THERMAL AND STATISTICAL PHYSICS H.W No 2

Salwa Al Saleh

PROBLEM (1)

2 moles of monoatomic gas expanded from 2 cm^3 to 7 cm^3 , if the initial temperature was $50^{o}C$.

- 1. Calculate the final **pressure** if the expansion was **isothermal**.
- 2. Calculate the final **temperature** if the expansion was **adiabatic**.
- 3. Draw a P-V diagram for the two processes above.

PROBLEM (2)

An ideal gas pressure was decreased from $6 \times 10^5 Pa$ at $T_i = 40^{\circ} C$ to $2 \times 10^5 Pa$, keeping the volume constant.

- 1. Draw a P V diagram.
- 2. what is the work done on the system.
- 3. Calculate the heat exchange.

PROBLEM (3)

Show that the work is not a function of state.

Hint: Use a simple thermodynamic cycle.

PROBLEM (4)

0.5 moles of O_2 gas having specific heat of 0.919(kJ/(kgK)) at $T_1 = 40^{\circ}C$ is mixed with 0.7 moles of Propane C_3H_8 gas having a specific heat of 1.67(kJ/(kgK)) at $T_2 = 25^{\circ}C$ at adiabatic conditions. What is the temperature of the mixture at equilibrium?

PROBLEM (5)

A special kind of gas that obeys the Van der Waal's gas equation:

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

Where a and b are constants What is the work done expanding the gas isothermally from V_1 to V_2 ?

PROBLEM (6)

2 moles of ice at $-5^{\circ}C$ was melted, then the resulting water was heated to $30^{\circ}C$. Calculate ΔQ and determine whether it is given or extracted from the system .

PROBLEM (7)

An amount of water vapour at 100° was condensed to 250ml of water at the same temperature, find ΔQ and determine whether it is given or extracted from the system .

PROBLEM (8)

Show that the energy of the ideal gas depends only on its temperature.

PROBLEM (9)

An ideal gas was compressed from 100l at $T_i = 30^{\circ}C$ to 20l, keeping the pressure constant.

- 1. Draw a P V diagram.
- 2. what is the work done on the system.
- 3. Calculate the heat exchange, internal energy and enthalpy change of this process.