KING SAUD UNIVERSITY. DEPARTMENT OF PHYSICS

Quantum Mechanics H.W $\mathbb{N}^{\underline{0}}2$

Salwa Al Saleh

PROBLEM (1)

For
$$|\psi\rangle = \begin{pmatrix} i \\ -2 \\ 1 \end{pmatrix}$$
 and $|\phi\rangle = \begin{pmatrix} -1 \\ 3i \\ \sqrt{2} \end{pmatrix}$

- 1. Calculate $4|\psi\rangle i|\phi\rangle$
- 2. Find $\langle \phi | \psi \rangle$ and $\langle \psi | \phi \rangle$, what do you observe ?
- 3. Express the vector $|\psi\rangle$ in terms of the basis:

$$|\varepsilon_1\rangle = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}, |\varepsilon_2\rangle = \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix} \text{ and } |\varepsilon_3\rangle = \begin{pmatrix} -i\\ 1\\ -i \end{pmatrix}.$$

4. Normalise the vector $|\phi\rangle$.

PROBLEM (2)

Given the (canonical) basis for a 3-D vector space. :

$$|e_1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, |e_2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, |e_1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Show that they truely form a basis for the vector space.

PROBLEM (3)

Given the following polynomials $p_1(x) = x$ and $p_2(x) = x^2 - \frac{1}{3}$, defined over the interval [-1, 1], Are they orthonormal ?

PROBLEM (4)

Given the function defined on the interval]0,1[:

$$f(x) = \begin{cases} 1, & 0 < x < 1/2 \\ 0, & 1/2 < x < 1. \end{cases}$$

Express the function f(x) as a Fourier series.

PROBLEM (5)

Use Schwartz inequality to show that the following is true :

$$\int_{-\infty}^{+\infty} \left(t^{10} - t^6 + 5t^4 - 5 \right) e^{-x^2} dt \le \sqrt{\int_{-\infty}^{+\infty} (t^4 - 1)^2 e^{-x^2} dt} \sqrt{\int_{-\infty}^{+\infty} (t^6 + 5)^2 e^{-x^2} dt}$$