm{M}=\mathrm{No} \text {. of moles of solute } / \mathrm{V}_{(\mathrm{L})} \\
& \text { No. of moles }=\mathrm{wt}_{\mathrm{g}} / \mathrm{MWT} \\
& \mathrm{MWT} \text { of } \mathrm{H}_{3} \mathrm{PO}_{4}=(3 \times 1)+(1 \times 31)+(4 \times 16)=98 \mathrm{~g} / \text { mole. } \\
& \begin{aligned}
\text { No. of moles } & =\mathrm{wt}_{\mathrm{g}} / \mathrm{MWT} \\
& =12.25 / 98 \\
& =0.125 \mathrm{~mole}
\end{aligned} \\
& \begin{aligned}
\mathrm{M} & =\text { No. of moles of solute } / \mathrm{V}_{(\mathrm{L}} \\
& =0.125 / 0.1 \\
& =1.25 \text { molar }
\end{aligned} \\
& \begin{aligned}
\mathrm{n} & =3 \\
\mathrm{~N} & =\mathrm{M} \times \mathrm{n} \\
& =1.25 \times 3 \\
& =3.75 \text { normal }
\end{aligned}
\end{aligned}
$$

4- 20 g of NaCl is dissolved in 200 ml water, what is its $\mathrm{W} / \mathrm{V} \%$?
20 g in 200 ml
$? \quad$ in 100 ml
$=10 \mathrm{~g} \mathrm{NaCl}$ in 100 ml water so the $\mathrm{W} / \mathrm{V} \%$ is 10
5- Calculate the percent $\mathrm{V} / \mathrm{V} \%$ of ethanol in a solution prepared by diluting 30 ml of ethanol to 250 ml .
$\mathrm{V} / \mathrm{V} \%=$ the volume in ml of a solute $/ 100 \mathrm{ml}$ of solution
30 ml of ethanol in 250 ml

$$
\begin{aligned}
& ? \text { ?-----------> } 100 \mathrm{ml} \\
& \begin{aligned}
\mathrm{V} / \mathrm{V} \% & =(30 \times 100) / 250 \\
& =12 \%
\end{aligned}
\end{aligned}
$$

6- Calculate the number of grams of $\mathrm{BaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ that you would need to prepare 100 ml of a 0.2 M solution.

$$
\text { Volume }=100 / 1000
$$

$$
=0.1 \mathrm{~L}
$$

$$
\mathrm{M}=\text { no. of moles/Volume(L) }
$$

$$
\text { No. of moles }=\mathrm{M} \times \text { Volume }(\mathrm{L})
$$

$$
=0.2 \times 0.1
$$

$$
=0.02 \mathrm{moles}
$$

no. of moles $=\mathrm{WT}(\mathrm{g}) / \mathrm{MWT}$
$\mathrm{WT}(\mathrm{g})=$ no. of moles \times MWT
$\mathrm{MWT}=137.33+(35.45 \times 2)+(1 \times 2)+16$
$=226.23 \mathrm{~g} / \mathrm{mol}$
$\mathrm{WT}(\mathrm{g})=0.02 \times 226.23$
$=4.52 \mathrm{~g}$
7- Calculate the molarity and osmolality of a $10 \mathrm{~W} / \mathrm{V} \% \mathrm{MgCl}_{2}$ solution.

$$
\begin{aligned}
& 10 \mathrm{~g} \text { in } 100 \mathrm{ml} \\
& =10 \mathrm{~g} \mathrm{NaCl} \text { in } 100 \mathrm{ml} \text { water so the } \mathrm{W} / \mathrm{V} \% \text { is } 10
\end{aligned}
$$

MWT $\mathrm{MgCl}_{2}=(1 \times 24)+(2 \times 35.5)=95 \mathrm{~g} / \mathrm{mole}$
No. of moles $=\mathrm{wt}_{\mathrm{g}} / \mathrm{MWT}$

$$
=10 / 95=0.1 \mathrm{~mole}
$$

$\mathrm{M}=$ No. of moles of solute $/ \mathrm{V}_{(\mathrm{L})}$
$=0.1 / 0.1$
$=1$ molar
Osmolarity $=\mathrm{M} \times \mathrm{n}$
$\mathrm{n}=3$

$$
\begin{aligned}
\mathrm{N} & =1 \times 3 \\
& =3 \text { Osmolarity }
\end{aligned}
$$

