Thermal and Statistical Physics H.W №2

Salwa Al Saleh

Problem (1)

2 moles of monoatomic gas expanded from $2 \mathrm{~cm}^{3}$ to $7 \mathrm{~cm}^{3}$, if the initial temperature was $50^{\circ} \mathrm{C}$.

1. Calculate the final pressure if the expansion was isothermal.
2. Calculate the final temperature if the expansion was adiabatic.
3. Draw a P-V diagram for the two processes above.

Problem (2)
An ideal gas pressure was decreased from $6 \times 10^{5} \mathrm{~Pa}$ at $T_{i}=40^{\circ} \mathrm{C}$ to $2 \times 10^{5} \mathrm{~Pa}$, keeping the volume constant.

1. Draw a $P-V$ diagram.
2. what is the work done on the system.
3. Calculate the heat exchange.

Problem (3)

Show that the work is not a function of state.
Hint: Use a simple thermodynamic cycle.

Problem (4)

0.5 moles of O_{2} gas having specific heat of $0.919(\mathrm{~kJ} /(\mathrm{kg} \mathrm{K}))$ at $T_{1}=40^{\circ} \mathrm{C}$ is mixed with 0.7 moles of Propane $C_{3} H_{8}$ gas having a specific heat of $1.67\left(\mathrm{~kJ} /(\mathrm{kgK})\right.$) at $T_{2}=25^{\circ} \mathrm{C}$ at adiabatic conditions. What is the temperature of the mixture at equilibrium?

Problem (5)

A special kind of gas that obeys the Van der Waal's gas equation:

$$
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

Where a and b are constants What is the work done expanding the gas isothermally from V_{1} to V_{2} ?

Problem (6)

2 moles of ice at $-5^{\circ} \mathrm{C}$ was melted, then the resulting water was heated to $30^{\circ} \mathrm{C}$. Calculate ΔQ and determine whether it is given or extracted from the system.

Problem (7)

An amount of water vapour at 100° was condensed to 250 ml of water at the same temperature, find ΔQ and determine whether it is given or extracted from the system.

Problem (8)

Show that the energy of the ideal gas depends only on its temperature.

Problem (9)

An ideal gas was compressed from $100 l$ at $T_{i}=30^{\circ} \mathrm{C}$ to $20 l$, keeping the pressure constant.

1. Draw a $P-V$ diagram.
2. what is the work done on the system.
3. Calculate the heat exchange, internal energy and enthalpy change of this process.
