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Partial Derivatives

e For functions of several variables

o z=7(X,y), z is continuous function of
independent variables x and y. Here z is
called an explicit function.

e This function can be represented as a surface
in Cartesian coordinates.



Partial Derivatives

* Imagine the surface intersects a planar
surface parallel to the z-x plane which cuts
the y-axis at y.

» The gradient of the line of intersection is

given by the partial derivative of z with
respect to x, and is defined as:-
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Partial Derivatives

» This is the same expression as for normal
differentials but with y considered as a
constant.

o It effectively gives the gradient in the x
direction. A similar expression can be written
for the y direction.
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Partial Derivatives - example

o Let z= X2 +3xy +)°
Z(X+ X, ¥) = (X+X)° +3y(X+X)+y°

Z(X+ X, Y) = X° + 2XK+ X +3y(X+X) +y°

oz |oz| - Z(X+ X, Y)—z(X,Y)
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Partial Derivatives - example

e Ignoring terms second order in the limit 6x—0

Z(X+ X, Y) = X*+2XK+3y(X+X) + y°

Z(X,y) = X° +3xy+Vy°
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Partial Derivatives

» Differential form take the implicit function
f(x, y, z) = 0, means X, y,and z are related and
only two variables are independent so x = x(y,z)

dx:(%] dy (@Xj dz
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e Similarly we can writey =y (x,z) and

dy:(@j dx (ayj dz
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Partial Derivatives
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e Substituting for dy
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Partial Derivatives

(5] (&)=(5)(3) (2 J

» We can choose x and z to be independent
variables so choosing dz = 0 is valid, dx can
then be non-zero.
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Partial Derivatives

(3 () ((3)(2) (2 e

» We can choose x and z to be independent
variables so choosing dx = 0 is valid, dz can
then be non-zero.
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Partial Derivatives — Chain rule

e Supposing variables X, y, z, are not independent (so any
two variables define the third) we can define the
function ¢ = ¢(x, y) and re-arrange to x = x(¢, y).

dx:@j w (@yl

e Dividing by dz and hold ¢ constant.

(%j — % (@j Chain Rule
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Higher Partial Derivatives

» Repeated application allows the definition of
higher derivatives.

oz ol
OX*  OX| o |,
0’z oloz o’z oloz

oyox  oylox|, oxay x| oy



Higher Partial Derivatives

e The order of differentiation does not matter as
long as the derivatives are continuous.
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Pfaffian forms

* The differential equation

df = Xdx+Ydy + Zdz
2

e In general the integral J df depends on the
path of integration. 1 In this case this is
called an inexact differential.

o But the integral is path independent if it can be
expressed as a single valued function f(x,y,z).

e dfis then an exact differential.



Pfaffian forms — exact differentials

e If we write

-(3), ), 1
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o It follows from the double differentials that
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* These are necessary and sufficient for the Pfaffian form
to be an exact differential.



Processes — functions of state

* The internal energy U of a system is a
function of state. For a fluid (ideal gas) we
could write U=U(P,T) or U=U(V,T).
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energies AU=U,-U, is the change of energy of
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Processes — functions of state

* The internal energy U of a system is a function of
state. For a fluid (ideal gas) we could write U=U(P,T)
or U=U(V,T).

o It is straightforward to imagine that in changing from
state 1 to state 2 we can define U, and U, such that
the difference in energies AU=U,-U, is the change of
energy of the system.

* We cannot make the same argument for Work or
Heat as you cannot define a quantity of either to be
associated with a state. They are only defined during
changes.




Processes — functions of state

The internal energy U of a system is a function of
state. For a fluid (ideal gas) we could write U=U(P,T)
or U=U(V,T).

It is straightforward to imagine that in changing from
state 1 to state 2 we can define U, and U, such that
the difference in energies AU=U,-U, is the change of
energy of the system.

We cannot make the same argument for Work or
Heat as you cannot define a quantity of either to be
associated with a state. They are only defined during
changes.

Work and heat flow are different forms of energy
transfer.




Heat and Work

» The physical distinction between these two
modes of energy transfer is:

— Work deals with macroscopically
observable degrees of freedom.

— Heat is energy transfer on the microscopic
scale via internal degrees of freedom of
the system.



Heat and Work

» The physical distinction between these two
modes of energy transfer is:

— Work deals with macroscopically
observable degrees of freedom.

— Heat is energy transfer on the microscopic
scale via internal degrees of freedom of
the system.

e First Law of Thermodynamics dU = dW + dQ
is always true as it is just conservation of
energy — you just have to account for all
possible heat and work processes.



Work

e First Law of Thermodynamics dU = dW + dQ
is always true as it is just conservation of
energy — you just have to account for all
possible heat and work processes.

— Stretching a wire (spring) dW = Fdx
— Surface tension — bubble dW = 7'dA

— Charging a capacitor dW = EdZ where
Eis the emf and Zstored charge.



Analysis of processes

* Quasistatic work
— dw = -PdV
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Analysis of processes 5

o Isothermal Work (ideal gas)
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Heat Transfer 5
e Constant pressure heating
- dQ =dU -dw
— dOQ =dU + Pdv b

dU — (Guj dT+(aU) dv
oT oV
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o (dQ/OT), = C, specific heat capacity at constant
pressure.



Heat Transfer
o« C, =(dQ/oT), = (dU/oT),
o C, = (dQ/oT),

c.(3) (@))%,

 Forideal gas PV = (-1)U = NRT

AN (a_Vj _NR
(8—V/T_ orj, P

Cp:CV‘l‘? Cp_CV:R




Heat Transfer [ceal Gas Only
* C, = (dQoT), = (aU/iT), = 3/2R
» G, =(dQ/oT),
c,=C,+R C,=%R