8- How would you prepare 0.2 L of $0.3 \mathrm{MgCl}_{2} \mathrm{~W} / \mathrm{V} \%$ solution.
0.3 g in 100 ml is $0.3 \% \mathrm{~W} / \mathrm{V} \%$ but since 200 ml is needed
? g in 200 ml
$=(0.3 \times 200) / 100$
$=0.6 \mathrm{~g}$ of MgCl_{2}
0.6 g of MgCl_{2} is dissolved in a little volume of distilled water then the volume was made up to 200 ml with distilled water

9- A solution was prepared by dissolving 8 g of solid ammonium sulfate $(\mathrm{MWT}=132.14)$ in 39.52 ml of water. Express the concentration in terms of: $\mathrm{g} / \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{W} / \mathrm{V} \%, \mathrm{mg} \%$, osmolarity.

$$
\begin{aligned}
& \mathrm{g} / \mathrm{L} \\
& 8 \mathrm{~g}------>39.52 \mathrm{ml} \\
& ?------>1000 \mathrm{ml} \\
& ?=(8 \times 1000) / 39.52= \\
& \mathrm{M}=\text { no. of moles } / \mathrm{volv} \\
& \text { no. of moles }=\mathrm{wt} / \mathrm{MV} \\
& \text { volume }(\mathrm{L})=39.52 \mathrm{~m} \\
& \begin{aligned}
\mathrm{M} & =0.0605 / 0.03952 \\
& =1.53 \mathrm{molar}
\end{aligned} \\
& \begin{aligned}
\mathrm{N} & =\mathrm{n} \times \mathrm{M} \\
& =1 \times 1.53 \\
& =1.53 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

$$
?=(8 \times 1000) / 39.52=202.4 \mathrm{~g} / \mathrm{l}
$$

$$
\mathrm{M}=\text { no. of moles/volume }{ }_{(\mathrm{L})}
$$

$$
\text { no. of moles }=w t / \mathrm{MWT}=8 / 132.14=0.0605 \text { mole }
$$

$$
\text { volume }(\mathrm{L})=39.52 \mathrm{ml} / 1000=0.03952 \mathrm{~L}
$$

$$
\mathrm{W} / \mathrm{V} \%=\mathrm{wt} \text { in } \mathrm{g} / \text { volume in } 100 \mathrm{ml} \text { of solution }
$$

$$
8 \mathrm{~g} \text {--------> } 39.52 \mathrm{ml}
$$

$$
\text { ? ---------> } 100 \mathrm{ml}
$$

$$
?=(8 \times 100) / 39.52=20.24 \%
$$

$$
\mathrm{mg} \%
$$

from W/V\% = 20.24\%

$$
\mathrm{mg} \%=20.24 \times 1000
$$

$$
=2024 \mathrm{mg} \%
$$

Osmolarity $=\mathrm{n} \times \mathrm{M}$

$$
=2 \times 1.53
$$

$=3.06$ osmolar
10- A solution contains 15 g of CaCl_{2} in a total volume of 190 ml . Express the concentration of this solution in terms of: $\mathrm{g} / \mathrm{L}, \mathrm{M}, \mathrm{W} / \mathrm{V} \%, \mathrm{mg} \%$, osmolarity.

```
g/L
15g -------- > 190 ml
? --------- > 1000 ml
?=(15 \times 1000)/190=78.9 g/l
M = no. of moles/volume }\mp@subsup{}{(L)}{
no. of moles =wt/MWT = 15/(40 + (35 \times 5)) = 0.135 mole
volume}(\textrm{L})=190\textrm{ml}/1000=0.19 
M=0.135/0.19
    =0.711 molar
```

$\mathrm{W} / \mathrm{V} \%=\mathrm{wt}$ in $\mathrm{g} /$ volume in 100 ml of solution
78.9 g --------> 1000 ml
? --------- > 100 ml
$?=(78.9 \times 100) / 1000=7.89 \%$
mg\%
from $\mathrm{W} / \mathrm{V} \%=7.89 \%$
$\mathrm{mg} \%=7.89 \times 1000$
$=7890 \mathrm{mg} \%$

Osmolarity $=\mathrm{n} \times \mathrm{M}$
$=3 \times 0.711$
$=2.134$ osmolar

Tutorial 2 Answer Sheet

1. How many ml of 0.8 M acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ are needed to prepare 200 ml of 0.4 N acetic acid?

