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Partial Derivatives

• For functions of several variables

• z=z(x,y), z is continuous function of 
independent variables x and y. Here z is 
called an explicit function.

• This function can be represented as a surface 
in Cartesian coordinates.



Partial Derivatives

• Imagine the surface intersects a planar 
surface parallel to the z-x plane which cuts 
the y-axis at y.

• The gradient of the line of intersection is 
given by the partial derivative of z with 
respect to x, and is defined as:-
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Partial Derivatives

• This is the same expression as for normal 
differentials but with y considered as a 
constant.

• It effectively gives the gradient in the x 
direction. A similar expression can be written 
for the y direction.
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Partial Derivatives - example

• Let z= x2+3xy +y3
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Partial Derivatives - example

• Ignoring terms second order in the limit x0
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Partial Derivatives

• Differential form take the implicit function      
f(x, y, z) = 0,  means x, y,and z are related and 
only two variables are independent so x = x(y,z)

• Similarly we can write y = y (x,z) and
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Partial Derivatives

• Substituting for dy
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Partial Derivatives

• We can choose x and z to be independent 
variables so choosing dz = 0 is valid, dx can 
then be non-zero.
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Partial Derivatives

• We can choose x and z to be independent 
variables so choosing dx = 0 is valid, dz can 
then be non-zero.
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Partial Derivatives – Chain rule
• Supposing variables x, y, z, are not independent (so any 

two variables define the third) we can define the 
function  =  (x, y) and re-arrange to x = x(, y).

• Dividing by dz and hold  constant.
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Higher Partial Derivatives

• Repeated application allows the definition of 
higher derivatives.
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Higher Partial Derivatives

• The order of differentiation does not matter as 
long as the derivatives are continuous.
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Pfaffian forms

• The differential equation

• In general the integral          depends on the 
path of integration.             In this case this is 
called an inexact differential.

• But the integral is path independent if it can be 
expressed as a single valued function f(x,y,z).

• df is then an exact differential.
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Pfaffian forms – exact differentials

• If we write

• It follows from the double differentials that

• These are necessary and sufficient for the Pfaffian form 
to be an exact differential.
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Processes – functions of state

• The internal energy U of a system is a 
function of state. For a fluid (ideal gas) we 
could write U=U(P,T) or U=U(V,T).
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energies U=U2-U1 is the change of energy of 
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state 1 to state 2 we can define U1 and U2 such that 
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• We cannot make the same argument for Work or 
Heat as you cannot define a quantity of either to be 
associated with a state. They are only defined during 
changes.



Processes – functions of state

• The internal energy U of a system is a function of 
state. For a fluid (ideal gas) we could write U=U(P,T) 
or U=U(V,T).

• It is straightforward to imagine that in changing from 
state 1 to state 2 we can define U1 and U2 such that 
the difference in energies U=U2-U1 is the change of 
energy of the system.

• We cannot make the same argument for Work or 
Heat as you cannot define a quantity of either to be 
associated with a state. They are only defined during 
changes.

• Work and heat flow are different forms of energy 
transfer.



Heat and Work

• The physical distinction between these two 
modes of energy transfer is:

– Work deals with macroscopically 
observable degrees of freedom.

– Heat is energy transfer on the microscopic 
scale via internal degrees of freedom of 
the system.
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Work

• First Law of Thermodynamics dU = đW + đQ 
is always true as it is just conservation of 
energy – you just have to account for all 
possible heat and work processes.

– Stretching a wire (spring) đW = Fdx

– Surface tension – bubble đW = dA

– Charging a capacitor đW = EdZ where 
E is the emf and Z stored charge.



Analysis of processes

• Quasistatic work

– đW = -PdV
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Analysis of processes

• Isothermal Work (ideal gas)
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Heat Transfer
• Constant pressure heating

– đQ = dU - đW 

– đQ = dU + PdV

– đQ

• (đQ/T)P = CP specific heat capacity at constant 
pressure.
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Heat Transfer Ideal Gas Only
• Cv = (đQ/T)v = (dU/T)v 

• Cp = (đQ/T)p 

• For ideal gas PV = (-1)U = NRT 
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Heat Transfer Ideal Gas Only
• Cv = (đQ/T)v = (dU/T)v = 3/2 R

• Cp = (đQ/T)p 
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