Quantum Mechanics H.W №2

Salwa Al Saleh

Problem (1)

For $|\psi\rangle=\left(\begin{array}{c}i \\ -2 \\ 1\end{array}\right)$ and $|\phi\rangle=\left(\begin{array}{c}-1 \\ 3 i \\ \sqrt{2}\end{array}\right)$.

1. Calculate $4|\psi\rangle-i|\phi\rangle$
2. Find $\langle\phi \mid \psi\rangle$ and $\langle\psi \mid \phi\rangle$, what do you observe?
3. Express the vector $|\psi\rangle$ in terms of the basis:

$$
\left|\varepsilon_{1}\right\rangle=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left|\varepsilon_{2}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \text { and }\left|\varepsilon_{3}\right\rangle=\left(\begin{array}{c}
-i \\
1 \\
-i
\end{array}\right)
$$

4. Normalise the vector $|\phi\rangle$.

PROBLEM (2)

Given the (canonical) basis for a 3-D vector space. :

$$
\left|e_{1}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left|e_{2}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left|e_{1}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Show that they truely form a basis for the vector space.

Problem (3)

Given the following polynomials $p_{1}(x)=x$ and $p_{2}(x)=x^{2}-\frac{1}{3}$, defined over the interval $[-1,1]$, Are they orthonormal?

Problem (4)

Given the function defined on the interval $] 0,1[$:

$$
f(x)= \begin{cases}1, & 0<x<1 / 2 \\ 0, & 1 / 2<x<1 .\end{cases}
$$

Express the function $f(x)$ as a Fourier series.

Problem (5)

Use Schwartz inequality to show that the following is true :

$$
\int_{-\infty}^{+\infty}\left(t^{10}-t^{6}+5 t^{4}-5\right) e^{-x^{2}} d t \leq \sqrt{\int_{-\infty}^{+\infty}\left(t^{4}-1\right)^{2} e^{-x^{2}} d t} \sqrt{\int_{-\infty}^{+\infty}\left(t^{6}+5\right)^{2} e^{-x^{2}} d t}
$$