$$
\mathrm{N}=\mathrm{M} \times \mathrm{n}
$$

so $\mathrm{M}=\mathrm{N} / \mathrm{n}$
n of the acetic acid $=1$
M of the required solution $=0.4 / 1=0.4$ molar
$\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2}$
$0.8 \times \mathrm{V}_{1}=0.4 \times 200$
$0.8 \times \mathrm{V}_{1}=80$
$\mathrm{V}_{1}=80 / 0.8$
$\mathrm{V}_{1}=100 \mathrm{ml}$
So 100 ml of the 0.8 M solution is needed and make up the volume to 200 ml with distilled water.

OR YOU CAN USE THIS WAY
$N=\mathrm{M} \times \mathrm{n}$
so $\mathrm{M}=\mathrm{N} / \mathrm{n}$
n of the acetic acid =1
M of the required solution $=0.4 / 1=0.4$ molar
$M=$ No. of moles of solute / thus $\mathrm{V}_{(\mathrm{L})}$ thus
No. of moles of required solution $=\mathrm{M} \times \mathrm{V}$

$$
=0.4 \times 0.2
$$

$$
=0.08 \text { moles needed }
$$

From the molarity of the stock solution:
0.8 mole in 1000 ml solution
0.08 moles in ? ml solution
$=(0.08 \times 1000) / 0.8$
$=100 \mathrm{ml}$
So 100 ml of the 0.8 M solution is needed and make up the volume to 200 ml with distilled water.
2. Describe the preparation of 2 L of a $0.23 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution starting from a stock solution of $\mathrm{H}_{2} \mathrm{SO}_{4} 92 \% \mathrm{~W} / \mathrm{W} \%, \mathrm{SG}=1.84 \mathrm{~g} / \mathrm{ml}$?

MW of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)=98 \mathrm{~g} /$ mole.
$\mathrm{M}=$ No. of moles of solute $/ \mathrm{V}_{(\mathrm{L})}$
No. of moles $=\mathrm{M} \times \mathrm{V}_{(\mathrm{L})}$

$$
=0.23 \times 2=0.46 \mathrm{~mole}
$$

$\mathrm{wt}_{\mathrm{g}}=$ No. of moles \times MWT

$$
=0.46 \times 98=45.08 \mathrm{~g}
$$

Since $92 \mathrm{~g}^{\text {of }} \mathrm{H}_{2} \mathrm{SO}_{4}$ stock solution in 100 g solution $45.08 \mathrm{~g}^{\text {of }} \mathrm{H}_{2} \mathrm{SO}_{4}$ required solution in ?g solution

$$
\begin{aligned}
& =(45.08 \times 100) / 92 \\
& =49 \mathrm{~g} \text { of solution } \\
& \mathrm{V}=\mathrm{wt} / \rho=49 / 1.84 \\
& =26.6 \mathrm{ml}
\end{aligned}
$$

So 26.6 ml of the stock solution is taken then complete up the volume to 2 liters with distilled water.
3. Calculate the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which has a molality of 6.8 molal, $\mathrm{P}=$ $1.48 \mathrm{~g} / \mathrm{ml}$?

Molality means 6.8 mole of solute in 1000 g of solvent.
MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)=98 \mathrm{~g} / \mathrm{mole}$.
No. of moles $=\mathrm{wt}_{\mathrm{g}} / \mathrm{MWT}$
thus $\mathrm{wt}_{\mathrm{g}}=$ No. of moles \times MWT

$$
\begin{aligned}
& =6.8 \times 98 \\
& =666.4 \mathrm{~g}
\end{aligned}
$$

The weight of solution $=$ weight of solvent + weight of solute.

$$
\begin{aligned}
& =1000+666.4 \\
& =1666.4 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V} & =\mathrm{wt} / \rho \\
& =1666.4 / 1.48 \\
& =1125.9 \mathrm{ml}
\end{aligned}
$$

Since 6.8 mole of solute in 1125.9 ml of solution
? mole of solute in 1000 ml of solution
$=6.04$ molar
4. A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $4 \% \mathrm{~W} / \mathrm{W} \%$, density is $1.84 \mathrm{~g} / \mathrm{ml}$. Calculate the molarity, normality and molality?

