Quantum Mechanics H.W №3

Salwa Al Saleh

Problem (1)

Find the eigenvalues of the operator :

$$
\hat{A}=\left(\begin{array}{ccc}
1 & i & 0 \\
-i & 2 & -i \\
0 & i & 1
\end{array}\right)
$$

Can we diagonalise it ?.

Problem (2)

Is the operator $d / d x$ acting on the L^{2} Hilbert space hermitian? How about -id/dx?

Problem (3)

Show that for a Hermitian operator \hat{T} the operator $\hat{U} \equiv e^{i \hat{T}}$ is unitary.

PROBLEM (4)

Is the function $\cos k x$ an eigenfunction for the operator $d / d x$? What about the operator $d^{2} / d x^{2}$?

Problem(5)

Show that for an operator \hat{A} commuting with the Hamiltonian operator \hat{H} we can write its time evolution as:

$$
e^{i \hat{H} t} \hat{A} e^{-i \hat{H} t}
$$

Hint: use Hadmard lemma This is known as Heisenberg equation

Problem (6)

We define the expected value - average value- of an operator with respect to a state vector $|\psi\rangle$ as:

$$
\langle\hat{A}\rangle \equiv\langle\psi| \hat{A}|\psi\rangle
$$

Show that if $|\psi\rangle$ is expanded in terms of the eigenbasis of \hat{A}, then the expected value is the sum of the eigenvalues of the operator a_{n}, i.e.

$$
\langle\hat{A}\rangle=\sum_{n} c_{n} a_{n}
$$

for some constants c_{n}.

PROBLEM (7)

Recall that we defined the identity operator as the outer product of the basis :

$$
I=\sum_{i}|i\rangle\langle i|
$$

Using this definition, show that this operator sends the ket $|\psi\rangle$ to itself (does not change the ket), then show this for the Bra vector $\langle\psi|$.

Problem(8)

Discuss why if $[\hat{A}, \hat{B}]|\psi\rangle \neq 0$ one cannot find a mutual eigenbasis to expand $|\psi\rangle$ with ?