Molarity

MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)=98 \mathrm{~g} / \mathrm{mole}$.
Since $4 \% \mathrm{~W} / \mathrm{W}$ is $4 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 g solution.
No. of moles $=w t_{g} / \mathrm{MWT}$

$$
\begin{aligned}
& =4 / 98 \\
& =0.04 \text { mole }
\end{aligned}
$$

$\mathrm{V}=\mathrm{wt} / \rho$
$=100 / 1.84$
$=54.35 \mathrm{ml}$ of solution
So 0.04 mole in 54.35 ml solution
? Mole in 1000 ml of solution
$=(0.04 \times 1000) / 54.35$
$=0.74$ molar

Normality

$\mathrm{N}=\mathrm{M} \times \mathrm{n}$
$\mathrm{n}=2$
$\mathrm{N}=0.74 \times 2$
$=1.48$ normal

Molality

Since the weight of solution $=$ weight of solvent + weight of solute.
Thus, the weight of solvent $=$ weight of solution - weight of solute.

$$
\begin{aligned}
& =100 \mathrm{~g}-4 \mathrm{~g} \\
& =96 \mathrm{~g}
\end{aligned}
$$

0.04 mole of solute in 96 g of solvent
? mole of solute in 1000 g of solvent
No. of moles of solute 1000 g of solvent $=(0.04 \times 1000) / 96$ $=0.42$ moles
The molality is 0.42
5. Describe how to prepare a $400 \mathrm{ml}, 1: 8$ dilution of a disinfectant solution from a stock solution provided using water as your diluent.

Since $\mathrm{DF}=\mathrm{Vf} / \mathrm{Vi}$ thus Vi $=\mathrm{Vf} / \mathrm{DF}$
DF is 8

$$
\begin{aligned}
\mathrm{Vi} & =400 / 8 \\
& =50 \mathrm{ml} .
\end{aligned}
$$

To prepare, we need 50 ml of the stock solution and make up the volume to 400 ml with water
6. You are provided with 3 ml of a $100 \mathrm{mg} / \mathrm{ml}$ stock solution of ampicillin and requested to prepare dilute it a final concentration of $25 \mathrm{mg} / \mathrm{ml}$ and final volume of 200μ l. Calculate the volume of stock solution needed? Describe the preparation process.

$$
\begin{aligned}
& \mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
& \mathrm{C}_{1}=100 \mathrm{mg} / \mathrm{ml}, \mathrm{C}_{2}=25 \mathrm{mg} / \mathrm{ml}, \mathrm{~V}_{2}=200 \mu \mathrm{l}, \mathrm{~V}_{1}=? \\
& 100 \times \mathrm{V}_{1}=25 \times 200
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{1} & =(25 \times 200) / 100 \\
& =50 \mu \mathrm{l}
\end{aligned}
$$

To prepare, we need $50 \mu 1$ of the stock solution and make up the volume to $200 \mu 1$ with water.

NOTE: I did not convert volume!!
7. A 100.0 mL of 2.500 M KBr solution is on hand. You need to prepare a 0.5500 M KBr . What is the final volume of solution that results?

$$
\begin{aligned}
& \mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2} \\
& \mathrm{C}_{1}=2.5 \mathrm{M}, \mathrm{C}_{2}=0.55 \mathrm{M}, \mathrm{~V}_{1}=100 \mathrm{ml}, \mathrm{~V}_{2}=? \\
& 2.5 \times 100=0.55 \times \mathrm{V}_{2} \\
& \mathrm{~V}_{2}=(2.5 \times 100) / 0.55 \\
& \mathrm{~V}_{2}=454.55 \mathrm{ml} .
\end{aligned}
$$

The final volume of the solution is 454.55 ml
8. From the following serial dilution answer the following (stock solution is 0.4 M);
a- The dilution factor?
b- Calculate the concentration of tube 4 and 7 in the serial dilution .

a- DF:
$\mathrm{DF}=\mathrm{Vf} / \mathrm{Vi}$
$=10 / 1$
DF $=10$
b- Serial dilution:
For tube $4=10 \times 10 \times 10 \times 10=10000$. The concentration is $0.4 / 10000$ $=4 \times 10^{-5} \mathrm{M}$

For tube $7=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10000000$. The concentration is $0.4 / 10000000=4 \times 10^{-8} \mathrm{M}$

